Characteristics of Runoff Changes during the Freeze–Thaw Period and the Response to Environmental Changes in a High-Latitude Water Tower
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Data
2.3. Method
2.3.1. Modified Mann–Kendall Method
2.3.2. Water–Energy Balance Equation
3. Results
3.1. Runoff Variation Characteristics during Freeze–Thaw Periods
3.2. Relationship between Runoff and Driving Factors during Freeze–Thaw Periods
3.3. Contribution of Driving Factors to Runoff during Freeze–Thaw Periods
4. Discussion
4.1. The Impact of Climate Change on Runoff during Freeze–Thaw Periods
4.2. The Impact of Subsurface Change on Runoff during Freeze–Thaw Periods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qin, Y.; Abatzoglou, J.T.; Siebert, S.; Huning, L.S.; AghaKouchak, A.; Mankin, J.S.; Hong, C.; Tong, D.; Davis, S.J.; Mueller, N.D. Agricultural risks from changing snowmelt. Nat. Clim. Chang. 2020, 10, 459–465. [Google Scholar] [CrossRef]
- Musselman, K.N.; Addor, N.; Vano, J.A.; Molotch, N.P. Winter melt trends portend widespread declines in snow water resources. Nat. Clim. Chang. 2021, 11, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Jeelani, G.; Feddema, J.J.; van der Veen, C.J.; Stearns, L. Role of snow and glacier melt in controlling river hydrology in Liddar watershed (western Himalaya) under current and future climate. Water Resour. Res. 2012, 48, 1–16. [Google Scholar] [CrossRef]
- Musselman, K.N.; Clark, M.P.; Liu, C.; Ikeda, K.; Rasmussen, R. Slower snowmelt in a warmer world. Nat. Clim. Chang. 2017, 7, 214–219. [Google Scholar] [CrossRef]
- Kraaijenbrink, P.D.; Stigter, E.E.; Yao, T.; Immerzeel, W.W. Climate change decisive for Asia’s snow meltwater supply. Nat. Clim. Chang. 2021, 11, 591–597. [Google Scholar] [CrossRef]
- Fayad, A.; Gascoin, S.; Faour, G.; López-Moreno, J.I.; Drapeau, L.; Le Page, M.; Escadafal, R. Snow hydrology in Mediterranean mountain regions: A review. J. Hydrol. 2017, 551, 374–396. [Google Scholar] [CrossRef]
- Vano, J.A.; Scott, M.J.; Voisin, N.; Stöckle, C.O.; Hamlet, A.F.; Mickelson, K.E.B.; McGuire Elsner, M.; Lettenmaier, D.P. Climate change impacts on water management and irrigated agriculture in the Yakima River Basin, Washington, USA. Clim. Chang. 2010, 102, 287–317. [Google Scholar] [CrossRef]
- Li, D.; Wrzesien, M.L.; Durand, M.; Adam, J.; Lettenmaier, D.P. How much runoff originates as snow in the western United States, and how will that change in the future? Geophys. Res. Lett. 2017, 44, 6163–6172. [Google Scholar] [CrossRef]
- Woo, M.K.; Thorne, R. Snowmelt contribution to discharge from a large mountainous catchment in subarctic Canada. Hydrol. Process. 2006, 20, 2129–2139. [Google Scholar] [CrossRef]
- Zaremehrjardy, M.; Victor, J.; Park, S.; Smerdon, B.; Alessi, D.S.; Faramarzi, M. Assessment of snowmelt and groundwater-surface water dynamics in mountains, foothills, and plains regions in northern latitudes. J. Hydrol. 2022, 606, 127449. [Google Scholar] [CrossRef]
- Jenicek, M.; Ledvinka, O. Importance of snowmelt contribution to seasonal runoff and summer low flows in Czechia. Hydrol. Earth Syst. Sci. 2020, 24, 3475–3491. [Google Scholar] [CrossRef]
- Qi, W.; Feng, L.; Kuang, X.; Zheng, C.; Liu, J.; Chen, D.; Tian, Y.; Yao, Y. Divergent and Changing Importance of Glaciers and Snow as Natural Water Reservoirs in the Eastern and Southern Tibetan Plateau. J. Geophys. Res. Atmos. 2022, 127, e2021JD035888. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Morán-Tejeda, E.; Lorenzo-Lacruz, J.; López-Moreno, J.I.; Rahman, K.; Beniston, M. Streamflow timing of mountain rivers in Spain: Recent changes and future projections. J. Hydrol. 2014, 517, 1114–1127. [Google Scholar] [CrossRef]
- Arheimer, B.; Donnelly, C.; Lindstrom, G. Regulation of snow-fed rivers affects flow regimes more than climate change. Nat. Commun. 2017, 8, 62–71. [Google Scholar] [CrossRef]
- Liu, W.; Wang, L.; Sun, F.; Li, Z.; Wang, H.; Liu, J.; Yang, T.; Zhou, J.; Qi, J. Snow Hydrology in the Upper Yellow River Basin Under Climate Change: A Land Surface Modeling Perspective. Water Resour. Res. 2018, 123, 676–691. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Marazi, A. Impact of climate change on snow precipitation and streamflow in the Upper Indus Basin ending twenty-first century. Clim. Chang. 2022, 170, 6. [Google Scholar] [CrossRef]
- Liu, Z.; Cuo, L.; Sun, N. Tracking snowmelt during hydrological surface processes using a distributed hydrological model in a mesoscale basin on the Tibetan Plateau. J. Hydrol. 2023, 616, 128796. [Google Scholar] [CrossRef]
- Yang, H.; Yang, D.; Lei, Z.; Sun, F. New analytical derivation of the mean annual water-energy balance equation. Water Resour. Res. 2008, 44, W03410. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour. Res. 2011, 47, W00G07. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, D.B. Evaluating the role of watershed properties in long-term water balance through a Budyko equation based on two-stage partitioning of precipitation. Water Resour. Res. 2017, 53, 4142–4157. [Google Scholar] [CrossRef]
- Sharma, P.; Mondal, A. Probabilistic Budyko-based Separation of Climate and Catchment Effects on Streamflow. J. Hydrol. 2022, 608, 127665. [Google Scholar] [CrossRef]
- Yu, E.; Qi, L.; Dai, L.; Yu, D.; Zhao, F.; Zhou, L.; Zhou, W.; Zhu, Q.; Mao, C.; Wu, G. Correlation analysis of elements in the mountains-rivers-forests-farmlands-lakes-grasslands life community: Using Changbai mountains as an example. Acta Ecol. Sin. 2019, 39, 8837–8845. [Google Scholar]
- Qi, P.; Huang, X.R.; Xu, Y.J.; Li, F.; Wu, Y.; Chang, Z.; Li, H.; Zhang, W.; Jiang, M.; Zhang, G.; et al. Divergent trends of water bodies and their driving factors in a high-latitude water tower, Changbai Mountain. J. Hydrol. 2021, 603, 127094. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, C.; Fu, G.; Wang, B.; Bao, Z.; Zheng, H. Assessments of Impacts of Climate Change and Human Activities on Runoff with SWAT for the Huifa River Basin, Northeast China. Water Resour. Manag. 2012, 26, 2199–2217. [Google Scholar] [CrossRef]
- Xin, Z.; Li, Y.; Zhang, L.; Ding, W.; Ye, L.; Wu, J.; Zhang, C. Quantifying the relative contribution of climate and human impacts on seasonal streamflow. J. Hydrol. 2019, 574, 936–945. [Google Scholar] [CrossRef]
- Chang, Z.; Qi, P.; Zhang, G.; Sun, Y.; Tang, X.; Jiang, M.; Sun, J.; Li, Z. Latitudinal characteristics of frozen soil degradation and their response to climate change in a high-latitude water tower. Catena 2022, 214, 106272. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resour. Res. 2002, 38, 1–7. [Google Scholar] [CrossRef]
- Chen, Y.; Chang, Z.; Xu, S.; Qi, P.; Tang, X.; Song, Y.; Liu, D. Altitudinal Gradient Characteristics of Spatial and Temporal Variations of Snowpack in the Changbai Mountain and Their Response to Climate Change. Water 2021, 13, 3580. [Google Scholar] [CrossRef]
- Feng, M.; Zhang, W.; Zhang, S.; Sun, Z.; Li, Y.; Huang, Y.; Wang, W.; Qi, P.; Zou, Y.; Jiang, M. The role of snowmelt discharge to runoff of an alpine watershed: Evidence from water stable isotopes. J. Hydrol. 2022, 604, 127209. [Google Scholar] [CrossRef]
- Zhang, T.; Li, D.; Lu, X. Response of runoff components to climate change in the source-region of the Yellow River on the Tibetan plateau. Hydrol. Process. 2022, 36, e14633. [Google Scholar] [CrossRef]
- Hu, Y.; Sun, Z.; Ma, R. Springs Emerging along the Elevation Gradient Indicate Intensive Groundwater-Surface Water Exchange in an Alpine Headwater Catchment, Northwestern China. J. Earth Sci. 2023, 34, 181–193. [Google Scholar] [CrossRef]
- Linacre, E.T. A simple formula for estimating evaporation rates in various climates, using temperature data alone. Agric. Meteorol. 1977, 18, 409–424. [Google Scholar] [CrossRef]
- Li, Z.; Huang, S.; Liu, D.; Leng, G.; Zhou, S.; Huang, Q. Assessing the effects of climate change and human activities on runoff variations from a seasonal perspective. Stoch. Environ. Res. Risk Assess. 2020, 34, 575–592. [Google Scholar] [CrossRef]
- Sun, A.; Yu, Z.; Zhou, J.; Acharya, K.; Ju, Q.; Xing, R.; Huang, D.; Wen, L. Quantified hydrological responses to permafrost degradation in the headwaters of the Yellow River (HWYR) in High Asia. Sci. Total Environ. 2020, 712, 135632. [Google Scholar] [CrossRef]
ID | Hydrological Stations | Shorthand Form | Basins |
---|---|---|---|
1 | Shisandaowan | SSDW | YR |
2 | Linjiang | LJ | |
3 | Tonghua | TH | |
4 | Jian | JA | |
5 | Nanping | NP | TR |
6 | Kaishantun | KST | |
7 | Hedong | HD | |
8 | Quanhe | QH | |
9 | Gaolichengzi | GLCZ | SR |
10 | Hanyangtun | HYT | |
11 | Wudaogou | WDG | |
12 | Fuyu | FY |
Stations | Parameters | October | November | December | January | February | March | April | May |
---|---|---|---|---|---|---|---|---|---|
SSDW | Mean (m3/s) | 73.66 | 51.09 | 35.75 | 26.22 | 25.37 | 35.61 | 95.57 | 161.54 |
Z Value | 0.79 | 3.60 | 4.05 | 4.26 | 3.75 | 4.23 | −1.04 | 0.45 | |
Slope | 0.13 | 0.44 | 0.38 | 0.27 | 0.26 | 0.43 | −0.26 | 0.22 | |
Sig. | ** | ** | ** | ** | ** | ||||
LJ | Mean (m3/s) | 115.29 | 86.03 | 58.08 | 43.45 | 38.73 | 63.60 | 196.10 | 293.63 |
Z Value | 0.11 | 2.40 | 3.32 | 3.64 | 3.64 | 3.86 | 2.22 | 0.03 | |
Slope | 0.14 | 1.07 | 1.32 | 1.34 | 1.16 | 1.38 | 2.68 | 0.08 | |
Sig. | * | ** | ** | ** | ** | * | |||
TH | Mean (m3/s) | 25.25 | 23.95 | 11.83 | 6.70 | 7.40 | 25.14 | 91.12 | 91.86 |
Z Value | 0.04 | 1.07 | 2.14 | 3.78 | 2.89 | 1.46 | 2.62 | 3.78 | |
Slope | 0.02 | 0.32 | 0.25 | 0.18 | 0.22 | 0.38 | 2.00 | 0.18 | |
Sig. | * | ** | ** | ||||||
JA | Mean (m3/s) | 205.88 | 190.76 | 218.47 | 200.90 | 188.30 | 193.47 | 187.85 | 233.55 |
Z Value | 0.03 | −0.68 | −1.98 | 0.30 | −0.95 | 1.14 | 1.33 | 1.01 | |
Slope | 0.02 | −1.23 | −2.63 | 0.15 | −2.25 | 5.56 | 4.01 | 3.04 | |
Sig. | * |
Stations | Parameters | October | November | December | January | February | March | April | May |
---|---|---|---|---|---|---|---|---|---|
NP | Mean (m3/s) | 27.57 | 15.10 | 8.71 | 5.57 | 5.09 | 7.79 | 24.67 | 48.99 |
Z Value | −3.02 | −3.31 | −4.62 | −6.24 | −6.29 | −5.44 | −2.73 | −1.14 | |
Slope | −0.51 | −0.30 | −0.25 | −0.23 | −0.22 | −0.31 | −0.41 | −0.41 | |
Sig. | ** | ** | ** | ** | ** | ** | ** | ||
KST | Mean (m3/s) | 31.45 | 19.80 | 9.27 | 7.54 | 6.71 | 13.14 | 30.32 | 56.74 |
Z Value | −1.86 | −0.99 | −1.94 | −3.61 | −4.06 | −0.70 | 0.21 | 0.34 | |
Slope | −0.33 | −0.12 | −0.15 | −0.28 | −0.22 | −0.09 | 0.06 | 0.21 | |
Sig. | ** | ** | |||||||
HD | Mean (m3/s) | 109.55 | 64.79 | 25.62 | 14.57 | 13.37 | 31.57 | 100.90 | 184.67 |
Z Value | −1.68 | −0.57 | 1.01 | −0.79 | −0.13 | −0.93 | −0.57 | 0.40 | |
Slope | −1.94 | −0.30 | 0.24 | −0.14 | −0.01 | −0.28 | −0.50 | 1.34 | |
Sig. | |||||||||
QH | Mean (m3/s) | 164.62 | 100.31 | 41.47 | 24.58 | 21.74 | 51.16 | 155.85 | 281.40 |
Z Value | −1.66 | −0.60 | −0.93 | 0.05 | 0.05 | 0.76 | 0.29 | 0.98 | |
Slope | −2.02 | −0.29 | −0.19 | 0.00 | 0.01 | 0.34 | 0.41 | 2.25 | |
Sig. |
Stations | Parameters | October | November | December | January | February | March | April | May |
---|---|---|---|---|---|---|---|---|---|
GLCZ | Mean (m3/s) | 45.15 | 37.78 | 23.58 | 20.98 | 19.15 | 30.47 | 122.03 | 126.37 |
Z Value | −3.46 | −0.60 | 1.76 | 0.70 | 2.25 | 3.96 | −1.23 | 0.63 | |
Slope | −0.49 | −0.09 | 0.11 | 0.05 | 0.15 | 0.32 | −0.38 | 0.25 | |
Sig. | ** | * | ** | ||||||
HYT | Mean (m3/s) | 54.28 | 40.72 | 23.55 | 17.31 | 16.03 | 31.74 | 136.12 | 165.35 |
Z Value | −2.39 | −3.05 | −3.90 | −4.50 | −3.70 | 1.03 | −0.32 | 0.14 | |
Slope | −0.47 | −0.41 | −0.26 | −0.26 | −0.23 | 0.10 | −0.18 | 0.06 | |
Sig. | * | ** | ** | ** | ** | ||||
WDG | Mean (m3/s) | 41.04 | 28.81 | 12.08 | 4.96 | 4.33 | 36.70 | 82.95 | 52.41 |
Z Value | −0.45 | −0.10 | 1.21 | 2.25 | 2.74 | 1.52 | −0.89 | −0.87 | |
Slope | −0.05 | −0.01 | 0.06 | 0.05 | 0.06 | 0.30 | −0.35 | −0.25 | |
Sig. | * | ** | |||||||
FY | Mean (m3/s) | 372.83 | 340.87 | 300.04 | 307.36 | 302.75 | 351.39 | 459.61 | 434.34 |
Z Value | −0.66 | −0.57 | −0.52 | −1.10 | −0.78 | −0.13 | −1.42 | −0.87 | |
Slope | −0.74 | −0.68 | −0.48 | −0.75 | −0.76 | −0.14 | −1.42 | −0.89 | |
Sig. |
Basins | Stations | Area (km2) | Snowfall (mm) | E0 (mm) | Snowmelt Runoff (mm) | E0/P | R/P | n | εP | εE0 | εn |
---|---|---|---|---|---|---|---|---|---|---|---|
YR | SSDW | 9104 | 206.57 | 329.54 | 82.54 | 1.60 | 0.40 | 0.97 | 1.58 | −0.58 | −1.04 |
LJ | 20,687 | 235.47 | 313.97 | 68.82 | 1.33 | 0.29 | 1.46 | 1.96 | −0.96 | −1.11 | |
TH | 4731 | 275.37 | 325.61 | 114.03 | 1.18 | 0.41 | 1.13 | 1.64 | −0.64 | −0.86 | |
JA | 24,359 | 258.66 | 320.03 | 65.75 | 1.78 | 0.25 | 1.78 | 2.19 | −1.19 | −1.11 | |
TR | NP | 6745 | 155.74 | 364.40 | 25.57 | 2.34 | 0.16 | 1.44 | 2.16 | −1.16 | −1.90 |
KST | 11,062 | 165.74 | 354.66 | 23.48 | 2.14 | 0.14 | 1.65 | 2.35 | −1.35 | −1.95 | |
HD | 25,970 | 173.62 | 341.79 | 32.35 | 1.97 | 0.19 | 1.50 | 2.16 | −1.16 | −1.69 | |
QH | 31,800 | 180.17 | 345.16 | 39.10 | 1.92 | 0.22 | 1.39 | 2.04 | −1.04 | −1.56 | |
SR | GLCZ | 4728 | 297.15 | 329.54 | 154.41 | 1.11 | 0.52 | 0.88 | 1.44 | −0.44 | −0.72 |
HYT | 8532 | 220.80 | 313.97 | 103.74 | 1.42 | 0.47 | 0.87 | 1.48 | −0.48 | −0.88 | |
WDG | 12,391 | 204.24 | 337.43 | 34.28 | 1.65 | 0.17 | 1.83 | 2.41 | −1.41 | −1.62 | |
FY | 71,783 | 167.49 | 359.83 | 45.24 | 2.15 | 0.27 | 1.12 | 1.80 | −0.80 | −1.47 |
Basins | Stations | Area (km2) | Abrupt Year | Snowfall (mm) | E0 (mm) | Snowmelt Runoff (mm) | ΔRP (mm) | ΔRE0 (mm) | ΔRn (mm) | ρP (%) | ρE0 (%) | ρn (%) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B | A | B | A | B | A | ||||||||||
YR | SSDW | 9104 | 2012 | 204.7 | 213.5 | 327.6 | 335.9 | 79.4 | 95.4 | 5.6 | −1.2 | 10.8 | 31.8 | 6.9 | 61.3 |
LJ | 20,687 | 2009 | 230.4 | 248.9 | 310.4 | 322.6 | 65.0 | 74.6 | 10.6 | −2.6 | 1.6 | 72.0 | 17.4 | 10.6 | |
TH | 4731 | 2002 | 253.1 | 300.0 | 326.9 | 324.3 | 91.2 | 136.9 | 31.8 | 0.6 | 13.7 | 69.0 | 1.3 | 29.8 | |
JA | 24,359 | 2006 | 250.0 | 264.2 | 311.4 | 345.8 | 60.6 | 68.5 | 7.9 | −8.4 | 7.9 | 32.7 | 34.8 | 32.5 | |
TR | NP | 6745 | 2012 | 148.3 | 187.6 | 366.9 | 354.9 | 23.9 | 32.0 | 13.9 | 1.0 | −7.4 | 62.5 | 4.4 | 33.2 |
KST | 11,062 | 2013 | 159.5 | 198.4 | 352.4 | 365.1 | 22.3 | 28.8 | 13.0 | −1.1 | −5.5 | 66.2 | 5.8 | 28.0 | |
HD | 25,970 | 2009 | 162.3 | 205.1 | 344.9 | 341.2 | 28.6 | 43.7 | 17.3 | 0.4 | −3.2 | 82.9 | 2.0 | 15.1 | |
QH | 31,800 | 2004 | 162.0 | 203.7 | 348.3 | 343.9 | 36.3 | 42.7 | 18.5 | 0.5 | −12.7 | 58.2 | 1.6 | 40.2 | |
SR | GLCZ | 4728 | 2004 | 267.8 | 338.1 | 331.0 | 333.6 | 146.2 | 165.3 | 52.7 | −0.5 | −33.5 | 60.7 | 0.6 | 38.7 |
HYT | 8532 | 2001 | 201.0 | 240.3 | 314.8 | 340.0 | 105.9 | 101.7 | 27.3 | −4.0 | −26.6 | 47.2 | 6.9 | 45.9 | |
WDG | 12,391 | 2004 | 189.1 | 225.3 | 338.1 | 336.6 | 27.3 | 43.1 | 14.6 | 0.2 | 0.9 | 92.8 | 1.4 | 5.8 | |
FY | 71,783 | 2004 | 150.7 | 196.0 | 360.3 | 356.5 | 42.9 | 46.7 | 22.1 | 0.4 | −19.4 | 52.8 | 0.9 | 46.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Chen, Y.; Liu, D.; Qi, P.; Sun, Y.; Guo, L.; Zhang, G. Characteristics of Runoff Changes during the Freeze–Thaw Period and the Response to Environmental Changes in a High-Latitude Water Tower. Water 2024, 16, 2735. https://doi.org/10.3390/w16192735
Xu M, Chen Y, Liu D, Qi P, Sun Y, Guo L, Zhang G. Characteristics of Runoff Changes during the Freeze–Thaw Period and the Response to Environmental Changes in a High-Latitude Water Tower. Water. 2024; 16(19):2735. https://doi.org/10.3390/w16192735
Chicago/Turabian StyleXu, Moran, Yongming Chen, Dongmei Liu, Peng Qi, Yingna Sun, Licheng Guo, and Guangxin Zhang. 2024. "Characteristics of Runoff Changes during the Freeze–Thaw Period and the Response to Environmental Changes in a High-Latitude Water Tower" Water 16, no. 19: 2735. https://doi.org/10.3390/w16192735
APA StyleXu, M., Chen, Y., Liu, D., Qi, P., Sun, Y., Guo, L., & Zhang, G. (2024). Characteristics of Runoff Changes during the Freeze–Thaw Period and the Response to Environmental Changes in a High-Latitude Water Tower. Water, 16(19), 2735. https://doi.org/10.3390/w16192735