Understanding the Residential Water Demand Response to Price Changes: Measuring Price Elasticity with Social Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description
2.1.1. Purpose
2.1.2. Entities, State Variables and Scales
2.1.3. Process Overview and Scheduling
2.1.4. Design Concepts
2.1.5. Initialisation
2.1.6. Input
2.1.7. Submodels
Agent Scale Down
State Variables Definition
Water Consumption Definition
Billing
Action Choices
2.2. Model Adjustment and Use
2.2.1. Calibration
Water Consumption | Consumption Change | Savings Attributed to | Weight Assigned for Probability |
---|---|---|---|
Sink | −10% | more efficient use | 1/1 |
Washing dishes | −10% | better loading of the machine | 3/1 |
Shower | −10% | more efficient use | 1/1 |
Washing machine | −33% (2/3) | better loading of the machine 1 | 3/1 |
Garden watering 2 | −10% | watering at night | 2/1 |
−15% | stop watering surroundings of the house 3 | 1/1 |
2.2.2. Scenarios
2.2.3. Simulation Scenarios
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABM | Agent-Based Model |
ODD Protocol | Overview, Design concepts and Details Protocol |
SISS | Superintendencia de Servicios Sanitarios |
CASEN | Caracterización Socioeconómica Nacional |
References
- FAO. Water Scarcity—One of the Greatest Challenges of Our Time; FAO: Rome, Italy, 2018. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed]
- UN-Water (United Nations, Water). Summary Progress Update 2021: SDG 6—Water and Sanitation for All; United Nations: New York, NY, USA, 2021. [Google Scholar]
- UN-Water (United Nations, Water). Water Scarcity; United Nations: New York, NY, USA, 2023. [Google Scholar]
- Brauman, K.A.; Richter, B.D.; Postel, S.; Malsy, M.; Flörke, M. Water depletion: An improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments. Elem. Sci. Anthr. 2016, 4, 000083. [Google Scholar] [CrossRef]
- UN (United Nations). Human Rights to WAter and Sanitation; United Nations: New York, NY, USA, 2010. [Google Scholar]
- Uz, D.; Buck, S. Comparing Water Use Forecasting Model Selection Criteria: The Case of Commercial, Institutional, and Industrial Sector in Southern California. Sustainability 2020, 12, 3995. [Google Scholar] [CrossRef]
- García-Valiñas, M.; Suárez-Fernández, S. Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics. Water 2022, 14, 2536. [Google Scholar] [CrossRef]
- Worthington, A.C.; Hoffman, M. An Empirical Survey of Residential Water Demand Modelling. J. Econ. Surv. 2008, 22, 842–871. [Google Scholar] [CrossRef]
- Nauges, C.; Whittington, D. Estimation of Water Demand in Developing Countries: An Overview. World Bank Res. Obs. 2010, 25, 263–294. [Google Scholar] [CrossRef]
- Reynaud, A. Modelling Household Water Demand in Europe—Insights from a Cross-Country Econometric Analysis of EU-28 Countries; Technical Report LB-NA-27310-EN-N; European Comission: Luxembourg, 2015. [Google Scholar] [CrossRef]
- Vásquez Lavín, F.A.; Hernandez, J.I.; Ponce, R.D.; Orrego, S.A. Functional forms and price elasticities in a discrete continuous choice model of the residential water demand. Water Resour. Res. 2017, 53, 6296–6311. [Google Scholar] [CrossRef]
- Buck, S.; Auffhammer, M.; Soldati, H.; Sunding, D. Forecasting Residential Water Consumption in California: Rethinking Model Selection. Water Resour. Res. 2020, 56, e2018WR023965. [Google Scholar] [CrossRef]
- Li, J.; Liu, C.; Tang, L. Forecast of regional water demand based on NSGAII-FORAGM. Water Supply 2022, 22, 1889–1904. [Google Scholar] [CrossRef]
- Athanasiadis, I.N.; Mentes, A.K.; Mitkas, P.A.; Mylopoulos, Y.A. A Hybrid Agent-Based Model for Estimating Residential Water Demand. Simulation 2005, 81, 175–187. [Google Scholar] [CrossRef]
- Hoyos, D.; Artabe, A. Regional Differences in the Price Elasticity of Residential Water Demand in Spain. Water Resour. Manag. 2017, 31, 847–865. [Google Scholar] [CrossRef]
- Hung, M.F.; Chie, B.T. Residential Water Use: Efficiency, Affordability, and Price Elasticity. Water Resour. Manag. 2013, 27, 275–291. [Google Scholar] [CrossRef]
- Yudhistira, M.H.; Sastiono, P.; Meliyawati, M. Exploiting unanticipated change in block rate pricing for water demand elasticities estimation: Evidence from Indonesian suburban area. Water Resour. Econ. 2020, 32, 100161. [Google Scholar] [CrossRef]
- Suárez-Varela, M. Modeling residential water demand: An approach based on household demand systems. J. Environ. Manag. 2020, 261, 109921. [Google Scholar] [CrossRef] [PubMed]
- Grafton, R.Q.; Ward, M.B.; To, H.; Kompas, T. Determinants of residential water consumption: Evidence and analysis from a 10-country household survey. Water Resour. Res. 2011, 47, W08537. [Google Scholar] [CrossRef]
- Zhong, F.; Guo, A.; Jiang, D.; Yang, X.; Yao, W.; Lu, J. Research progress regarding residents’ water consumption behavior as relates to water demand management: A literature review. Adv. Water Sci. 2018, 29, 446–454. [Google Scholar]
- Chu, J.; Wang, C.; Chen, J.; Wang, H. Agent-based residential water use behavior simulation and policy implications: A case-study in Beijing city. Water Resour. Manag. 2009, 23, 3267–3295. [Google Scholar] [CrossRef]
- Arbués, F.; Ángeles García-Valiñas, M.; Martínez-Espiñeira, R. Estimation of residential water demand: A state-of-the-art review. J. Socio-Econ. 2003, 32, 81–102. [Google Scholar] [CrossRef]
- Ferrara, I. Residential Water Use. OECD J. Gen. Pap. 2008, 2008/2, 153–180. [Google Scholar] [CrossRef]
- Banda, B.M.; Farolfi, S.; Hassan, R.M. Estimating water demand for domestic use in rural South Africa in the absence of price information. Water Policy 2007, 9, 513–528. [Google Scholar] [CrossRef]
- Cheesman, J.; Bennett, J.; Son, T.V.H. Estimating household water demand using revealed and contingent behaviors: Evidence from Vietnam. Water Resour. Res. 2008, 44, W11428. [Google Scholar] [CrossRef]
- Bal, D.P.; Chhetri, A.; Thakur, B.K.; Debnath, K. Estimation of Price and Income Elasticity of Water: A Case Study of Darjeeling Town, West Bengal, India. Curr. Sci. 2021, 120, 800. [Google Scholar] [CrossRef]
- Sattler, B.J.; Friesen, J.; Tundis, A.; Pelz, P.F. Modeling and Validation of Residential Water Demand in Agent-Based Models: A Systematic Literature Review. Water 2023, 15, 579. [Google Scholar] [CrossRef]
- Wooldridge, M.; Fisher, M.; Huget, M.P.; Parsons, S. Model checking multi-agent systems with MABLE. In Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 2, New York, NY, USA, 15–19 July 2002; AAMAS ’02. pp. 952–959. [Google Scholar] [CrossRef]
- Vidal Lamolla, P.; Popartan, A.; Perello-Moragues, T.; Noriega, P.; Saurí, D.; Poch, M.; Molinos-Senante, M. Agent-based modelling to simulate the socio-economic effects of implementing time-of-use tariffs for domestic water. Sustain. Cities Soc. 2022, 86, 104118. [Google Scholar] [CrossRef]
- Perugini, D.; Perugini, M.; Young, M. Water saving incentives: An agent-based simulation approach to urban water trading. In Proceedings of the Simulation Conference: Simulation-Maximising Organisational Benefits (SimTecT 2008), Melbourne, Australia, 12–15 May 2008. [Google Scholar]
- Perello-Moragues, A.; Poch, M.; Sauri, D.; Popartan, L.; Noriega, P. Modelling Domestic Water Use in Metropolitan Areas Using Socio-Cognitive Agents. Water 2021, 13, 1024. [Google Scholar] [CrossRef]
- James, R.; Rosenberg, D.E. Agent-Based Model to Manage Household Water Use through Social-Environmental Strategies of Encouragement and Peer Pressure. Earth’s Future 2022, 10, e2020EF001883. [Google Scholar] [CrossRef]
- Grimm, V.; Berger, U.; Bastiansen, F.; Eliassen, S.; Ginot, V.; Giske, J.; Goss-Custard, J.; Grand, T.; Heinz, S.K.; Huse, G.; et al. A standard protocol for describing individual-based and agent-based models. Ecol. Model. 2006, 198, 115–126. [Google Scholar] [CrossRef]
- Grimm, V.; Berger, U.; DeAngelis, D.L.; Polhill, J.G.; Giske, J.; Railsback, S.F. The ODD protocol: A review and first update. Ecol. Model. 2010, 221, 2760–2768. [Google Scholar] [CrossRef]
- Grimm, V.; Railsback, S.F.; Vincenot, C.E.; Berger, U.; Gallagher, C.; DeAngelis, D.L.; Edmonds, B.; Ge, J.; Giske, J.; Groeneveld, J.; et al. The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural Realism. J. Artif. Soc. Soc. Simul. 2020, 23, 7. [Google Scholar] [CrossRef]
- Kayaga, S.; Smout, I. Tariff structures and incentives for water demand management. Proc. Inst. Civ. Eng.-Water Manag. 2014, 167, 448–456. [Google Scholar] [CrossRef]
- Chovar Vera, A.M.; Vásquez-Lavín, F.A.; Oliva, R. P Estimating Residential Water Demand under Systematic Shifts between Uniform (UP) and Increasing Block Tariffs (IBT). Water Resour. Res. 2024, 60, e2022WR033508. [Google Scholar] [CrossRef]
- Patterson, L.A.; Bryson, S.A.; Doyle, M.W. Affordability of household water services across the United States. PLoS Water 2023, 2, e0000123. [Google Scholar] [CrossRef]
- UNDP (United Nations Development Programme). Human Development Report 2006; UNDP (United Nations Development Programme): Vienna, Austria, 2006. [Google Scholar]
- Flores Arévalo, Y.; Oliva, R.D.P.; Fernández, F.J.; Vásquez-Lavin, F. Sensitivity of Water Price Elasticity Estimates to Different Data Aggregation Levels. Water Resour. Manag. 2021, 35, 2039–2052. [Google Scholar] [CrossRef]
- Lipowski, A.; Lipowska, D. Roulette-wheel selection via stochastic acceptance. Phys. A Stat. Mech. Its Appl. 2012, 391, 2193–2196. [Google Scholar] [CrossRef]
- Ministerio de Desarrollo Social y Familia. Encuesta Casen en Pandemia 2020 Gobierno de Chile; Ministerio de Desarrollo Social y Familia: Santiago de Chile, Chile, 2020. (In Spanish)
- SISS (Superintendencia de Servicios Sanitarios). Report about Water and Wastewater in Chile; Technical report; Gobierno de Chile: Santiago de Chile, Chile, 2020. [Google Scholar]
- Aguas Andinas. ¿Qué es el Sobreconsumo? Aguas Andinas: Santiago de Chile, Chile, 2023. (In Spanish) [Google Scholar]
- Wilensky, U. NetLogo. 1999. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. Available online: http://ccl.northwestern.edu/netlogo/ (accessed on 15 July 2024).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Posit Team. RStudio: Integrated Development Environment for R; Posit Software, PBC: Boston, MA, USA, 2022. [Google Scholar]
- SISS (Superintendencia de Servicios Sanitarios). Informe de Gestión del Sector Sanitario 2023; Gobierno de Chile: Santiago de Chile, Chile, 2023. (In Spanish) [Google Scholar]
- Fercovic, J.; Foster, W.; Melo, O. Economic development and residential water consumption in Chile. Environ. Dev. Econ. 2019, 24, 23–46. [Google Scholar] [CrossRef]
- Galán, J.M.; López-Paredes, A.; del Olmo, R. An agent-based model for domestic water management in Valladolid metropolitan area. Water Resour. Res. 2009, 45, W05401. [Google Scholar] [CrossRef]
- Wen, F.; Fang, X.; Khanal, R.; An, M. The effect of sectoral differentiated water tariff adjustment on the water saving from water footprint perspective: A case study of Henan Province in China. J. Clean. Prod. 2023, 393, 136152. [Google Scholar] [CrossRef]
- Berbel, J.; Borrego-Marin, M.M.; Exposito, A.; Giannoccaro, G.; Montilla-Lopez, N.M.; Roseta-Palma, C. Analysis of irrigation water tariffs and taxes in Europe. Water Policy 2019, 21, 806–825. [Google Scholar] [CrossRef]
- Olsson, G. Water Interactions—A Systemic View: Why We Need to Comprehend the Water-Climate-Energy-Food-Economics-Lifestyle Connections; IWA Publishing: London, UK, 2022. [Google Scholar]
- Perello-Moragues, A. A Value-Based Approach to Agent-Based Simulation for Policy Assessment: An Exploration in the Water Domain. Ph.D. Thesis, Universitat Autònoma de Barcelona, Bellaterra, Spain, 2020. [Google Scholar]
- Perello-Moragues, A.; Noriega, P.; Popartan, L.A.; Poch, M. Modelling Policy Shift Advocacy. In Proceedings of the Multi-Agent-Based Simulation Workshop (MABS) in the International Conference on Autonomous Agents and Mulitagent Systems (AAMAS19), Paris, France, 5–9 May 2020; pp. 55–68. [Google Scholar] [CrossRef]
Parameter | Range of Values |
---|---|
Commune | Lo Barnechea, Las Condes, Vitacura |
Consumption Profile (m3/month) | Low (<6), Medium (6–15), High (15–40), Very high (>40) |
Housing Type | Flat, Terraced house, Single house |
House Size (m2) | 40–100, 100–150, >150 |
Members | 1 to 10 |
Number of Bathrooms | 1 to 6 |
Monthly Household Income (in CLP *) | 309,000 to 26,391,666 |
Behavioural Profile | 1, 2, 3 or 4 |
Consumption Profile | Consumption Range (m3/Month/Household) | Housing Type | Size (m2) |
---|---|---|---|
Low | <6 | Flat | 40 to 100 |
Medium | 6 to 15 | Flat | 100 to 150 |
Terraced House | 40 to 100 | ||
Single House | |||
High | 15 to 40 | Flat | >150 |
Terraced House | 100 to 150 | ||
Single House | |||
Very High | >40 | Terraced House | >150 |
Single House |
Water Use | Consumption (L per Use) | Frequency | Variations |
---|---|---|---|
Toilet discharge | 5 per day and member | (if 1 bathroom) | |
(per bathroom, if bathrooms ) | |||
Sink (washing hands or brushing teeth) | 8 per day and member | (if 1 bathroom) | |
(per bathroom, if bathrooms ) | |||
Washing dishes | (by hand) | 1 per day (1 member) | |
10 (dishwasher) | 2 per day (2 or 3 members) | ||
3 per day (4 or 5 members) | |||
... | |||
Showering | 5 per week and member | (if 1 bathroom) | |
(per bathroom, if bathrooms ) | |||
Washing machine | 1 per week (1 member) | ||
2 per week (2 or 3 members) | |||
3 per week (4 or 5 members) | |||
… | |||
Garden watering | 400 (terraced house, 100 to 150 m2) | 7 per week (December to March) | |
600 (terraced house, <150 m2) | 6 per week (April and November) | ||
2750 ± 250 (single house, 100 to 150 m2) | 5 per week (May and October) | ||
3000 ± 500 (single house, m2) | 4 per week (June and September) | ||
3 per week (July and August) |
Water Consumption | Consumption Change | Savings Attributed to | ΔBill to Consider the Change (CLP/Month) |
---|---|---|---|
Sink | −10% | faucet aerator | 10,000 |
Washing dishes | 10 L/day | installing dishwasher 1 | 35,000 |
Shower | −10% | showerhead aerator | 15,000 |
Garden watering 2 | −30% | replacing watering devices | 65,000 |
−15% | replacing turf species | 85,000 |
Price Rise | Consumer Profiles | Weighted Average | |||
---|---|---|---|---|---|
Low | Medium | High | Very High | ||
5 | −0.0262 | −0.0042 | −0.0262 | −0.4289 | −0.1036 |
10 | −0.0105 | 0.0009 | −0.0114 | −0.2168 | −0.0504 |
15 | −0.0118 | −0.0007 | −0.0111 | −0.1460 | −0.0363 |
20 | −0.0091 | −0.0003 | −0.0080 | −0.1144 | −0.0281 |
25 | −0.0067 | −0.0005 | −0.0085 | −0.1010 | −0.0251 |
30 | −0.0066 | 0.0010 | −0.0068 | −0.0846 | −0.0207 |
35 | −0.0057 | −0.0013 | −0.0063 | −0.0779 | −0.0197 |
40 | −0.0050 | −0.0010 | −0.0062 | −0.0699 | −0.0177 |
45 | −0.0040 | −0.0010 | −0.0055 | −0.0648 | −0.0163 |
50 | −0.0044 | −0.0019 | −0.0059 | −0.0612 | −0.0160 |
55 | −0.0046 | −0.0021 | −0.0056 | −0.0613 | −0.0160 |
60 | −0.0047 | −0.0020 | −0.0053 | −0.0632 | −0.0163 |
65 | −0.0051 | −0.0021 | −0.0055 | −0.0661 | −0.0170 |
70 | −0.0044 | −0.0024 | −0.0055 | −0.0686 | −0.0175 |
75 | −0.0041 | −0.0025 | −0.0052 | −0.0654 | −0.0167 |
80 | −0.0042 | −0.0028 | −0.0047 | −0.0678 | −0.0172 |
85 | −0.0040 | −0.0022 | −0.0049 | −0.0647 | −0.0164 |
90 | −0.0041 | −0.0024 | −0.0049 | −0.0648 | −0.0165 |
95 | −0.0044 | −0.0023 | −0.0052 | −0.0638 | −0.0164 |
100 | −0.0037 | −0.0025 | −0.0048 | −0.0625 | −0.0159 |
Average | −0.0067 | −0.0016 | −0.0074 | −0.1007 | −0.0250 |
Price Rise | Behaviour Profiles | Average | |||
---|---|---|---|---|---|
1: Devices Change | 2: Habits Change | 3: Devices and Habits Change | 4: No Changes | ||
5 | −0.0043 | −0.1894 | −0.2255 | 0.0046 | −0.1036 |
10 | −0.0015 | −0.0944 | −0.1084 | 0.0025 | −0.0504 |
15 | −0.0052 | −0.0681 | −0.0702 | −0.0015 | −0.0363 |
20 | −0.0033 | −0.0544 | −0.0549 | 0.0002 | −0.0281 |
25 | −0.0051 | −0.0486 | −0.0466 | −0.0001 | −0.0251 |
30 | −0.0029 | −0.0408 | −0.0385 | −0.0005 | −0.0207 |
35 | −0.0057 | −0.0360 | −0.0364 | −0.0005 | −0.0197 |
40 | −0.0071 | −0.0322 | −0.0315 | −0.0001 | −0.0177 |
45 | −0.0063 | −0.0311 | −0.0282 | 0.0005 | −0.0163 |
50 | −0.0070 | −0.0298 | −0.0269 | −0.0002 | −0.0160 |
55 | −0.0084 | −0.0293 | −0.0267 | 0.0004 | −0.0160 |
60 | −0.0135 | −0.0261 | −0.0253 | −0.0002 | −0.0163 |
65 | −0.0161 | −0.0269 | −0.0249 | −0.0001 | −0.0170 |
70 | −0.0209 | −0.0250 | −0.0244 | 0.0001 | −0.0175 |
75 | −0.0206 | −0.0236 | −0.0226 | −0.0002 | −0.0167 |
80 | −0.0215 | −0.0238 | −0.0235 | 0.0000 | −0.0172 |
85 | −0.0223 | −0.0232 | −0.0205 | 0.0002 | −0.0164 |
90 | −0.0220 | −0.0224 | −0.0216 | −0.0000 | −0.0165 |
95 | −0.0222 | −0.0219 | −0.0216 | 0.0000 | −0.0164 |
100 | −0.0221 | −0.0209 | −0.0208 | −0.0000 | −0.0159 |
Average | −0.0119 | −0.0434 | −0.0450 | 0.0003 | −0.0250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidal-Lamolla, P.; Molinos-Senante, M.; Poch, M. Understanding the Residential Water Demand Response to Price Changes: Measuring Price Elasticity with Social Simulations. Water 2024, 16, 2501. https://doi.org/10.3390/w16172501
Vidal-Lamolla P, Molinos-Senante M, Poch M. Understanding the Residential Water Demand Response to Price Changes: Measuring Price Elasticity with Social Simulations. Water. 2024; 16(17):2501. https://doi.org/10.3390/w16172501
Chicago/Turabian StyleVidal-Lamolla, Pol, María Molinos-Senante, and Manel Poch. 2024. "Understanding the Residential Water Demand Response to Price Changes: Measuring Price Elasticity with Social Simulations" Water 16, no. 17: 2501. https://doi.org/10.3390/w16172501
APA StyleVidal-Lamolla, P., Molinos-Senante, M., & Poch, M. (2024). Understanding the Residential Water Demand Response to Price Changes: Measuring Price Elasticity with Social Simulations. Water, 16(17), 2501. https://doi.org/10.3390/w16172501