Water–Food Nexus System Management under Uncertainty through an Inexact Fuzzy Chance Constraint Programming Method
Abstract
:1. Introduction
2. Model Development and Solution Method
2.1. IFCCP-WFN Modeling Formulation
2.2. Solution Method for IFCCP-WFN Model
2.3. Illustrative Example
3. Case Study
3.1. Overview of the Study System
3.2. Data Collection
4. Results Analysis
4.1. Crop Cultivation Patterns under Decision Makers’ Preferences
4.2. Water Supplies under Decision Makers’ Preferences
5. Discussion
5.1. Validation of the IFCCP-WFN Model
5.2. Comparison with Other Optimization Techniques
5.3. Managerial Insights
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- United Nations. The United Nations World Water Development Report 2019: Leaving on One Behind. 2019. Available online: https://www.unwater.org/publications/un-world-water-development-report-2019 (accessed on 15 January 2023).
- Food Security Information Network (FSIN). 2021 Global Report on Food Crises: Joint Analysis for Better Decisions; Food and Agriculture Organization (FAO): Rome, Italy; World Food Programme (WFP): Rome, Italy; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2021; Available online: https://www.fsinplatform.org/global-report-food-crises-2021 (accessed on 15 January 2023).
- Huang, W.W.; Chen, X.J.; Fan, Y.R.; Li, Y.P. Management of drinking water source in rural communities under climate change. J. Environ. Inform. 2021, 39, 136–151. [Google Scholar] [CrossRef]
- Liu, Y.L.; Du, J.Z.; Wang, Q.; Yang, W.; Cui, B.S. Toward an assessment of runoff and thermal connectivity in a river-lake system within an urban environment. J. Environ. Inform. 2022, 40, 125–140. [Google Scholar] [CrossRef]
- Keskinen, M.; Guillaume, J.H.A.; Kattelus, M.; Porkka, M.; Räsänen, T.A.; Varis, O. The Water-Energy-Food Nexus and the Transboundary Context: Insights from Large Asian Rivers. Water 2016, 8, 193. [Google Scholar] [CrossRef]
- Owen, A.; Scott, K.; Barrett, J. Identifying critical supply chains and final products: An input-output approach to exploring the energy-water-food nexus. Appl. Energy 2018, 210, 632–642. [Google Scholar] [CrossRef]
- Zuo, Q.T.; Wu, Q.S.; Yu, L.; Li, Y.P.; Fan, Y.R. Optimization of uncertain agricultural management considering the framework of water, energy and food. Agric. Water Manag. 2021, 253, 106907. [Google Scholar] [CrossRef]
- Huang, K.; Dai, L.; Yu, L.; Fan, Y.R.; Huang, G.H.; Xiao, Y.; Wu, Q. Planning regional-scale water-energy-food nexus system management under uncertainty: An inexact fractional programming method. J. Contam. Hydrol. 2021, 247, 103985. [Google Scholar] [CrossRef]
- Huang, C.Z.; Nie, S.; Guo, L.; Fan, Y.R. Inexact fuzzy stochastic chance constraint programming for emergency evacuation in qinshan nuclear power plant under uncertainty. J. Environ. Inform. 2017, 30, 63–78. [Google Scholar] [CrossRef]
- Yu, L.; Li, Q.W.; Jin, S.W.; Chen, C.; Li, Y.P.; Fan, Y.R.; Zuo, Q.T. Coupling the two-level programming and copula for optimizing energy-water nexus system management—A case study of Henan Province. J. Hydrol. 2020, 586, 124832. [Google Scholar] [CrossRef]
- Yu, L.; Xiao, Y.; Jiang, S.; Li, Y.P.; Fan, Y.R.; Huang, G.H.; Lv, J.; Zuo, Q.T.; Wang, F.Q. A copula-based fuzzy interval-random programming approach for planning water-energy nexus system under uncertainty. Energy 2020, 196, 117063. [Google Scholar] [CrossRef]
- Xiao, Z.; Du, J.Y.; Guo, Y.; Li, X.; Guo, L. Time variant interval linear programming for environmental management systems. J. Environ. Inform. 2022, 39, 22–34. [Google Scholar] [CrossRef]
- Zhang, X.; Vesselinov, V.V. Integrated modeling approach for optimal management of water, energy and food security nexus. Adv. Water Resour. 2017, 101, 1–10. [Google Scholar] [CrossRef]
- Salmoral, G.; Yan, X.Y. Food-energy-water nexus: A life cycle analysis on virtual water and embodied energy in food consumption in the Tamar catchment, UK. Resources. Conserv. Recycl. 2018, 133, 320–330. [Google Scholar] [CrossRef]
- Mortada, S.; Najm, M.A.; Yassine, A.; El Fadel, M.; Alamiddine, I. Towards sustainable water-food nexus: An optimization approach. J. Clean. Prod. 2018, 178, 408–418. [Google Scholar] [CrossRef]
- Govindan, R.; Al-Ansari, T. Computational decision framework for enhancing resilience of the energy, water and food nexus in risky environments. Renew. Sustain. Energy Rev. 2019, 112, 653–668. [Google Scholar] [CrossRef]
- Núñez-López, J.M.; Rubio-Castro, E.; Ponce-Ortega, J.M. Optimizing resilience at water-energy-food nexus. Comput. Chem. Eng. 2022, 160, 107710. [Google Scholar] [CrossRef]
- Sun, J.; Li, Y.P.; Suo, S.; Liu, Y.R. Impacts of irrigation efficiency on agricultural water-land nexus system management under multiple uncertainties—A case study in Amu Darya River basin, Central Asia. Agric. Water Manag. 2019, 216, 76–88. [Google Scholar] [CrossRef]
- Li, M.; Fu, Q.; Singh, V.P.; Ji, Y.; Liu, D.; Zhang, C.; Li, T. An optimal modelling approach for managing agricultural water-energy-food nexus under uncertainty. Sci. Total Environ. 2019, 651, 1416–1434. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Zhang, B.; Huang, G.; Lu, Y. Multi-stage stochastic fuzzy random programming for food-water-energy nexus management under uncertainties. Resources. Conserv. Recycl. 2020, 155, 104665. [Google Scholar] [CrossRef]
- Gu, J.J.; Guo, P.; Huang, G.H. Inexact stochastic dynamic programming method and application to water resources management in Shandong China under uncertainty. Stoch. Environ. Res. Risk Assess. 2013, 27, 1207–1219. [Google Scholar] [CrossRef]
- Xu, Y.; Tan, J.; Wang, X.; Li, W.; He, X.; Hu, X.; Fan, Y. Synergetic management of water-energy-food nexus system and GHG emissions under multiple uncertainties: An inexact fractional fuzzy chance constraint programming method. Agric. Water Manag. 2021, 262, 107323. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y.; Xu, Y.; Zheng, L.; Fan, Y. A factorial inexact copula stochastic programming (FICSP) approach for water-energy- food nexus system management. Agric. Water Manag. 2023, 277, 108069. [Google Scholar] [CrossRef]
- Huang, K.; Huang, G.; Dai, L.; Fan, Y. Inexact fuzzy integer chance constraint programming approach for noise control within an urban environment. Eng. Optim. 2016, 48, 1350–1364. [Google Scholar] [CrossRef]
- Fan, Y.R.; Huang, G.H.; Li, Y.P. Robust interval linear programming for environmental decision making under uncertainty. Eng. Optim. 2012, 44, 1321–1336. [Google Scholar] [CrossRef]
- Fan, Y.; Huang, G.; Veawab, A. A generalized fuzzy linear programming approach for environmental management problem under uncertainty. J. Air Waste Manag. Assoc. 2012, 62, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wang, H.; Yu, L.; Li, Y.; Fan, Y.; Zhang, J.; Zhang, J. Multi-preference based interval fuzzy-credibility optimization for planning the management of multiple water resources with multiple water-receiving cities under uncertainty. J. Hydrol. 2020, 591, 125259. [Google Scholar] [CrossRef]
- Zhang, T.; Tan, Q.; Zhang, S.; Wang, S.; Gou, T. A robust multi-objective model for supporting agricultural water management with uncertain preferences. J. Clean. Prod. 2020, 255, 120204. [Google Scholar] [CrossRef]
- Ammar, E.E. On solutions of fuzzy random multiobjective quadratic programming with applications in portfolio problem. Inf. Sci. 2008, 178, 468–484. [Google Scholar] [CrossRef]
- Pérez-Cañedo, B.; Verdegay, J.L.; Miranda Pérez, R. An epsilon-constraint method for fully fuzzy multiobjective linear programming. Int. J. Intell. Syst. 2020, 35, 600–624. [Google Scholar] [CrossRef]
- Inuiguchi, M.; Ramik, J. Possibilistic Linear Programming: A Brief Review of Fuzzy Mathematical Programming and a Comparison with Stochastic Programming in Portfolio Selection Problem. Fuzzy Sets Syst. 2000, 111, 3–28. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, X.; Li, S. A Class of Chance Constrained Multi-objective Portfolio Selection Model Under Fuzzy Random Environment. J. Optim. Theory Appl. 2011, 150, 530–552. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. The mean value of a fuzzy number. Fuzzy Sets Syst. 1987, 24, 279–300. [Google Scholar] [CrossRef]
- Maity, K. Possibility and necessity representations of fuzzy inequality and its application to two warehouse production-inventory problem. Appl. Math. Model. 2011, 35, 1252–1263. [Google Scholar] [CrossRef]
- Maity, K.; Maiti, M. Possibility and necessity constraints and their defuzzification—A multi-item production-inventory scenario via optimal control theory. Eur. J. Oper. Res. 2007, 177, 882–896. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, G.H.; Cheng, G.H.; Liu, Y.; Li, Y.F. A Two-Stage Fuzzy Chance-Constrained Model for Solid Waste Allocation Planning. J. Environ. Inform. 2014, 24, 101–110. [Google Scholar] [CrossRef]
- Liu, F.; Wen, Z.; Xu, Y. A Fuzzy Fractional Chance-Constrained Programming Model for Air Quality Management Under Uncertainty. Eng. Optim. 2016, 48, 135–153. [Google Scholar] [CrossRef]
- Shandong Water Resources Department. Shandong Province Water Resources Bulletin. 2019. Available online: https://wr.shandong.gov.cn/zwgk_319/fdzdgknr/tjsj/szygb/ (accessed on 20 September 2022).
- Jinan Municipal Bureau of Statistics. Jinan Statistic Yearbook-2020. 2020. Available online: https://jntj.jinan.gov.cn/col/col27523/index.html (accessed on 20 September 2022).
- National Development and Reform Commission. Cost-Benefit Yearbook for Agricultural Products-2018. 2018. Available online: http://www.tjcn.org/tjnj/QQQ/37615.html (accessed on 20 September 2022).
- National Development and Reform Commission. Cost-Benefit Yearbook for Agricultural Products-2019. 2019. Available online: http://www.tjcn.org/tjnj/QQQ/38270.html (accessed on 20 September 2022).
- Li, C.; Luo, T.; Yan, G.; Xu, S.; Zong, J.; Shao, Y. Carbon footprint analysis of wheat-maize double cropping system in different ecological regions of Henan province. Ecol. Environ. Sci. 2020, 29, 918–925. (In Chinese) [Google Scholar]
- Ministry of Agriculture and Rural Affairs (MARA). China Agricultural Outlook (2020–2029). 2020. Available online: https://www.agri-outlook.cn/portal/article/index/id/1376 (accessed on 1 October 2022).
- Fan, Y.R.; Huang, G.H.; Li, Y.P.; Cao, M.F.; Cheng, G.H. A fuzzy linear programming approach for municipal solid-waste management under uncertainty. Eng. Opt. 2009, 41, 1081–1101. [Google Scholar] [CrossRef]
- Cheng, Y.; Jin, L.; Fu, H.; Fan, Y.; Bai, R.; Wei, Y. Investigating the impact of climate change and policy orientation on energy–carbon–water nexus under multi-criteria analysis. Renew. Sustain. Energy Rev. 2024, 189 Pt B, 114032. [Google Scholar] [CrossRef]
- Pietrucha-Urbanik, K.; Rak, J. Water, Resources, and Resilience: Insights from Diverse Environmental Studies. Water 2023, 15, 3965. [Google Scholar] [CrossRef]
α Level | Submodels | Solutions |
---|---|---|
α = 0.3 | Submodel 1: subject to Submodel 2: subject to | = [2.43, 8.15] = [0.96, 0.96] = [7.98, 36.95] |
α = 0.5 s | Submodel 1: subject to Submodel 2: subject to | = [2.40, 6.45] = [0.93, 0.93] = [7.85, 29.06] |
t = 1 | t = 2 | t = 3 | t = 4 | t = 5 | |
---|---|---|---|---|---|
Unit weight of different crops (kg∙ha−1) | |||||
Wheat | [5696, 6182] | [5696, 6182] | [5696, 6182] | [5696, 6182] | [5696, 6182] |
Corn | [5748, 6452] | [5748, 6452] | [5748, 6452] | [5748, 6452] | [5748, 6452] |
Vegetables | [65,475, 66,918] | [65,475, 66,918] | [65,475, 66,918] | [65,475, 66,918] | [65,475, 66,918] |
Unit price of different crop products (CNY∙kg−1) | |||||
Wheat | [2.52, 2.57] | [2.57, 2.62] | [2.62, 2.67] | [2.67, 2.73] | [2.73, 2.78] |
Corn | [1.73, 1.89] | [1.76, 1.93] | [1.80, 1.97] | [1.83, 2.01] | [1.87, 2.05] |
Vegetables | [1.75, 1.80] | [1.78, 1.84] | [1.82, 1.87] | [1.85, 1.91] | [1.89, 1.95] |
The amount of fertilizer utilization per unit area for crops (kg∙ha−1) | |||||
Wheat | [425, 470] | [404, 447] | [384, 424] | [365, 403] | [346, 383] |
Corn | [375, 415] | [356, 394] | [339, 374] | [322, 356] | [306, 338] |
Vegetables | [640, 687] | [608, 652] | [577, 620] | [548, 589] | [521, 559] |
The unit price of fertilizer (CNY∙kg−1) | |||||
[5.34, 5.79] | [5.45, 5.90] | [5.56, 6.02] | [5.67, 6.14] | [5.78, 6.26] | |
The amount of pesticide utilization per unit area for different crops (kg∙ha−1) | |||||
Wheat | [9, 10.05] | [8.55, 9.55] | [8.12, 9.07] | [7.72, 8.62] | [7.33, 8.19] |
Corn | [10.83, 11.37] | [10.29, 10.80] | [9.77, 10.26] | [9.28, 9.75] | [8.82, 9.26] |
Vegetables | [37.84, 39.73] | [35.95, 37.75] | [34.15, 35.86] | [32.44, 34.07] | [30.82, 32.36] |
The unit price of the pesticide (CNY∙kg−1) | |||||
[30.47, 31.99] | [31.08, 32.63] | [31.70, 33.28] | [32.33, 33.95] | [32.98, 34.63] | |
Irrigation quota for different crops (m3∙ha−1) | |||||
Wheat | [3300, 3675] | [3300, 3675] | [3300, 3675] | [3300, 3675] | [3300, 3675] |
Corn | [1155, 1545] | [1155, 1545] | [1155, 1545] | [1155, 1545] | [1155, 1545] |
Vegetables | [2400, 3075] | [2400, 3075] | [2400, 3075] | [2400, 3075] | [2400, 3075] |
Minimum sown areas for different crops (105 ha) | |||||
Wheat | [1.68, 1.89] | [1.68, 1.89] | [1.68, 1.89] | [1.68, 1.89] | [1.68, 1.89] |
Corn | [1.51, 1.69] | [1.51, 1.69] | [1.51, 1.69] | [1.51, 1.69] | [1.51, 1.69] |
Vegetables | [0.64, 0.72] | [0.64, 0.72] | [0.64, 0.72] | [0.64, 0.72] | [0.64, 0.72] |
Maximum sown areas for different crops (105 ha) | |||||
Wheat | [2.20, 2.64] | [2.20, 2.64] | [2.20, 2.64] | [2.20, 2.64] | [2.20, 2.64] |
Corn | [2.32, 2.78] | [2.32, 2.78] | [2.32, 2.78] | [2.32, 2.78] | [2.32, 2.78] |
Vegetables | [1.0, 1.2] | [1.0, 1.2] | [1.0, 1.2] | [1.0, 1.2] | [1.0, 1.2] |
The total available arable land (105 ha) | |||||
[5.356, 5.540] | [5.356, 5.540] | [5.356, 5.540] | [5.356, 5.540] | [5.356, 5.540] |
t = 1 | t = 2 | t = 3 | t = 4 | t = 5 | |
---|---|---|---|---|---|
The cost of water supply from different water resources (CNY∙m−3) | |||||
Groundwater | [0.116, 0.129] | [0.129, 0.143] | [0.144, 0.159] | [0.160, 0.176] | [0.177, 0.196] |
Surface water | [0.087, 0.096] | [0.094, 0.104] | [0.102, 0.113] | [0.110, 0.122] | [0.119, 0.132] |
Recycle water | [0.089, 0.098] | [0.083, 0.092] | [0.078, 0.086] | [0.073, 0.081] | [0.068, 0.076] |
Water treatment costs (CNY∙m−3) | |||||
Groundwater | [0.034, 0.037] | [0.038, 0.042] | [0.043, 0.047] | [0.047, 0.052] | [0.052, 0.058] |
Surface water | [0.027, 0.030] | [0.031, 0.034] | [0.035, 0.039] | [0.040, 0.044] | [0.046, 0.051] |
Recycle water | [0.018, 0.020] | [0.020, 0.022] | [0.022, 0.024] | [0.024, 0.027] | [0.026, 0.029] |
Water availability from different sources (108 m3) | |||||
Groundwater | [3.037, 3.167] | [2.905, 3.029] | [2.773, 2.892] | [2.641, 2.754] | [2.510, 2.617] |
Surface water | [5.023, 5.238] | [4.945, 5.156] | [4.868, 5.075] | [4.790, 4.994] | [4.712, 4.913] |
Recycle water | [1.213, 1.265] | [1.387, 1.447] | [1.583, 1.650] | [1.804, 1.881] | [2.047, 2.134] |
Time Period | Food (Wheat and Corn) (kg∙Person−1) | Vegetables |
---|---|---|
t = 1 | [285, 315] | [372, 411] |
t = 2 | [291, 322] | [379, 419] |
t = 3 | [294, 325] | [385, 426] |
t = 4 | [298, 330] | [391, 432] |
t = 5 | [301, 332] | [396, 438] |
Time Period | Local Population (106) | Food Loss Rate | Vegetable Loss Rate | Irrigation Reliability |
---|---|---|---|---|
t = 1 | (8.80, 8.98, 9.16) | (0.03, 0.035, 0.04) | (0.28, 0.30, 0.32) | (0.5, 0.625, 0.7) |
t = 2 | (8.87, 9.05, 9.23) | (0.03, 0.035, 0.04) | (0.28, 0.30, 0.32) | (0.5, 0.625, 0.7) |
t = 3 | (8.94, 9.12, 9.30) | (0.03, 0.035, 0.04) | (0.28, 0.30, 0.32) | (0.5, 0.625, 0.7) |
t = 4 | (9.01, 9.19, 9.37) | (0.03, 0.035, 0.04) | (0.28, 0.30, 0.32) | (0.5, 0.625, 0.7) |
t = 5 | (9.08, 9.26, 9.45) | (0.03, 0.035, 0.04) | (0.28, 0.30, 0.32) | (0.5, 0.625, 0.7) |
Wheat | Corn | Vegetables | |
---|---|---|---|
α = 0.2 | |||
t = 1 | 2.093 | 2.26 | [1.003, 1.188] |
t = 2 | 2.067 | 2.285 | [1.003, 1.188] |
t = 3 | 2.057 | 2.296 | [1.003, 1.188] |
t = 4 | 2.065 | 2.288 | [1.003, 1.188] |
t = 5 | 2.089 | 2.264 | [1.003, 1.188] |
α = 0.5 | |||
t = 1 | [1.857, 2.019] | 2.318 | [1.003, 1.204] |
t = 2 | [1.843, 2.019] | 2.318 | [1.003, 1.204] |
t = 3 | [1.837, 2.019] | 2.318 | [1.003, 1.204] |
t = 4 | [1.841, 2.019] | 2.318 | [1.003, 1.204] |
t = 5 | [1.855, 2.019] | 2.318 | [1.003, 1.204] |
α = 0.8 | |||
t =1 | [1.679, 2.048] | 2.289 | [1.003, 1.204] |
t = 2 | [1.679, 2.080] | 2.257 | [1.003, 1.204] |
t = 3 | [1.679, 2.093] | 2.244 | [1.003, 1.204] |
t = 4 | [1.679, 2.082] | 2.254 | [1.003, 1.204] |
t = 5 | [1.679, 2.042] | 2.295 | [0.997, 1.204] |
Groundwater | Surface Water | Recycled Water | |
---|---|---|---|
α = 0.2 | |||
t = 1 | [0.256, 3.037] | 5.023 | 1.213 |
t = 2 | [0.131, 2.905] | 4.945 | 1.387 |
t = 3 | [0, 2.773] | 4.868 | 1.583 |
t = 4 | [0, 2.641] | [4.657, 4.790] | 1.804 |
t = 5 | [0, 2.510] | [4.442, 4.712] | 2.047 |
α = 0.5 | |||
t =1 | [0.642, 3.037] | 5.023 | 1.213 |
t = 2 | [0.545, 2.905] | 4.945 | 1.387 |
t = 3 | [0.428, 2.773] | 4.868 | 1.583 |
t = 4 | [0.284, 2.641] | 4.79 | 1.804 |
t = 5 | [0.120, 2.510] | 4.712 | 2.047 |
α = 0.8 | |||
t =1 | [1.138, 3.037] | 5.023 | 1.213 |
t = 2 | [1.083, 2.905] | 4.945 | 1.387 |
t = 3 | [0.982, 2.773] | 4.868 | 1.583 |
t = 4 | [0.825, 2.641] | 4.79 | 1.804 |
t = 5 | [0.608, 2.510] | 4.712 | 2.047 |
t = 1 | t = 2 | t = 3 | t = 4 | t = 5 | |
---|---|---|---|---|---|
Crop sown area SA(t, v) (105 ha) | |||||
Wheat | [1.89, 2.55] | [1.89, 2.48] | [1.89, 2.41] | [1.89, 2.33] | [1.89, 2.27] |
Corn | 1.78 | 1.86 | 1.92 | 2.01 | 2.07 |
Vegetables | [0.87, 1.20] | [0.81, 1.20] | [0.78, 1.20] | [0.74, 1.20] | [0.72, 1.20] |
Water allocation scheme WS(t, i) (108 m3) | |||||
Groundwater | [0.45, 3.04] | [0.27, 2.91] | [0.09, 2.77] | [0, 2.64] | [0, 2.51] |
Surface water | 5.02 | 4.95 | 4.87 | 4.79 | 4.34 |
Recycled water | 1.21 | 1.39 | 1.58 | 1.8 | 2.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Li, W.; Wang, X.; Zhang, Y.; Ding, Z.; Xu, Y. Water–Food Nexus System Management under Uncertainty through an Inexact Fuzzy Chance Constraint Programming Method. Water 2024, 16, 227. https://doi.org/10.3390/w16020227
Liu F, Li W, Wang X, Zhang Y, Ding Z, Xu Y. Water–Food Nexus System Management under Uncertainty through an Inexact Fuzzy Chance Constraint Programming Method. Water. 2024; 16(2):227. https://doi.org/10.3390/w16020227
Chicago/Turabian StyleLiu, Fengping, Wei Li, Xu Wang, Yankun Zhang, Zhenyu Ding, and Ye Xu. 2024. "Water–Food Nexus System Management under Uncertainty through an Inexact Fuzzy Chance Constraint Programming Method" Water 16, no. 2: 227. https://doi.org/10.3390/w16020227
APA StyleLiu, F., Li, W., Wang, X., Zhang, Y., Ding, Z., & Xu, Y. (2024). Water–Food Nexus System Management under Uncertainty through an Inexact Fuzzy Chance Constraint Programming Method. Water, 16(2), 227. https://doi.org/10.3390/w16020227