Seasonal Variations of Ice-Covered Lake Ecosystems in the Context of Climate Warming: A Review
Abstract
:1. Introduction
2. Research History and Frontier Hotspots of Seasonal Ice-Covered Lakes during 1991–2021
3. Seasonal Variability of Lakes during the Ice-Covered Period
3.1. Ice Structure and Growth Characteristics
3.2. Characteristics of Water Environmental Conditions
3.3. The Growth Changes of Primary Producers
3.4. Material Circulation
4. Investigation of Factors Affecting Seasonal Ice Duration
4.1. Global Climate Change
4.2. Individual Characteristics of Lakes
5. Conclusions and Future Trends
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verpoorter, C.; Kutser, T.; Seekell, D.A.; Tranvik, L.J. A Global Inventory of Lakes Based on High-Resolution Satellite Imagery. Geophys. Res. Lett. 2014, 41, 6396–6402. [Google Scholar] [CrossRef]
- Sharma, S.; Blagrave, K.; Magnuson, J.J.; O’Reilly, C.M.; Oliver, S.; Batt, R.D.; Magee, M.R.; Straile, D.; Weyhenmeyer, G.A.; Winslow, L.; et al. Widespread Loss of Lake Ice around the Northern Hemisphere in a Warming World. Nat. Clim. Change 2019, 9, 227–231. [Google Scholar] [CrossRef]
- Denfeld, B.A.; Baulch, H.M.; del Giorgio, P.A.; Hampton, S.E.; Karlsson, J. A Synthesis of Carbon Dioxide and Methane Dynamics during the Ice-Covered Period of Northern Lakes. Limnol. Oceanogr. Lett. 2018, 3, 117–131. [Google Scholar] [CrossRef]
- Wang, X.; Feng, L.; Gibson, L.; Qi, W.; Liu, J.; Zheng, Y.; Tang, J.; Zeng, Z.; Zheng, C. High-Resolution Mapping of Ice Cover Changes in over 33,000 Lakes across the North Temperate Zone. Geophys. Res. Lett. 2021, 48, e2021GL095614. [Google Scholar] [CrossRef]
- Yan, F.; Sillanpää, M.; Kang, S.; Aho, K.S.; Qu, B.; Wei, D.; Li, X.; Li, C.; Raymond, P.A. Lakes on the Tibetan Plateau as Conduits of Greenhouse Gases to the Atmosphere. J. Geophys. Res. Biogeosci. 2018, 123, 2091–2103. [Google Scholar] [CrossRef]
- Cohen, A.P.; Mélack, J.M. Carbon Dioxide Supersaturation in High-Elevation Oligotrophic Lakes and Reservoirs in the Sierra Nevada, California. Limnol. Oceanogr. 2020, 65, 612–626. [Google Scholar] [CrossRef]
- Huang, L.; Timmermann, A.; Lee, S.-S.; Rodgers, K.B.; Yamaguchi, R.; Chung, E.-S. Emerging Unprecedented Lake Ice Loss in Climate Change Projections. Nat. Commun. 2022, 13, 5798. [Google Scholar] [CrossRef]
- Li, X.; Shi, F.; Ma, Y.; Zhao, S.; Wei, J. Significant Winter CO2 Uptake by Saline Lakes on the Qinghai-Tibet Plateau. Glob. Change Biol. 2022, 28, 2041–2052. [Google Scholar] [CrossRef]
- Zdorovennova, G.; Palshin, N.; Golosov, S.; Efremova, T.; Belashev, B.; Bogdanov, S.; Fedorova, I.; Zverev, I.; Zdorovennov, R.; Terzhevik, A. Dissolved Oxygen in a Shallow Ice-Covered Lake in Winter: Effect of Changes in Light, Thermal and Ice Regimes. Water 2021, 13, 2435. [Google Scholar] [CrossRef]
- Murfitt, J.; Duguay, C.R. 50 Years of Lake Ice Research from Active Microwave Remote Sensing: Progress and Prospects. Remote Sens. Environ. 2021, 264, 112616. [Google Scholar] [CrossRef]
- Warne, C.P.K.; McCann, K.S.; Rooney, N.; Cazelles, K.; Guzzo, M.M. Geography and Morphology Affect the Ice Duration Dynamics of Northern Hemisphere Lakes Worldwide. Geophys. Res. Lett. 2020, 47, e2020GL087953. [Google Scholar] [CrossRef]
- Leppäranta, M.; Wen, L. Ice Phenology in Eurasian Lakes over Spatial Location and Altitude. Water 2022, 14, 1037. [Google Scholar] [CrossRef]
- Wright, D.M.; Posselt, D.J.; Steiner, A.L. Sensitivity of Lake-Effect Snowfall to Lake Ice Cover and Temperature in the Great Lakes Region. Mon. Weather Rev. 2013, 141, 670–689. [Google Scholar] [CrossRef]
- Finlay, K.; Vogt, R.J.; Bogard, M.J.; Wissel, B.; Tutolo, B.M.; Simpson, G.L.; Leavitt, P.R. Decrease in CO2 Efflux from Northern Hardwater Lakes with Increasing Atmospheric Warming. Nature 2015, 519, 215–218. [Google Scholar] [CrossRef]
- Sadro, S.; Sickman, J.O.; Mélack, J.M.; Skeen, K. Effects of Climate Variability on Snowmelt and Implications for Organic Matter in a High-Elevation Lake. Water Resour. Res. 2018, 54, 4563–4578. [Google Scholar] [CrossRef]
- Yang, F.; Li, C.; Leppäranta, M.; Shi, X.; Zhao, S.; Zhang, C. Notable Increases in Nutrient Concentrations in a Shallow Lake during Seasonal Ice Growth. Water Sci. Technol. 2016, 74, 2773–2783. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, Z.; Li, Z.; Leppäranta, M.; Arvola, L.; Song, S.; Huotari, J.; Lin, Z. Under-Ice Dissolved Oxygen and Metabolism Dynamics in a Shallow Lake: The Critical Role of Ice and Snow. Water Resour. Res. 2021, 57, e2020WR027990. [Google Scholar] [CrossRef]
- Finlay, K.; Vogt, R.J.; Simpson, G.L.; Leavitt, P.R. Seasonality of PCO2 in a Hard-Water Lake of the Northern Great Plains: The Legacy Effects of Climate and Limnological Conditions over 36 Years. Limnol. Oceanogr. 2019, 64, S118–S129. [Google Scholar] [CrossRef]
- Hori, Y.; Cheng, V.Y.S.; Gough, W.A.; Jien, J.Y.; Tsuji, L.J.S. Implications of Projected Climate Change on Winter Road Systems in Ontario’s Far North, Canada. Clim. Change 2018, 148, 109–122. [Google Scholar] [CrossRef]
- Leppäranta, M. Freezing of Lakes and the Evolution of Their Ice Cover; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2014; ISBN 9783642290817. [Google Scholar]
- Knoll, L.B.; Sharma, S.; Denfeld, B.A.; Flaim, G.; Hori, Y.; Magnuson, J.J.; Straile, D.; Weyhenmeyer, G.A. Consequences of Lake and River Ice Loss on Cultural Ecosystem Services. Limnol. Oceanogr. Lett. 2019, 4, 119–131. [Google Scholar] [CrossRef]
- Salonen, K.; Leppäranta, M.; Viljanen, M.; Gulati, R.D. Perspectives in Winter Limnology: Closing the Annual Cycle of Freezing Lakes. Aquat. Ecol. 2009, 43, 609–616. [Google Scholar] [CrossRef]
- Han, Z.M.; Jia, K.L.; Zhao, S.N.; Sun, B.; Wang, X.Y. Distribution Characteristics of the Nutrients and Ion of Hulun Lake in Frozen and Unfrozen Period. Ecol. Environ. Sci. 2017, 26, 1201–1209. [Google Scholar]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global Lake Responses to Climate Change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Woolway, R.I.; Sharma, S.; Smol, J.P. Lakes in Hot Water: The Impacts of a Changing Climate on Aquatic Ecosystems. BioScience 2022, 72, 1050–1061. [Google Scholar] [CrossRef]
- Hampton, S.E.; Powers, S.; Devlin, S.; McKnight, D. Big Questions, Few Answers about What Happens under Lake Ice. EOS 2020, 101. [Google Scholar] [CrossRef]
- Lopez, L.S.; Hewitt, B.A.; Sharma, S. Reaching a Breaking Point: How Is Climate Change Influencing the Timing of Ice Breakup in Lakes across the Northern Hemisphere? Limnol. Oceanogr. 2019, 64, 2621–2631. [Google Scholar] [CrossRef]
- George, D.G. (Ed.) The Impact of Climate Change on European Lakes; Aquatic Ecology Series; Springer: Dordrecht, The Netherlands, 2010; Volume 4, pp. 1–13. [Google Scholar]
- Leppäranta, M.; Heini, A.; Jaatinen, E.; Arvola, L. The Influence of Ice Season on the Physical and Ecological Conditions in Lake Vanajanselkä, Southern Finland. Water Qual. Res. J. 2012, 47, 287–299. [Google Scholar] [CrossRef]
- Twiss, M.R.; McKay, R.M.L.; Bourbonniere, R.A.; Bullerjahn, G.S.; Carrick, H.J.; Smith, R.E.H.; Winter, J.G.; D’souza, N.A.; Furey, P.C.; Lashaway, A.R.; et al. Diatoms Abound in Ice-Covered Lake Erie: An Investigation of Offshore Winter Limnology in Lake Erie over the Period 2007 to 2010. J. Great Lakes Res. 2012, 38, 18–30. [Google Scholar] [CrossRef]
- Butler, T.M.; Wilhelm, A.-C.; Dwyer, A.C.; Webb, P.N.; Baldwin, A.L.; Techtmann, S.M. Microbial Community Dynamics during Lake Ice Freezing. Sci. Rep. 2019, 9, 6231. [Google Scholar] [CrossRef]
- Obertegger, U.; Obrador, B.; Flaim, G. Dissolved Oxygen Dynamics under Ice: Three Winters of High-Frequency Data from Lake Tovel, Italy. Water Resour. Res. 2017, 53, 7234–7246. [Google Scholar] [CrossRef]
- Yang, F.; Cen, R.; Feng, W.; Zhu, Q.; Leppäranta, M.; Yang, Y.; Wang, X.; Liao, H. Dynamic Simulation of Nutrient Distribution in Lakes during Ice Cover Growth and Ablation. Chemosphere 2021, 281, 130781. [Google Scholar] [CrossRef] [PubMed]
- Duarte, C.M.; Prairie, Y.T.; Montes, C.; Cole, J.J.; Striegl, R.; Melack, J.; Downing, J.A. CO2 Emissions from Saline Lakes: A Global Estimate of a Surprisingly Large Flux. J. Geophys. Res. Biogeosci. 2008, 113, G4. [Google Scholar] [CrossRef]
- Michel, B.; Ramseier, R.O. Classification of River and Lake Ice. Can. Geotech. J. 1971, 8, 36–45. [Google Scholar] [CrossRef]
- Bengtsson, L. Spatial Variability of Lake Ice Covers. Geogr. Ann. Ser. A-Phys. Geogr. 1986, 68, 113–121. [Google Scholar] [CrossRef]
- Michel, B. Properties and Processes of River and Lake Ice; Université Laval, Laboratoire de mécanique des glaces: Québec, QC, Canada, 1972. [Google Scholar]
- Leppäranta, M. Modelling the Formation and Decay of Lake Ice. In The Impact of Climate Change on European Lakes; Aquatic Ecology Series; George, G., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 63–83. [Google Scholar]
- Gow, A.J. Orientation Textures in Ice Sheets of Quietly Frozen Lakes. J. Cryst. Growth 1986, 74, 247–258. [Google Scholar] [CrossRef]
- Gow, A.J.; Langston, D. Growth History of Lake Ice in Relation to Its Stratigraphic, Crystalline and Mechanical Structure; Department of Defense, Army, Corps of Engineers, Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1977. [Google Scholar]
- Leppäranta, M.; Tikkanen, M.; Virkanen, J. Observations of Ice Impurities in Some Finnish Lakes. Proc. Est. Acad. Sci. 2003, 52, 59–75. [Google Scholar] [CrossRef]
- D’souza, N.A.; Kawarasaki, Y.; Gantz, J.D.; Lee Jr, R.E.; Beall, B.F.N.; Shtarkman, Y.M.; Koçer, Z.A.; Rogers, S.O.; Wildschutte, H.; Bullerjahn, G.S.; et al. Diatom Assemblages Promote Ice Formation in Large Lakes. ISME J. 2013, 7, 1632–1640. [Google Scholar] [CrossRef]
- Santibáñez, P.A.; Michaud, A.B.; Vick-Majors, T.J.; D’Andrilli, J.; Chiuchiolo, A.; Hand, K.P.; Priscu, J.C. Differential Incorporation of Bacteria, Organic Matter, and Inorganic Ions into Lake Ice during Ice Formation. J. Geophys. Res. Biogeosci. 2019, 124, 585–600. [Google Scholar] [CrossRef]
- Imbeau, E.; Vincent, W.F.; Wauthy, M.; Cusson, M.; Rautio, M. Hidden Stores of Organic Matter in Northern Lake Ice: Selective Retention of Terrestrial Particles, Phytoplankton and Labile Carbon. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006233. [Google Scholar] [CrossRef]
- Bolsenga, S.J.; Herdendorf, C.E.; Norton, D.C. Spectral Transmittance of Lake Ice from 400–850 Nm. Hydrobiologia 1991, 218, 15–25. [Google Scholar] [CrossRef]
- Pernica, P.; North, R.L.; Baulch, H.M. In the Cold Light of Day: The Potential Importance of Under-Ice Convective Mixed Layers to Primary Producers. Inland Waters 2017, 7, 138–150. [Google Scholar] [CrossRef]
- Warren, S.G. Optical Properties of Snow. Rev. Geophys. 1982, 20, 67. [Google Scholar] [CrossRef]
- Leppäranta, M.; Terzhevik, A.; Shirasawa, K. Solar Radiation and Ice Melting in Lake Vendyurskoe, Russian Karelia. Hydrol. Res. 2010, 41, 50–62. [Google Scholar] [CrossRef]
- Pulkkanen, M. Under-Ice Temperature and Oxygen Conditions in Boreal Lakes. In Jyväskylä Studies in Biological and Environmental Science; University of Jyväskylä: Jyväskylä, Finland, 2013. [Google Scholar]
- Belzile, C.; Gibson, J.A.E.; Vincent, W.F. Colored Dissolved Organic Matter and Dissolved Organic Carbon Exclusion from Lake Ice: Implications for Irradiance Transmission and Carbon Cycling. Limnol. Oceanogr. 2002, 47, 1283–1293. [Google Scholar] [CrossRef]
- Vehmaa, A.; Salonen, K. Development of Phytoplankton in Lake Pääjärvi (Finland) during Under-Ice Convective Mixing Period. Aquat. Ecol. 2009, 43, 693–705. [Google Scholar] [CrossRef]
- Yang, B.; Wells, M.G.; Li, J.; Young, J. Mixing, Stratification, and Plankton under Lake-Ice during Winter in a Large Lake: Implications for Spring Dissolved Oxygen Levels. Limnol. Oceanogr. 2020, 65, 2713–2729. [Google Scholar] [CrossRef]
- Cavaliere, E.; Fournier, I.B.; Hazuková, V.; Rue, G.P.; Sadro, S.; Berger, S.A.; Cotner, J.B.; Dugan, H.A.; Hampton, S.E.; Lottig, N.R.; et al. The Lake Ice Continuum Concept: Influence of Winter Conditions on Energy and Ecosystem Dynamics. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006165. [Google Scholar] [CrossRef]
- Ghane, A.; Boegman, L. The Dissolved Oxygen Budget of a Small Canadian Shield Lake during Winter. Limnol. Oceanogr. 2023, 68, 265–283. [Google Scholar] [CrossRef]
- Sabbe, K.; Hodgson, D.A.; Verleyen, E.; Taton, A.; Wilmotte, A.; Vanhoutte, K.; Vyverman, W. Salinity, Depth and the Structure and Composition of Microbial Mats in Continental Antarctic Lakes. Freshw. Biol. 2004, 49, 296–319. [Google Scholar] [CrossRef]
- Pieters, R.; Lawrence, G.A. Effect of Salt Exclusion from Lake Ice on Seasonal Circulation. Limnol. Oceanogr. 2009, 54, 401–412. [Google Scholar] [CrossRef]
- Boetius, A.; Anesio, A.M.; Deming, J.W.; Mikucki, J.A.; Rapp, J.Z. Microbial Ecology of the Cryosphere: Sea Ice and Glacial Habitats. Nat. Rev. Microbiol. 2015, 13, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Panzenböck, M. Effect of Solar Radiation on Photosynthetic Extracellular Carbon Release and Its Microbial Utilization in Alpine and Arctic Lakes. Aquat. Microb. Ecol. 2007, 48, 155–168. [Google Scholar] [CrossRef]
- Öterler, B. Winter Phytoplankton Composition Occurring in a Temporarily Ice-Covered Lake: A Case Study. Pol. J. Environ. Stud. 2017, 26, 2677–2688. [Google Scholar] [CrossRef] [PubMed]
- Obolkina, L.; Bondarenko, N.A.; Doroshchenko, L.F.; Gorbunova, L.A.; Molozhavaya, O.A. On Finding of Cryophilic Community of Lake Baikal. Dokl. Akad. Nauk 2000, 371, 815–817. [Google Scholar]
- Frenette, J.; Thibeault, P.; Lapierre, J.; Hamilton, P.B. Presence of Algae in Freshwater Ice Cover of Fluvial Lac Saint-Pierre (St. Lawrence River, Canada). J. Phycol. 2008, 44, 284–291. [Google Scholar] [CrossRef]
- Wen, Z.; Song, K.; Shang, Y.; Lyu, L.; Yang, Q.; Fang, C.; Du, J.; Li, S.; Liu, G.; Zhang, B.; et al. Variability of Chlorophyll and the Influence Factors during Winter in Seasonally Ice-Covered Lakes. J. Environ. Manag. 2020, 276, 111338. [Google Scholar] [CrossRef]
- Kelley, D.E. Convection in Ice-Covered Lakes: Effects on Algal Suspension. J. Plankton Res. 1997, 19, 1859–1880. [Google Scholar] [CrossRef]
- Matthews, P.C.; Heaney, S.I. Solar Heating and Its Influence on Mixing in Ice-Covered Lakes. Freshw. Biol. 1987, 18, 135–149. [Google Scholar] [CrossRef]
- Denfeld, B.A.; Klaus, M.; Laudon, H.; Sponseller, R.A.; Karlsson, J. Carbon Dioxide and Methane Dynamics in a Small Boreal Lake during Winter and Spring Melt Events. J. Geophys. Res. Biogeosci. 2018, 123, 2527–2540. [Google Scholar] [CrossRef]
- Larsen, S.; Andersen, T.; Hessen, D.O. The PCO2 in Boreal Lakes: Organic Carbon as a Universal Predictor? Glob. Biogeochem. Cycles 2011, 25. [Google Scholar] [CrossRef]
- Peter, S.; Isidorova, A.; Sobek, S. Enhanced Carbon Loss from Anoxic Lake Sediment through Diffusion of Dissolved Organic Carbon. J. Geophys. Res. Biogeosci. 2016, 121, 1959–1977. [Google Scholar] [CrossRef]
- Berg, I.A.; Kockelkorn, D.; Ramos-Vera, W.H.; Say, R.F.; Zarzycki, J.; Hügler, M.; Alber, B.E.; Fuchs, G. Autotrophic Carbon Fixation in Archaea. Nat. Rev. Microbiol. 2010, 8, 447–460. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.; Kapoor, R.; Kumar, R.; Siddiqi, T.O.; Kumar, A. CO2 Utilizing Microbes—A Comprehensive Review. Biotechnol. Adv. 2011, 29, 949–960. [Google Scholar] [CrossRef] [PubMed]
- Sepulveda-Jauregui, A.; Walter Anthony, K.M.; Martinez-Cruz, K.; Greene, S.; Thalasso, F. Methane and Carbon Dioxide Emissions from 40 Lakes along a North–South Latitudinal Transect in Alaska. Biogeosciences 2015, 12, 3197–3223. [Google Scholar] [CrossRef]
- Denfeld, B.A.; Canelhas, M.R.; Weyhenmeyer, G.A.; Bertilsson, S.; Eiler, A.; Bastviken, D. Constraints on Methane Oxidation in Ice-Covered Boreal Lakes. J. Geophys. Res. Biogeosci. 2016, 121, 1924–1933. [Google Scholar] [CrossRef]
- Kalyuzhnaya, M.G.; Gomez, O.A.; Murrell, J.C. The Methane-Oxidizing Bacteria (Methanotrophs). In Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes; Springer: Cham, Switzerland, 2019; pp. 245–278. [Google Scholar] [CrossRef]
- Denfeld, B.A.; Kortelainen, P.; Rantakari, M.; Sobek, S.; Weyhenmeyer, G.A. Regional Variability and Drivers of below Ice CO2 in Boreal and Subarctic Lakes. Ecosystems 2015, 19, 461–476. [Google Scholar] [CrossRef]
- Huotari, J.; Ojala, A.; Peltomaa, E.; Nordbo, A.; Launiainen, S.; Pumpanen, J.; Rasilo, T.; Hari, P.; Vesala, T. Long-Term Direct CO2 flux Measurements over a Boreal Lake: Five Years of Eddy Covariance Data. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Cole, J.J.; Caraco, N.F.; Kling, G.W.; Kratz, T.K. Carbon Dioxide Supersaturation in the Surface Waters of Lakes. Science 1994, 265, 1568–1570. [Google Scholar] [CrossRef]
- Anderson, L.G. Enhanced Uptake of Atmospheric CO2during Freezing of Seawater: A Field Study in Storfjorden, Svalbard. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Hammer, U.T. Primary Production in Saline Lakes. In Salt Lakes; Williams, W.D., Ed.; Springer: Dordrecht, The Netherlands, 1981; Volume 5, pp. 47–57. ISBN 9789400986671. [Google Scholar]
- Shadrin, N. Peculiarities of Structure, Functioning and Dynamics of the Salt Lake Ecosystems. In Introduction to Salt Lake Sciences; Science Press: Beijing, China, 2017; pp. 179–188. [Google Scholar]
- Jin, Z.; You, C.-F.; Wang, Y.; Shi, Y. Hydrological and Solute Budgets of Lake Qinghai, the Largest Lake on the Tibetan Plateau. Quat. Int. 2010, 218, 151–156. [Google Scholar] [CrossRef]
- Bartosiewicz, M.; Ptak, M.; Iestyn Woolway, R.; Sojka, M. On Thinning Ice: Effects of Atmospheric Warming, Changes in Wind Speed and Rainfall on Ice Conditions in Temperate Lakes (Northern Poland). J. Hydrol. 2020, 597, 125724. [Google Scholar] [CrossRef]
- Surdu, C.M.; Duguay, C.R.; Brown, L.C.; Fernández Prieto, D. Response of Ice Cover on Shallow Lakes of the North Slope of Alaska to Contemporary Climate Conditions (1950–2011): Radar Remote-Sensing and Numerical Modeling Data Analysis. Cryosphere 2014, 8, 167–180. [Google Scholar] [CrossRef]
- Zhao, G.; Li, Y.; Zhou, L.; Gao, H. Evaporative Water Loss of 1.42 Million Global Lakes. Nat. Commun. 2022, 13, 3686. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lee, X.; Xiao, W.; Liu, S.; Schultz, N.; Wang, Y.; Zhang, M.; Zhao, L. Global Lake Evaporation Accelerated by Changes in Surface Energy Allocation in a Warmer Climate. Nat. Geosci. 2018, 11, 410–414. [Google Scholar] [CrossRef]
- Xiao, K.; Griffis, T.J.; Baker, J.M.; Bolstad, P.V.; Erickson, M.; Lee, X.; Wood, J.J.; Hu, C.; Nieber, J.L. Evaporation from a Temperate Closed-Basin Lake and Its Impact on Present, Past, and Future Water Level. J. Hydrol. 2018, 561, 59–75. [Google Scholar] [CrossRef]
- Blanken, P.D.; Spence, C.; Hedstrom, N.; Lenters, J.D. Evaporation from Lake Superior: 1. Physical Controls and Processes. J. Great Lakes Res. 2011, 37, 707–716. [Google Scholar] [CrossRef]
- Ma, J.; Loiselle, S.; Cao, Z.; Qi, T.; Shen, M.; Luo, J.; Song, K.; Duan, H. Unbalanced Impacts of Nature and Nurture Factors on the Phenology, Area and Intensity of Algal Blooms in Global Large Lakes: MODIS Observations. Sci. Total Environ. 2023, 880, 163376. [Google Scholar] [CrossRef] [PubMed]
- Adrian, R.; Wilhelm, S.; Gerten, D. Life-History Traits of Lake Plankton Species May Govern Their Phenological Response to Climate Warming. Glob. Change Biol. 2006, 12, 652–661. [Google Scholar] [CrossRef]
- Wollrab, S.; Izmest’yeva, L.; Hampton, S.E.; Silow, E.A.; Litchman, E.; Klausmeier, C.A. Climate Change-Driven Regime Shifts in a Planktonic Food Web. Am. Nat. 2020, 197, 281–295. [Google Scholar] [CrossRef]
- Grant, L.; Vanderkelen, I.; Gudmundsson, L.; Tan, Z.; Perroud, M.; Stepanenko, V.M.; Debolskiy, A.V.; Droppers, B.; Janssen, A.B.G.; Woolway, R.I.; et al. Attribution of Global Lake Systems Change to Anthropogenic Forcing. Nat. Geosci. 2021, 14, 849–854. [Google Scholar] [CrossRef]
- Benson, B.J.; Magnuson, J.J.; Jensen, O.P.; Card, V.M.; Hodgkins, G.; Korhonen, J.; Livingstone, D.M.; Stewart, K.M.; Weyhenmeyer, G.A.; Granin, N.G. Extreme Events, Trends, and Variability in Northern Hemisphere Lake-Ice Phenology (1855–2005). Clim. Change 2011, 112, 299–323. [Google Scholar] [CrossRef]
- Vincent, W.F. Effects of Climate Change on Lakes. Encycl. Inland Waters 2009, 55–60. [Google Scholar] [CrossRef]
- Carmack, E.; Vagle, S. Thermobaric Processes Both Drive and Constrain Seasonal Ventilation in Deep Great Slave Lake, Canada. J. Geophys. Res. Earth Surf. 2021, 126, e2021JF006288. [Google Scholar] [CrossRef]
- Bouffard, D.; Zdorovennov, R.E.; Zdorovennova, G.E.; Pasche, N.; Wüest, A.; Terzhevik, A.Y. Ice-Covered Lake Onega: Effects of Radiation on Convection and Internal Waves. Hydrobiologia 2016, 780, 21–36. [Google Scholar] [CrossRef]
- Yang, B.; Wells, M.G.; McMeans, B.; Dugan, H.A.; Rusak, J.A.; Weyhenmeyer, G.A.; Brentrup, J.A.; Hrycik, A.R.; Laas, A.; Pilla, R.M.; et al. A New Thermal Categorization of Ice-Covered Lakes. Geophys. Res. Lett. 2021, 48, e2020GL091374. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, J.; Leppäranta, M.; Li, Z.; Cheng, B.; Lin, Z. Thermal Structure and Water-Ice Heat Transfer in a Shallow Ice-Covered Thermokarst Lake in Central Qinghai-Tibet Plateau. J. Hydrol. 2019, 578, 124122. [Google Scholar] [CrossRef]
- Farmer, D.M.; Carmack, E.C. Wind Mixing and Restratification in a Lake near the Temperature of Maximum Density. J. Phys. Oceanogr. 1981, 11, 1516–1533. [Google Scholar] [CrossRef]
- Qi, M.; Yao, X.; Li, X.; Duan, H.; Gao, Y.; Liu, J. Spatiotemporal Characteristics of Qinghai Lake Ice Phenology between 2000 and 2016. J. Geogr. Sci. 2019, 29, 115–130. [Google Scholar] [CrossRef]
- Preston, D.L.; Caine, N.; McKnight, D.M.; Williams, M.W.; Hell, K.; Miller, M.P.; Hart, S.J.; Johnson, P.T.J. Climate Regulates Alpine Lake Ice Cover Phenology and Aquatic Ecosystem Structure. Geophys. Res. Lett. 2016, 43, 5353–5360. [Google Scholar] [CrossRef]
- Jensen, O.P.; Benson, B.J.; Magnuson, J.J.; Card, V.M.; Futter, M.N.; Soranno, P.A.; Stewart, K.M. Spatial Analysis of Ice Phenology Trends across the Laurentian Great Lakes Region during a Recent Warming Period. Limnol. Oceanogr. 2007, 52, 2013–2026. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Yang, F.; Liao, H.; Feng, W.; Ji, M.; Han, Z.; Pan, T.; Feng, D. Seasonal Variations of Ice-Covered Lake Ecosystems in the Context of Climate Warming: A Review. Water 2024, 16, 2727. https://doi.org/10.3390/w16192727
Wang Q, Yang F, Liao H, Feng W, Ji M, Han Z, Pan T, Feng D. Seasonal Variations of Ice-Covered Lake Ecosystems in the Context of Climate Warming: A Review. Water. 2024; 16(19):2727. https://doi.org/10.3390/w16192727
Chicago/Turabian StyleWang, Qianqian, Fang Yang, Haiqing Liao, Weiying Feng, Meichen Ji, Zhiming Han, Ting Pan, and Dongxia Feng. 2024. "Seasonal Variations of Ice-Covered Lake Ecosystems in the Context of Climate Warming: A Review" Water 16, no. 19: 2727. https://doi.org/10.3390/w16192727
APA StyleWang, Q., Yang, F., Liao, H., Feng, W., Ji, M., Han, Z., Pan, T., & Feng, D. (2024). Seasonal Variations of Ice-Covered Lake Ecosystems in the Context of Climate Warming: A Review. Water, 16(19), 2727. https://doi.org/10.3390/w16192727