Changes in Population Exposure to Rainstorm Waterlogging for Different Return Periods in the Xiong’an New Area, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methodology
2.3.1. FloodArea Model
2.3.2. Calculation of Rainstorms for Different Return Periods
2.3.3. Population Exposure to Rainstorm Waterlogging
3. Results
3.1. Analysis of the FloodArea Model Applicability
3.2. Rainstorms for Different Return Periods
3.3. Changes in Inundation Depth and Inundation Area
3.4. Population Exposure to Rainstorm Waterlogging
3.4.1. Population Changes
3.4.2. Population Exposure
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Kundzewicz, Z.W.; Su, B.; Wang, Y.; Wang, G.; Wang, G.; Huang, J.; Jiang, T. Flood risk in a range of spatial perspectives—From global to local scales. Nat. Hazard Earth Sys. 2019, 19, 1319–1328. [Google Scholar] [CrossRef]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Zhuang, G.; Gao, P. Green Book of Climate Change (2022): Policies and Practices to Implement the Dual Carbon Goals; Social Sciences Academic Press: Beijing, China, 2022; pp. 361–362. [Google Scholar]
- Shao, Z.; Fu, H.; Li, D.; Altan, O.; Cheng, T. Remote sensing monitoring of multi-scale watersheds impermeability for urban hydrological evaluation. Remote Sens. Environ. 2019, 232, 111338. [Google Scholar] [CrossRef]
- Chan, F.; Joon, C.C.; Ziegler, A.; Dabrowski, M.; Varis, O. Towards resilient flood risk management for Asian coastal cities: Lessons learned from Hong Kong and Singapore. J. Clean. Prod. 2018, 187, 576–589. [Google Scholar] [CrossRef]
- Ning, Y.; Dong, W.; Lin, L.; Zhang, Q. Analyzing the causes of urban waterlogging and sponge city technology in China. IOP Conf. Ser. Earth Environ. Sci. 2017, 59, 012047. [Google Scholar] [CrossRef]
- Yang, K.; Hou, H.; Li, Y.; Chen, Y.; Wang, L.; Wang, P.; Hu, T. Future urban waterlogging simulation based on LULC forecast model: A case study in Haining City, China. Sustain. Cities Soc. 2022, 87, 104167. [Google Scholar] [CrossRef]
- Mu, D.; Luo, P.; Lyu, J.; Zhou, M.; Huo, A.; Duan, W.; Nover, D.; He, B.; Zhao, X. Impact of temporal rainfall patterns on flash floods in Hue City, Vietnam. J. Flood Risk Manag. 2020, 14, e12668. [Google Scholar] [CrossRef]
- Jiang, Y.; Zevenbergen, C.; Ma, Y. Urban pluvial flooding and stormwater management: A contemporary review of China’s challenges and “sponge cities” strategy. Environ. Sci. Policy 2018, 80, 132–143. [Google Scholar] [CrossRef]
- Tang, X.; Shu, Y.; Lian, Y.; Zhao, Y.; Fu, Y. A spatial assessment of urban waterlogging risk based on a Weighted Naïve Bayes classifier. Sci. Total Environ. 2018, 630, 264–274. [Google Scholar] [CrossRef]
- Kong, F. A preliminary study on integrated management of urban storm flooding disaster risks in China. Disaster Reduct. China 2021, 17, 23–27. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Y.; Fan, Z.; Xie, C.; Liu, G.; Fei, X. Study on evolvement law of urban flood disasters in China under urbanization. Hydro-Sci. Eng. 2018, 2, 10–18. (In Chinese) [Google Scholar] [CrossRef]
- Sheng, G. Adaptive stormwater management strategy in the Xiong’an New Area from the perspective of system resilience. Chin. J. Popul. Resour. Environ. 2023, 33, 23–33. (In Chinese) [Google Scholar] [CrossRef]
- Sheng, G.; Liao, Y.; Hu, H. Risk evaluation for flood waterlogging disasters in the Xiong’an New Area under climate change. Chin. J. Popul. Resour. Environ. 2020, 30, 40–52. [Google Scholar] [CrossRef]
- Hao, Z.; Xiong, D.; Ge, Q. Reconstruction of the chronology and characteristics of flood disasters in the Xiong’an New Area over the last 300 years. Chin. Sci Bull. 2018, 63, 2302–2310. (In Chinese) [Google Scholar] [CrossRef]
- Wu, J.; Gao, X.; Xu, Y. Climate change projection over Xiong’an District and its adjacent areas: An ensemble of Reg CM4 simulations. Chin. J. Atmos. Sci. 2018, 42, 696–705. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q.; Si, L.; Peng, X.; Jiang, T. The projected population structure and suggestions for high-quality development in the Xiong’an New Area. Sci. Technol. Rev. 2022, 40, 78–87. (In Chinese) [Google Scholar] [CrossRef]
- Hu, W.; He, W.; Huang, G.; Feng, J. Review of urban storm water simulation techniques. Adv. Water Sci. 2010, 21, 137–144. [Google Scholar] [CrossRef]
- Qi, W.; Ma, C.; Xu, H.; Chen, Z.; Zhao, K.; Han, H. A review on applications of urban flood models in flood mitigation strategies. Nat. Hazards 2021, 108, 31–62. [Google Scholar] [CrossRef]
- Xue, F.; Zhu, Y.; Gu, R.; Zhao, X. Visual numerical simulation of urban waterlooging based on floodarea model. Sci. Surv. Mapp. 2020, 45, 8. (In Chinese) [Google Scholar] [CrossRef]
- Liu, M.; Sun, F.; Hou, Y.; Zhou, X.; Zhao, C.; Yi, X. Risk Evaluation of Rainstorm and Flood in the Upper Reaches of Hunhe River (Qingyuan Section) Based on the FloodArea Model. J. Geosci. Environ. Prot. 2018, 6, 168–180. [Google Scholar] [CrossRef]
- Xie, W.; Wu, R.; Ding, X. Risk Assessment and Early Warning of Urban Waterlogging Based on FloodArea Mode. Resour. Environ. Yangtze Basin 2018, 27, 2848–2855. (In Chinese) [Google Scholar] [CrossRef]
- Xue, F.; Huang, M.; Wang, W.; Zou, L. Numerical Simulation of Urban Waterlogging Based on FloodArea Model. Adv. Meteorol. 2016, 2016, 3940707. [Google Scholar] [CrossRef]
- Ruin, I.; Creutin, J.D.; Anquetin, S.; Lutoff, C. Human exposure to flash floods—Relation between flood parameters and human vulnerability during a storm of September 2002 in Southern France. J. Hydrol. 2008, 361, 199–213. [Google Scholar] [CrossRef]
- Liao, X.; Xu, W.; Zhang, J.; Li, Y.; Tian, Y. Global exposure to rainstorms and the contribution rates of climate change and population change. Sci. Total Environ. 2019, 663, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Tellman, B.; Sullivan, J.A.; Kuhn, C.; Kettner, A.J.; Doyle, C.S.; Brakenridge, G.R.; Erickson, T.A.; Slayback, D.A. Satellite imaging reveals increased proportion of population exposed to floods. Nature 2021, 596, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Rentschler, J.; Salhab, M.; Jafino, B.A. Flood exposure and poverty in 188 countries. Nat. Commun. 2022, 13, 3527. [Google Scholar] [CrossRef]
- Qiang, Y. Disparities of population exposed to flood hazards in the United States. J. Environ. Manag. 2019, 232, 295–304. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, C.; Wang, A.; Wang, Y.; Zhang, F.; Zhai, J.; Li, X.; Su, B. Temporal and Spatial Variation of Exposure and Vulnerability of Flood Disaster in China. Clim. Chang. Res. 2014, 10, 391–398. (In Chinese) [Google Scholar] [CrossRef]
- Dong, B.; Xia, J.; Li, Q.; Zhou, M. Risk assessment for people and vehicles in an extreme urban flood: Case study of the “7.20” flood event in Zhengzhou, China. Int. J. Disaster Risk Reduct. 2022, 80, 103205. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; van Ruijven, B.J.; van Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The roads ahead: Narratives for sharedsocioeconomic pathways describing world futures in the 21st century. Glob. Environ. Chang. 2017, 42, 169–180. [Google Scholar] [CrossRef]
- Wu, F.; Guo, N.; Kumar, P.; Niu, L. Scenario-based extreme flood risk analysis of Xiong’an New Area in northern China. J. Flood Risk Manag. 2021, 14, e12707. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, S.; Yue, T.; Zhu, L.; Wang, Y.; Fan, Z.; Ma, S. Simulation of Chinese Population Density Based on Land Use. Acta Geogr. Sin. 2004, 59, 283–292. (In Chinese) [Google Scholar] [CrossRef]
- Justel, A.; Peña, D.; Zamar, R. A multivariate Kolmogorov-Smirnov test of goodness of fit. Stat. Probab. Lett. 1997, 35, 251–259. [Google Scholar] [CrossRef]
- Su, B.; Jiang, T.; Guo, Y.; Gemmer, M. GIS raster data-based dynamic flood risk simulation model and its application. J. Hohai Univ. (Nat. Sci.) 2005, 4, 370–374. (In Chinese) [Google Scholar] [CrossRef]
- Geomer. Floodarea-ArcGIS Extension for Calculating Flooded Areas (User Manual Version 9.5); Geomer: Heidelberg, Germany, 2008. [Google Scholar]
- GB50014-2021; Standard for Design of Outdoor Wastewater Engineering. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2021.
- Yu, C.; Xu, Q.; Yang, Y.; Ma, G.; Gao, X. Intensity formula and design hyetograph for long-duration storm in Xiong’an New District. J. Meteorol. Environ. 2021, 37, 78–85. (In Chinese) [Google Scholar] [CrossRef]
- Fisher, R.A.; Tippett, L.H.C. Limiting forms of the frequency distribution of the largest or smallest member of a sample. Math. Proc. Camb. Philos. Soc. 1928, 24, 180. [Google Scholar] [CrossRef]
- Jenkinson, A.F. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q. J. Roy. Meteor. Soc. 1955, 81, 158–171. [Google Scholar] [CrossRef]
- Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer: New York, NY, USA, 2001; pp. 36–78. [Google Scholar]
- Song, X.; Zhang, J.; Kong, F. Probability distribution of extreme precipitation in Beijing based on extreme value theory. Sci. Sin. Technol. 2018, 48, 639–650. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Liu, K.; Chen, Q. Applicability of Different Probability Distributions to Estimated Extreme Rainfall. Sci. Geol. Sin. 2015, 35, 1460–1467. (In Chinese) [Google Scholar] [CrossRef]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaption; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012. [Google Scholar]
- Shi, X.; Chen, J.; Gu, L.; Xu, C.; Chen, H.; Zhang, L. Impacts and socioeconomic exposures of global extreme precipitation events in 1.5 and 2.0 °C warmer climates. Sci. Total Environ. 2021, 766, 142665. [Google Scholar] [CrossRef]
- Zhao, J.; Su, B.; Wang, Y.; Tao, H.; Jiang, T. Population exposure to precipitation extremes in the Indus River Basin at 1.5 °C, 2.0 °C and 3.0 °C warming levels. Adv. Clim. Chang. Res. 2021, 12, 199–209. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Hauer, M.E.; Hardy, D.; Kulp, S.A.; Mueller, V.; Wrathall, D.J.; Clark, P.U. Assessing population exposure to coastal flooding due to sea level rise. Nat. Commun. 2021, 12, 6900. [Google Scholar] [CrossRef] [PubMed]
- Wing, O.E.; Bates, P.D.; Smith, A.M.; Sampson, C.C.; Johnson, K.A.; Fargione, J.; Morefield, P. Estimates of present and future flood risk in the conterminous United States. Environ. Res. Lett. 2018, 13, 034023. [Google Scholar] [CrossRef]
- Hossain, M.K.; Meng, Q. A fine-scale spatial analytics of the assessment and mapping of buildings and population at different risk levels of urban flood. Land Use Policy. 2020, 99, 104829. [Google Scholar] [CrossRef]
- Lyu, H.; Xu, Y.; Cheng, W.; Arulrajah, A. Flooding hazards across Southern China and prospective sustainability measures. Sustainability 2018, 10, 1682. [Google Scholar] [CrossRef]
- Jiang, T.; Su, B.; Huang, J.; Zhai, J.; Xia, J.; Tao, H.; Wang, Y.; Sun, H.; Luo, Y.; Zhang, L.; et al. Each 0.5 °C of warming increases annual flood losses in China by more than US $60 billion. Bull. Am. Meteorol. Soc. 2020, 101, E1464–E1474. [Google Scholar] [CrossRef]
- O’Donnell, E.C.; Thorne, C.R. Drivers of future urban flood risk. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2020, 378, 20190216. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, Y.; Güneralp, B.; Li, X.; Zhao, K.; Zhang, H. Increasing global urban exposure to flooding: An analysis of long-term annual dynamics. Sci. Total Environ. 2022, 817, 153012. [Google Scholar] [CrossRef]
- Li, C.; Liu, M.; Hu, Y.; Wang, H.; Zhou, R.; Wu, W.; Wang, Y. Spatial distribution patterns and potential exposure risks of urban floods in Chinese megacities. J. Hydrol. 2022, 610, 127838. [Google Scholar] [CrossRef]
- Zhu, S.; Dai, Q.; Zhao, B.; Shao, J. Assessment of population exposure to urban flood at the building scale. Water 2020, 12, 3253. [Google Scholar] [CrossRef]
- Smith, A.; Bates, P.D.; Wing, O.; Sampson, C.; Quinn, N.; Neal, J. New estimates of flood exposure in developing countries using high-resolution population data. Nat. Commun. 2019, 10, 1814. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.C.; Regonda, S.K. Two-dimensional flood inundation modeling in the Godavari River Basin, India—Insights on model output uncertainty. Water 2021, 13, 191. [Google Scholar] [CrossRef]
- Leitão, J.P.; De Sousa, L. Towards the optimal fusion of high-resolution Digital Elevation Models for detailed urban flood assessment. J. Hydrol. 2018, 561, 651–661. [Google Scholar] [CrossRef]
- Kim, D.E.; Liong, S.; Gourbesville, P.; Andres, L.; Liu, J. Simple-yet-effective SRTM DEM improvement scheme for dense urban cities using ANN and remote sensing data: Application to flood modeling. Water 2020, 12, 816. [Google Scholar] [CrossRef]
- Shen, J.; Tan, F. Effects of DEM resolution and resampling technique on building treatment for urban inundation modeling: A case study for the 2016 flooding of the HUST campus in Wuhan. Nat. Hazards 2020, 104, 927–957. [Google Scholar] [CrossRef]
- Muthusamy, M.; Casado, M.R.; Butler, D.; Leinster, P. Understanding the effects of Digital Elevation Model resolution in urban fluvial flood modelling. J. Hydrol. 2021, 596, 126088. [Google Scholar] [CrossRef]
- Okolie, C.J.; Smit, J.L. A systematic review and meta-analysis of Digital elevation model (DEM) fusion: Pre-processing, methods and applications. ISPRS J. Photogramm. Remote Sens. 2022, 188, 1–29. [Google Scholar] [CrossRef]
- Rentschler, J.; Avner, P.; Marconcini, M.; Su, R.; Strano, E.; Vousdoukas, M.; Hallegatte, S. Global evidence of rapid urban growth in flood zones since 1985. Nature 2023, 622, 87–92. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, F.; Wang, J.; Cai, W.; Wang, C.; Wang, K. Provincial and gridded population projection for China under shared socioeconomic pathways from 2010 to 2100. Sci. Data 2020, 7, 83. [Google Scholar] [CrossRef]
- Su, H.; Wang, W.; Jia, Y.; Han, S.; Gao, H.; Niu, C.; Ni, G. Impact of urbanization on precipitation and temperature over a lake-marsh wetland: A case study in Xiong’an New Area, China. Agric. Water Manag. 2021, 243, 106503. [Google Scholar] [CrossRef]
- IPCC. 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- Hallegatte, S.; Green, C.; Nicholls, R.J.; Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Chang. 2013, 3, 802–806. [Google Scholar] [CrossRef]
- Lai, C.; Chen, X.; Wang, Z.; Yu, H.; Bai, X. Flood risk assessment and regionalization from past and future perspectives at basin scale. Risk Anal. 2020, 40, 1399–1417. [Google Scholar] [CrossRef] [PubMed]
Data Type | Attribute | Source |
---|---|---|
Observed precipitation | Daily, 1951–2020 | National Meteorological Information Centre, China Meteorological Administration |
Observed flood-prone sites | 3 sites, 12 August 2020 | Hebei Meteorological Disaster Prevention Centre |
DEM | 30 m | https://earthexplorer.usgs.gov/ |
Administrative boundaries | Shpfile, 2015 | The National Geomatics Center of China |
Land use | 30 m, gird file, 2015 | Resource and Environment Science Centre of the Chinese Academy of Sciences (http://www.resdc.cn/) |
30 m, gird file, 2035 | The land-use plan of the Xiong’an New Area in 2035 (http://www.xiongan.gov.cn/) | |
Population | 2017–2020 | Baoding Economic and Statistical Yearbook and the China Statistical Yearbook |
2021–2035 | Future population data under SSP2 were projected using the Population, Development, Environment (PDE) model |
Flood-Prone Site | Coordinates | Observed Water Depth (m) | Simulated Water Depth (m) | Relative Deviation (m) |
---|---|---|---|---|
1. Northeast corner of the Shengtang District | 39.01° N, 116.12° E | 0.6 | 0.36 | 0.24 |
2. Front of the Third Primary School | 39.00° N, 116.12° E | 0.5 | 0.55 | 0.05 |
3. Front of the Housing and Urban–Rural Development Bureau | 38.98° N, 116.11° E | 0.35 | 0.34 | 0.01 |
Average value | 0.48 | 0.41 | 0.1 |
Station | 5 Years | 10 Years | 50 Years | 100 Years |
---|---|---|---|---|
Rongcheng | 88.48 | 106.38 | 150.36 | 171.06 |
Anxin | 98.18 | 112.02 | 185.77 | 218.24 |
Xiong | 95.34 | 115.00 | 164.03 | 187.41 |
Xiong’an New Area | 84.86 | 102.75 | 149.26 | 172.33 |
Depth of Inundation/m | Inundated Areas/km2 | |||
---|---|---|---|---|
5 Years | 10 Years | 50 Years | 100 Years | |
0.05–0.2 | 186.9 | 253.1 | 481.1 | 531.3 |
0.2–0.6 | 18.2 | 28.0 | 73.7 | 120.2 |
>0.6 | 2.8 | 4.3 | 11.4 | 15.7 |
Total inundated areas/km2 | 207.9 | 285.4 | 566.2 | 667.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Wang, Y.; Chen, Z.; Si, L.; Liu, Q.; Jiang, T. Changes in Population Exposure to Rainstorm Waterlogging for Different Return Periods in the Xiong’an New Area, China. Water 2024, 16, 205. https://doi.org/10.3390/w16020205
Chen J, Wang Y, Chen Z, Si L, Liu Q, Jiang T. Changes in Population Exposure to Rainstorm Waterlogging for Different Return Periods in the Xiong’an New Area, China. Water. 2024; 16(2):205. https://doi.org/10.3390/w16020205
Chicago/Turabian StyleChen, Jiani, Yanjun Wang, Ziyan Chen, Lili Si, Qingying Liu, and Tong Jiang. 2024. "Changes in Population Exposure to Rainstorm Waterlogging for Different Return Periods in the Xiong’an New Area, China" Water 16, no. 2: 205. https://doi.org/10.3390/w16020205
APA StyleChen, J., Wang, Y., Chen, Z., Si, L., Liu, Q., & Jiang, T. (2024). Changes in Population Exposure to Rainstorm Waterlogging for Different Return Periods in the Xiong’an New Area, China. Water, 16(2), 205. https://doi.org/10.3390/w16020205