Data Analysis to Evaluate the Influence of Drought on Water Quality in the Colorado River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Used
2.3. Statistical Analysis Techniques
- Mann–Kendall (MK) trend test: This is a widely recognized nonparametric method for detecting trends in time series. Its main advantage lies in its lack of requirement for data to follow a normal distribution, making it ideal for environmental contexts where the data may be skewed or contain outliers. The statistic S is calculated by comparing pairs of observations, and its distribution approximates the normality for large sample sizes (n ≥ 8). Positive values of Z indicate an increasing trend, while negative values suggest a decrease. This test was crucial for assessing significant changes in the precipitation over time in the basin, providing a basis for understanding climate variability in the area [27,28,29].
- Kendall’s tau: This nonparametric statistic measures the correlation between two variables, being used here to quantify the association between water quality variables and river flow. It serves as a robust alternative to Pearson’s correlation coefficient when the data do not follow a normal distribution [32].
- Sen’s estimator: This was used to determine the magnitude of the trends detected using the MK test. It is a nonparametric estimator of the slope of the regression line that calculates the median of the slopes between all pairs of points in the time series. Unlike other estimators, Sen’s is robust to outliers and does not require the data to follow a normal distribution. It provides an estimate of the rate of change in the original units of the data [33].
- Pettitt’s nonparametric method: This is applied to detect significant changes in the mean value of the SPI, being relevant for identifying changes in the drought conditions over time in the basin [34].
- Kruskal–Wallis test: A nonparametric equivalent of one-way ANOVA, it used to compare the medians of water quality parameters across different sampling sites. It allows for evaluating whether at least one of the samples comes from a different population in terms of location [35].
2.4. Standardized Precipitation Index (SPI)
2.5. Water Quality Index (WQI)
3. Results and Discussions
3.1. Physicochemical Parameters
3.1.1. Water for Human Consumption
3.1.2. Water for Livestock Consumption
3.2. Rainfall
3.3. Streamflow
3.4. Standard Precipitation Index (SPI)
3.5. Drinking Water Quality Index (DWQI) and the Livestock Water Quality Index (LWQI)
3.6. Correlations between Rainfall and Water Quality Indexes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Satoh, Y.; Yoshimura, K.; Pokhrel, Y.; Kim, H.; Shiogama, H.; Yokohata, T.; Hanasaki, N.; Wada, Y.; Burek, P.; Byers, E.; et al. The Timing of Unprecedented Hydrological Drought under Climate Change. Nat. Commun. 2022, 13, 3287. [Google Scholar] [CrossRef] [PubMed]
- Naciones Unidas El Número y La Duración de Las Sequías Han Aumentado Un 29% Desde El Año 2000. Available online: https://news.un.org/es/story/2022/05/1508622 (accessed on 13 August 2024).
- IPCC. Climate Change 2014: Synthesis Report; Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2015; ISBN 9789291691432. [Google Scholar]
- Nogués-Bravo, D.; Araújo, M.B.; Errea, M.P.; Martínez-Rica, J.P. Exposure of Global Mountain Systems to Climate Warming during the 21st Century. Glob. Environ. Chang. 2007, 17, 420–428. [Google Scholar] [CrossRef]
- Baker, J.S.; Havlík, P.; Beach, R.; Leclère, D.; Schmid, E.; Valin, H.; Cole, J.; Creason, J.; Ohrel, S.; McFarland, J. Evaluating the Effects of Climate Change on US Agricultural Systems: Sensitivity to Regional Impact and Trade Expansion Scenarios. Environ. Res. Lett. 2018, 13, 064019. [Google Scholar] [CrossRef] [PubMed]
- Van Loon, A.F. Hydrological Drought Explained. Wiley Interdiscip. Rev. Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Silva, S.S.d.; Brown, F.; Sampaio, A.d.O.; Silva, A.L.C.; Santos, N.C.R.S.d.; Lima, A.C.; Aquino, A.M.d.S.; Silva, P.H.d.C.; Moreira, J.G.d.V.; Oliveira, I.; et al. Amazon Climate Extremes: Increasing Droughts and Floods in Brazil’s State of Acre. Perspect. Ecol. Conserv. 2023, 21, 311–317. [Google Scholar] [CrossRef]
- Gobierno Provincia Buenos Aires Desertificación. Available online: https://www.argentina.gob.ar/ambiente/bosques/desertificacion (accessed on 13 August 2024).
- Graham, N.T.; Hejazi, M.I.; Chen, M.; Davies, E.G.R.; Edmonds, J.A.; Kim, S.H.; Turner, S.W.D.; Li, X.; Vernon, C.R.; Calvin, K.; et al. Humans Drive Future Water Scarcity Changes across All Shared Socioeconomic Pathways. Environ. Res. Lett. 2020, 15, 014007. [Google Scholar] [CrossRef]
- Medeiros, P.; Sivapalan, M. From Hard-Path to Soft-Path Solutions: Slow–Fast Dynamics of Human Adaptation to Droughts in a Water Scarce Environment. Hydrol. Sci. J. 2020, 65, 1803–1814. [Google Scholar] [CrossRef]
- Monge-Rojas, C.R.; Elizondo-Salazar, J.A. La Importancia Del Agua En La Crianza de Remplazos de Lechería. Nutr. Anim. Trop. 2016, 10. [Google Scholar] [CrossRef]
- Al Yousif, M.A.; Chabuk, A. Assessment Water Quality Indices of Surface Water for Drinking and Irrigation Applications—A Comparison Review. J. Ecol. Eng. 2023, 24, 40–55. [Google Scholar] [CrossRef]
- Mckee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales; American Meteorological Society: Boston, MA, USA, 1993. [Google Scholar]
- Naresh Kumar, M.; Murthy, C.S.; Sesha Sai, M.V.R.; Roy, P.S. On the Use of Standardized Precipitation Index (SPI) for Drought Intensity Assessment. Meteorol. Appl. 2009, 16, 381–389. [Google Scholar] [CrossRef]
- Dutta, D.; Kundu, A.; Patel, N.R.; Saha, S.K.; Siddiqui, A.R. Assessment of Agricultural Drought in Rajasthan (India) Using Remote Sensing Derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). Egypt. J. Remote Sens. Space Sci. 2015, 18, 53–63. [Google Scholar] [CrossRef]
- Zhang, A.; Jia, G. Monitoring Meteorological Drought in Semiarid Regions Using Multi-Sensor Microwave Remote Sensing Data. Remote Sens. Environ. 2013, 134, 12–23. [Google Scholar] [CrossRef]
- Belayneh, A.; Adamowski, J.; Khalil, B. Short-Term SPI Drought Forecasting in the Awash River Basin in Ethiopia Using Wavelet Transforms and Machine Learning Methods. Sustain. Water Resour. Manag. 2016, 2, 87–101. [Google Scholar] [CrossRef]
- Sharma, A.; Goyal, M.K. Assessment of Drought Trend and Variability in India Using Wavelet Transform. Hydrol. Sci. J. 2020, 65, 1539–1554. [Google Scholar] [CrossRef]
- Spalletti, L. Características Y Evolución Del Delta Del Río Colorado (“Colú-Leuvú”), Provincia De Buenos Aires, República Argentina. J. Sedimentol. Basin Anal. 2003, 10, 23–37. [Google Scholar]
- Wild, T.B.; Khan, Z.; Clarke, L.; Hejazi, M.; Bereslawski, J.L.; Suriano, M.; Roberts, P.; Casado, J.; Miralles-Wilhelm, F.; Gavino-Novillo, M.; et al. Integrated Energy-Water-Land Nexus Planning in the Colorado River Basin (Argentina). Reg. Environ. Change 2021, 21, 62. [Google Scholar] [CrossRef]
- Abraham, E.M.; Rodríguez, M.D.; Rubio, M.C.; Guida-Johnson, B.; Gomez, L.; Rubio, C. Disentangling the Concept of “South American Arid Diagonal”. J. Arid Environ. 2020, 175, 104089. [Google Scholar] [CrossRef]
- Trillini, M.; Pierini, J.O.; Vallese, F.D.; Dunel Guerra, L.; Pistonesi, M.F. Colorado River (Argentina) Water Crisis Scenarios and Influence on Irrigation Water Quality Conditions. Sustainability 2023, 15, 8457. [Google Scholar] [CrossRef]
- Alcalde, R. Programa Integral De Calidad De Aguas Del Río Colorado. 2019. Available online: https://www.coirco.gov.ar/download/calidad-aguas/calidad-medio-acuatico/PCA%202019.pdf (accessed on 22 July 2024).
- Cazenave, H.W. Efectos De La Represa Casa De Piedra En La Variación Témporo Espacial De Las Características Hidrológicas Y Del Diseño De Drenaje Del Río Colorado; Universidad Nacional del Sur: Bahía Blanca, Argentina, 2011. [Google Scholar]
- Wang, J.; Wang, W.; Cheng, H.; Wang, H.; Zhu, Y. Propagation from Meteorological to Hydrological Drought and Its Influencing Factors in the Huaihe River Basin. Water 2021, 13, 1985. [Google Scholar] [CrossRef]
- APHA American Public Health Association; American Water Works Association. Standard Methods for the Examination of Water and Waste Water, 22nd ed.; APHA American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Liu, L.; Fan, L.; Hu, J.; Li, C. Human Activities Impacts on Runoff and Ecological Flow in the Huangshui River of the Yellow River Basin, China. Water 2024, 16, 2331. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Conover, W.J. Practical Nonparametric Statistical, 3rd ed.; John Wiley & Sons Inc.: New York, NY, USA, 1999. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; John Wiley & Sons: New York, NY, USA, 1987; ISBN 978-0-471-28878-7. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Pettitt, A.N. A Non-Parametric Approach to the Change-Point Problem. J. R. Stat. Soc. Ser. C Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- WMO. Standardized Precipitation Index User Guide; World Metereological Organization: Geneva, Switzerland, 2012; ISBN 978-92-63-11091-6. [Google Scholar]
- Yerdelen, C.; Abdelkader, M.; Eris, E. Assessment of Drought in SPI Series Using Continuous Wavelet Analysis for Gediz Basin, Turkey. Atmos. Res. 2021, 260, 105687. [Google Scholar] [CrossRef]
- Liu, B.; Liu, Y.; Wang, W.; Li, C. Meteorological Drought Events and Their Evolution from 1960 to 2015 Using the Daily SWAP Index in Chongqing, China. Water 2021, 13, 1887. [Google Scholar] [CrossRef]
- Al-Saffawi, A.Y.T.; Abubakar, I.; Al-Asaat, A.Y.R.; Hussaini, M.; Ibrahim, U.A. Groundwater Quality Assessment of Nimrod for Livestock and Poultry Consumption; UJESR: Port Harcourt, Nigeria, 2020; Volume 5. [Google Scholar]
- Kachroud, M.; Trolard, F.; Kefi, M.; Jebari, S.; Bourrié, G. Water Quality Indices: Challenges and Application Limits in the Literature. Water 2019, 11, 361. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011; ISBN 9789241548151. [Google Scholar]
- WHO. Guidelines For-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2022; ISBN 978-92-4-004506-4. [Google Scholar]
- Adam, J.C.; Hamlet, A.F.; Lettenmaier, D.P. Implications of Global Climate Change for Snowmelt Hydrology in the Twenty-First Century. Hydrol. Process. 2009, 23, 962–972. [Google Scholar] [CrossRef]
- Alcalde, R. Programa Integral De Calidad De Aguas Del Río Colorado. 2014. Available online: https://www.coirco.gov.ar/download/calidad-aguas/calidad-medio-acuatico/Programa%20Coirco%202014.pdf (accessed on 22 July 2024.).
- Vélez-Agudelo, C.; Martínez, D.E.; Quiroz-Londoño, O.M.; Espinosa, M.A. Hydrochemical Characteristics of Mid-Low Sections of North Patagonia Rivers, Argentina. In Environmental Assessment of Patagonia’s Water Resources; Springer International Publishing: Cham, Switzerland, 2021; pp. 153–178. [Google Scholar] [CrossRef]
- Bavera, G.A. Aguas y Aguadas Para El Ganado; Imberti-Bavera: Río Cuarto, Argentina, 2011; ISBN 978-987-27332-2-3. [Google Scholar]
- Al-Saffawi, A.A.Y.T. Water Quality of Nimrud District Wells Southeast of Mosul City for Drinking and Civil Purpose Using the Canadian Model of Water Quality. Pak. J. Anal. Environ. Chem. 2019, 20, 75–81. [Google Scholar] [CrossRef]
- Peña-Guerrero, M.D.; Nauditt, A.; Muñoz-Robles, C.; Ribbe, L.; Meza, F. Drought Impacts on Water Quality and Potential Implications for Agricultural Production in the Maipo River Basin, Central Chile. Hydrol. Sci. J. 2020, 65, 1005–1021. [Google Scholar] [CrossRef]
- Athukoralalage, D.; Brookes, J.; McDowell, R.W.; Mosley, L.M. Impact of Hydrological Drought Occurrence, Duration, and Severity on Murray-Darling Basin Water Quality. Water Res. 2024, 252. [Google Scholar] [CrossRef] [PubMed]
- Rivera, J.; Robo, M.; Bianchi, E.; Mulleady, C. Impact of Climate Change on the Streamflow in Northern Patagonia. J. Water Clim. Chang. 2024, 15, 2074–2091. [Google Scholar] [CrossRef]
- Hasan, M.M.; Ahmed, M.S.; Adnan, R.; Shafiquzzaman, M. Water Quality Indices to Assess the Spatiotemporal Variations of Dhaleshwari River in Central Bangladesh. Environ. Sustain. Indic. 2020, 8, 100068. [Google Scholar] [CrossRef]
- Andrade, M.I.; Laporta, P.; Lezzi, L. Sequías En El Sudoeste: Vulnerabilidad Incertidumbre. In Geograficando; FaHCE: La Plata, Argentina, 2009; Volume 5, pp. 213–233. [Google Scholar]
- Birimbayeva, L.; Makhmudova, L.; Alimkulov, S.; Tursunova, A.; Mussina, A.; Tigkas, D.; Beksultanova, Z.; Rodrigo-Clavero, M.E.; Rodrigo-Ilarri, J. Analysis of the Spatiotemporal Variability of Hydrological Drought Regimes in the Lowland Rivers of Kazakhstan. Water 2024, 16, 2316. [Google Scholar] [CrossRef]
- Alcalde, R. Programa Integral De Calidad De Aguas Del Río Colorado. 2008. Available online: https://www.coirco.gov.ar/download/calidad-aguas/calidad-medio-acuatico/Programa%20Coirco%202008.pdf (accessed on 23 July 2024).
- Şener, Ş.; Şener, E.; Davraz, A. Evaluation of Water Quality Using Water Quality Index (WQI) Method and GIS in Aksu River (SW-Turkey). Sci. Total Environ. 2017, 584–585, 131–144. [Google Scholar] [CrossRef]
- Zahedi, S. Modification of Expected Conflicts between Drinking Water Quality Index and Irrigation Water Quality Index in Water Quality Ranking of Shared Extraction Wells Using Multi Criteria Decision Making Techniques. Ecol. Indic. 2017, 83, 368–379. [Google Scholar] [CrossRef]
Stations | Sites | Latitude | Longitude |
---|---|---|---|
S1 | Paso Alsina | 39°22′02″ S | 63°14′16″ W |
S2 | Colector D | 39°48′39″ S | 62°22′16″ W |
S3 | Colector V | 39°51′28″ S | 62°22′35″ W |
S4 | Colector P | 39°59′46″ S | 62°20′33″ W |
S5 | Cuenca 10 | 39°37′35″ S | 62°09′51″ W |
S6 | Cuenca 25 | 39°25′49″ S | 62°16′40″ W |
S7 | Colector I | 39°25′09″ S | 62°16′17″ W |
S8 | Colector II | 39°19′08″ S | 62°22′20″ W |
R1 | Ascasubi | 39°23′29″ S | 62°37′34″ W |
R2 | Villalonga | 39°58′46″ S | 62°40′54″ W |
R3 | Dos Lagunas | 39°16′09″ S | 62°51′57″ W |
R4 | Paso Alsina | 39°22′01″ S | 63°14′12″ W |
Parameter | Analytical Technique | Method [26] | Instruments and Equipment |
---|---|---|---|
Total dissolved solids (TDS) | Gravimetry | 2540 B | Gravimetrics 321 LX 220A. Manufacturer: Precisa. Country: Switzerland. City: Dietikon. Stove SL60S SAN-JOR. Manufacturer: SAN-JOR. Country: Argentina. City: Buenos Aires |
Hydrogen potential (pH) | Potentiometry | 4500-H+ B | Hanna HI 2221-02. Manufacturer: Hanna Instruments. Country: United States. City: Woonsocket, Rhode Island |
Electrical conductivity (EC) | Conductometry | 2520 B | Conductivity meter Altronix CTXII. Manufacturer: Altronix. Country: Argentina. City: Buenos Aires |
Calcium (Ca2+) | Complexometry | 3500-Ca2+ B | Sartorius Model Biotrate 50 mL. Manufacturer: Sartorius. Country: Germany. City: Göttingen |
Magnesium (Mg2+) | Complexometry | 3500-Mg2+ B | Sartorius Model Biotrate 50 mL. Manufacturer: Sartorius. Country: Germany. City: Göttingen |
Sodium (Na+) | Flame photometry | 3500-Na+ B | Photometer Metrolab 315. Manufacturer: Metrolab. Country: Argentina. City: Buenos Aires |
Potassium (K+) | Flame photometry | 3500-K+ B | Photometer Metrolab 315. Manufacturer: Metrolab. Country: Argentina. City: Buenos Aires |
Carbonate (CO32−) | Acid–base titration | 2320-B | Sartorius Model Biotrate 50 mL. Manufacturer: Sartorius. Country: Germany. City: Göttingen |
Bicarbonate (HCO3−) | Acid–base titration | 2320-B | Sartorius Model Biotrate 50 mL. Manufacturer: Sartorius. Country: Germany. City: Göttingen |
Chlorides (Cl−) | Precipitation titration | 4500-Cl− B | Sartorius Model Biotrate 50 mL. Manufacturer: Sartorius. Country: Germany. City: Göttingen |
Sulfates (SO42−) | Turbidimetric | 4500-SO42− E | Spectrophotometer Lambda 35 UV–Vis Perkin Elmer. Manufacturer: Perkin Elmer. Country: United States. City: Waltham, Massachusetts |
SPI Value | Classification |
---|---|
2.0 or more | Extremely wet |
1.5 to 1.99 | Very wet |
1.0 to 1.49 | Moderately wet |
−0.99 to 0.99 | Near normal |
−1.0 to −1.49 | Moderately dry |
−1.5 to −1.99 | Severely dry |
−2.0 and less | Extremely dry |
Parameters | WHO (mg L−1) | Weight (wi) | Relative Weights () |
---|---|---|---|
K+ | 12 | 2 | 0.065 |
Na+ | 200 | 4 | 0.129 |
Mg2+ | 30 | 3 | 0.097 |
Ca2+ | 75 | 3 | 0.097 |
CO32−-HCO3− | 120 | 1 | 0.032 |
Cl− | 250 | 5 | 0.161 |
SO42− | 250 | 5 | 0.161 |
pH | 6.5–8.5 | 3 | 0.097 |
TDS | 500 | 5 | 0.161 |
Parameters | Standard Limits (mg L−1) | Weight (wi) | Relative Weights () |
---|---|---|---|
K+ | 20 | 1 | 0.033 |
Na+ | 300 | 3 | 0.100 |
Mg2+ | 500 | 2 | 0.066 |
Ca2+ | 1000 | 2 | 0.066 |
CO32−-HCO3− | 1000 | 2 | 0.066 |
Cl− | 300 | 3 | 0.100 |
SO42− | 500 | 4 | 0.133 |
pH | 6.5–9.0 | 4 | 0.133 |
TDS | 1000–3000 | 5 | 0.166 |
EC | 1600 μS cm−1 | 4 | 0.133 |
Human Consumption (DWQI) | Livestock Consumption (LWQI) | ||
---|---|---|---|
Scale Index | Water Quality | Scale Index | Water Quality |
0–25 | Excellent | <50 | Excellent |
26–50 | Good | 50–99 | Good |
51–75 | Low | 100–199 | Low |
76–100 | Very low | 200–300 | Very low |
>100 | Not suitable for consumption | >300 | Not suitable for consumption |
Parameters | Na+ | K+ | Ca2+ | Mg2+ | Cl− | CO32− + HCO3− | SO42− | HT | EC | pH | TDS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Units | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | µS cm−1 | - | mg L−1 | |
S1 | Mean | 164 | 4 | 135 | 20 | 248 | 121 | 293 | 419 | 1454 | 8.2 | 983 |
Std | 28 | 1 | 19 | 7 | 47 | 15 | 83 | 45 | 238 | 0.2 | 165 | |
S2 | Mean | 1625 | 21 | 451 | 150 | 2353 | 220 | 1573 | 1743 | 9508 | 8.1 | 6550 |
Std | 568 | 11 | 117 | 77 | 1069 | 39 | 615 | 582 | 3088 | 0.2 | 2197 | |
S3 | Mean | 2812 | 43 | 397 | 187 | 3419 | 232 | 2325 | 1758 | 13,562 | 8.2 | 9571 |
Std | 639 | 15 | 70 | 62 | 983 | 60 | 680 | 384 | 2918 | 0.2 | 2023 | |
S4 | Mean | 1591 | 17 | 340 | 113 | 1909 | 223 | 1600 | 1316 | 8535 | 8.1 | 6071 |
Std | 512 | 7 | 87 | 46 | 705 | 46 | 650 | 373 | 2503 | 0.2 | 1849 | |
S5 | Mean | 2145 | 67 | 394 | 220 | 2993 | 256 | 1734 | 1890 | 11,263 | 8.2 | 7824 |
Std | 815 | 28 | 137 | 154 | 1709 | 53 | 560 | 808 | 3735 | 0.2 | 2689 | |
S6 | Mean | 3264 | 88 | 520 | 327 | 4919 | 277 | 2543 | 2646 | 16,548 | 8.1 | 11,848 |
Std | 1046 | 28 | 127 | 137 | 2131 | 57 | 826 | 839 | 5214 | 0.2 | 3643 | |
S7 | Mean | 964 | 13 | 367 | 113 | 1308 | 234 | 1247 | 1378 | 6060 | 8.1 | 4726 |
Std | 320 | 5 | 84 | 56 | 599 | 45 | 402 | 394 | 1730 | 0.2 | 2528 | |
S8 | Mean | 881 | 10 | 293 | 89 | 1072 | 246 | 1112 | 1097 | 5283 | 8.1 | 3727 |
Std | 257 | 3 | 68 | 35 | 396 | 44 | 431 | 290 | 1472 | 0.2 | 1004 |
Source | SS | df | MS | Chi-sq | Prob > Chi-sq |
---|---|---|---|---|---|
Groups | 62,002.4 | 3 | 20,667.5 | 3.07 | 0.3805 |
Error | 9,844,160.1 | 488 | 20,172.5 | ||
Total | 9,906,162.5 | 491 |
Months | Trend | p-Value | Significant |
---|---|---|---|
January | −0.108 | 0.328 | No |
February | −0.051 | 0.645 | No |
March | −0.177 | 0.106 | No |
April | −0.142 | 0.196 | No |
May | −0.024 | 0.831 | No |
June | −0.143 | 0.192 | No |
July | −0.078 | 0.479 | No |
August | −0.203 | 0.064 | No |
September | −0.182 | 0.096 | No |
October | 0.000 | 1.000 | No |
November | 0.199 | 0.069 | No |
December | −0.092 | 0.406 | No |
Annual | −0.084 | 0.005 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vallese, F.D.; Trillini, M.; Dunel Guerra, L.; Pistonesi, M.F.; Pierini, J.O. Data Analysis to Evaluate the Influence of Drought on Water Quality in the Colorado River Basin. Water 2024, 16, 2750. https://doi.org/10.3390/w16192750
Vallese FD, Trillini M, Dunel Guerra L, Pistonesi MF, Pierini JO. Data Analysis to Evaluate the Influence of Drought on Water Quality in the Colorado River Basin. Water. 2024; 16(19):2750. https://doi.org/10.3390/w16192750
Chicago/Turabian StyleVallese, Federico Danilo, Mariano Trillini, Luciana Dunel Guerra, Marcelo Fabian Pistonesi, and Jorge Omar Pierini. 2024. "Data Analysis to Evaluate the Influence of Drought on Water Quality in the Colorado River Basin" Water 16, no. 19: 2750. https://doi.org/10.3390/w16192750
APA StyleVallese, F. D., Trillini, M., Dunel Guerra, L., Pistonesi, M. F., & Pierini, J. O. (2024). Data Analysis to Evaluate the Influence of Drought on Water Quality in the Colorado River Basin. Water, 16(19), 2750. https://doi.org/10.3390/w16192750