A Review of AI-Driven Control Strategies in the Activated Sludge Process with Emphasis on Aeration Control
Abstract
:1. Introduction
2. Oxygen Demand in the Biological Treatment Process
- = rate of oxygen transfer (g.O2/h);
- D = diffusion coefficient (m2/h);
- A = interfacial contact area between the gaseous and liquid phase (m2);
- = oxygen concentration gradient (g/m4).
- Cs = dissolved oxygen concentration at the gas–liquid film interface (g.O2/m3);
- C = dissolved oxygen concentration in bulk liquid volume (g.O2/m3);
- KLa = transfer coefficient (1/h).
2.1. Surface-Active Agents
2.2. Wastewater Salinity
3. Aeration Control
3.1. Control Implementation Platforms
3.2. Conventional Control Strategy
3.2.1. The On–Off Control
3.2.2. PID Control
- is the error;
- = proportional gain;
- = integral gain;
- = derivative gain.
3.3. Control Structures
3.3.1. DO Cascade Control
3.3.2. Ammonia-Based Aeration Control (ABAC)
3.4. Artificial Intelligence (AI) Control Strategy—Advanced Control
3.4.1. Fuzzy Logic Control (FLC) Strategy
3.4.2. Artificial Neural Network (ANN) Control Strategy
3.4.3. Genetic Algorithm (GA) Control Strategy
3.4.4. AI-Driven Model Predictive Control (MPC)
3.4.5. Machine Learning and Data Mining (ML-DM) Control and Optimization
3.4.6. Real WWTP Implementation of AI Control
3.4.7. Potential Disadvantages of Implementing AI Control in WWTPs
4. Discussion and Research Gaps
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Salgot, M.; Folch, M. Wastewater treatment and water reuse. Curr. Opin. Environ. Sci. Health 2018, 2, 64–74. [Google Scholar] [CrossRef]
- He, Y.; Zhu, Y.; Chen, J.; Huang, M.; Wang, P.; Wang, G.; Zou, W.; Zhou, G. Assessment of energy consumption of municipal wastewater treatment plants in China. J. Clean. Prod. 2019, 228, 399–404. [Google Scholar] [CrossRef]
- Gandiglio, M.; Lanzini, A.; Soto, A.; Leone, P.; Santarelli, M. Enhancing the Energy Efficiency of Wastewater Treatment Plants through Co-digestion and Fuel Cell Systems. Front. Environ. Sci. 2017, 5, 70. [Google Scholar] [CrossRef]
- Kamimura, H.; Kubo, T.; Minami, I.; Mori, S. Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement. Appl. Energy 2016, 179, 1251–1268. [Google Scholar] [CrossRef]
- Skouteris, G.; Rodriguez-Garcia, G.; Reinecke, S.F.; Hampel, U. The use of pure oxygen for aeration in aerobic wastewater treatment: A review of its potential and limitations. Bioresour. Technol. 2020, 312, 123595. [Google Scholar] [CrossRef]
- Statistics Canada. Household Energy Consumption, Canada and Provinces. Statistics Canada, Environment and Energy Statistics Division. Available online: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=2510006001 (accessed on 23 August 2022).
- Martín-Pozo, L.; del Carmen Gómez-Regalado, M.; García-Córcoles, M.T.; Zafra-Gómez, A. Removal of quinolone antibiotics from wastewaters and sewage sludge. In Emerging Contaminants in the Environment; Elsevier: Amsterdam, The Netherlands, 2022; pp. 381–406. [Google Scholar] [CrossRef]
- Pittoors, E.; Guo, Y.; Van Hulle, S.W.H. Modeling dissolved oxygen concentration for optimizing aeration systems and reducing oxygen consumption in activated sludge processes: A review. Chem. Eng. Commun. 2014, 201, 983–1002. [Google Scholar] [CrossRef]
- Hanna, S.M.; Thompson, M.J.; Dahab, M.F.; Williams, R.E.; Dvorak, B.I. Benchmarking the Energy Intensity of Small Water Resource Recovery Facilities. Water Environ. Res. 2018, 90, 738–747. [Google Scholar] [CrossRef]
- Åmand, L.; Olsson, G.; Carlsson, B. Aeration control—A review. Water Sci. Technol. 2013, 67, 2374–2398. [Google Scholar] [CrossRef]
- Gzar, H.A.; Al-Rekabi, W.S.; Shuhaieb, Z.K. Application of Moving Bed Biofilm Reactor (MBBR) for Treatment of Industrial Wastewater: A mini Review. J. Phys. Conf. Ser. 2021, 1973, 012024. [Google Scholar] [CrossRef]
- Saidulu, D.; Majumder, A.; Gupta, A.K. A systematic review of moving bed biofilm reactor, membrane bioreactor, and moving bed membrane bioreactor for wastewater treatment: Comparison of research trends, removal mechanisms, and performance. J. Environ. Chem. Eng. 2021, 9, 106112. [Google Scholar] [CrossRef]
- Nowak, O.; Enderle, P.; Varbanov, P. Ways to optimize the energy balance of municipal wastewater systems: Lessons learned from Austrian applications. J. Clean. Prod. 2015, 88, 125–131. [Google Scholar] [CrossRef]
- Piotrowski, R.; Sawicki, H.; Żuk, K. Novel hierarchical nonlinear control algorithm to improve dissolved oxygen control in biological WWTP. J. Process Control 2021, 105, 78–87. [Google Scholar] [CrossRef]
- Drewnowski, J.; Remiszewska-Skwarek, A.; Duda, S.; Łagód, G. Aeration Process in Bioreactors as the Main Energy Consumer in a Wastewater Treatment Plant. Review of Solutions and Methods of Process Optimization. Processes 2019, 7, 311. [Google Scholar] [CrossRef]
- Dick, S. Artificial Intelligence. Harv. Data Sci. Rev. 2019, 1. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, T.; Qiao, Z.; Sun, P.; Hao, J.; Yang, Y. Application of artificial intelligence to wastewater treatment: A bibliometric analysis and systematic review of technology, economy, management, and wastewater reuse. Process Saf. Environ. Prot. 2020, 133, 169–182. [Google Scholar] [CrossRef]
- Henze, M.; Gujer, W.; Mino, T.; van Loosedrecht, M. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. Water Intell. Online 2006, 5, 9781780402369. [Google Scholar] [CrossRef]
- Harja, G.; Nascu, I.; Muresan, C.; Nascu, I. Improvements in Dissolved Oxygen Control of an Activated Sludge Wastewater Treatment Process. Circuits Syst. Signal Process 2016, 35, 2259–2281. [Google Scholar] [CrossRef]
- Olsson, G.; Newell, B. Wastewater Treatment Systems: Modelling, Diagnosis and Control. Water Intell. Online 2005, 4, 9781780402864. [Google Scholar] [CrossRef]
- Baquero-Rodríguez, G.A.; Lara-Borrero, J.A.; Nolasco, D.; Rosso, D. A Critical Review of the Factors Affecting Modeling Oxygen Transfer by Fine-Pore Diffusers in Activated Sludge. Water Environ. Res. 2018, 90, 431–441. [Google Scholar] [CrossRef]
- Šteflová, M.; Koop, S.; Elelman, R.; Vinyoles, J.; Van Leeuwen, C. Governing Non-Potable Water-Reuse to Alleviate Water Stress: The Case of Sabadell, Spain. Water 2018, 10, 739. [Google Scholar] [CrossRef]
- Wu, Q.; Zhao, L.; Song, R.; Ma, A. Research progress of surfactant biodegradation. IOP Conf. Ser. Earth Environ. Sci. 2019, 227, 052023. [Google Scholar] [CrossRef]
- Nekoeian, S.; Aghajani, M.; Alavi, S.M.; Sotoudeh, F. Effect of surfactants on mass transfer coefficients in bubble column contactors: An interpretative critical review study. Rev. Chem. Eng. 2021, 37, 585–617. [Google Scholar] [CrossRef]
- He, H.; Chen, Y.; Li, X.; Cheng, Y.; Yang, C.; Zeng, G. Influence of salinity on microorganisms in activated sludge processes: A review. Int. Biodeterior. Biodegrad. 2017, 119, 520–527. [Google Scholar] [CrossRef]
- Zhao, Y.; Park, H.-D.; Park, J.-H.; Zhang, F.; Chen, C.; Li, X.; Zhao, D.; Zhao, F. Effect of different salinity adaptation on the performance and microbial community in a sequencing batch reactor. Bioresour. Technol. 2016, 216, 808–816. [Google Scholar] [CrossRef]
- Bassin, J.P.; Kleerebezem, R.; Muyzer, G.; Rosado, A.S.; van Loosdrecht, M.C.M.; Dezotti, M. Effect of different salt adaptation strategies on the microbial diversity, activity, and settling of nitrifying sludge in sequencing batch reactors. Appl. Microbiol. Biotechnol. 2012, 93, 1281–1294. [Google Scholar] [CrossRef]
- García-Ruiz, M.J.; Castellano-Hinojosa, A.; González-López, J.; Osorio, F. Effects of salinity on the nitrogen removal efficiency and bacterial community structure in fixed-bed biofilm CANON bioreactors. Chem. Eng. J. 2018, 347, 156–164. [Google Scholar] [CrossRef]
- Belchior, C.A.C.; Araújo, R.A.M.; Landeck, J.A.C. Dissolved oxygen control of the activated sludge wastewater treatment process using stable adaptive fuzzy control. Comput. Chem. Eng. 2012, 37, 152–162. [Google Scholar] [CrossRef]
- Maktabifard, M.; Zaborowska, E.; Makinia, J. Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable energy production. Rev. Environ. Sci. Biotechnol. 2018, 17, 655–689. [Google Scholar] [CrossRef]
- Rieger, L.; Jones, R.M.; Dold, P.L.; Bott, C.B. Ammonia-Based Feedforward and Feedback Aeration Control in Activated Sludge Processes. Water Environ. Res. 2014, 86, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.E. Control Components. In Aeration Control System Design; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 309–332. [Google Scholar] [CrossRef]
- Nascu, I. Hierarchical predictive control of Wastewater Treatment Plants. MATEC Web Conf. 2018, 210, 02002. [Google Scholar] [CrossRef]
- Larasati, S.; Hamidi, E.; Effendi, M. Design and Implementation Supervisory Control and Data Acquisition (SCADA) of Filtration Process of Water Treatment Plant (WTP) by Using Raspberry PI. In Proceedings of the 1st International Conference on Islam, Science and Technology, ICONISTECH 2019, Bandung, Indonesia, 11–12 July 2019. [Google Scholar] [CrossRef]
- Bertanza, G.; Menoni, L.; Baroni, P. Energy saving for air supply in a real WWTP: Application of a fuzzy logic controller. Water Sci. Technol. 2020, 81, 1552–1557. [Google Scholar] [CrossRef] [PubMed]
- Iratni, A.; Chang, N.-B. Advances in control technologies for wastewater treatment processes: Status, challenges, and perspectives. IEEE/CAA J. Autom. Sin. 2019, 6, 337–363. [Google Scholar] [CrossRef]
- Revollar, S.; Vilanova, R.; Vega, P.; Francisco, M.; Meneses, M. Wastewater Treatment Plant Operation: Simple Control Schemes with a Holistic Perspective. Sustainability 2020, 12, 768. [Google Scholar] [CrossRef]
- Regmi, P.; Bunce, R.; Miller, M.W.; Park, H.; Chandran, K.; Wett, B.; Murthy, S.; Bott, C.B. Ammonia-based intermittent aeration control optimized for efficient nitrogen removal. Biotechnol. Bioeng. 2015, 112, 2060–2067. [Google Scholar] [CrossRef]
- Bernardelli, A.; Marsili-Libelli, S.; Manzini, A.; Stancari, S.; Tardini, G.; Montanari, D.; Anceschi, G.; Gelli, P.; Venier, S. Real-time model predictive control of a wastewater treatment plant based on machine learning. Water Sci. Technol. 2020, 81, 2391–2400. [Google Scholar] [CrossRef] [PubMed]
- Nourani, V.; Asghari, P.; Sharghi, E. Artificial intelligence based ensemble modeling of wastewater treatment plant using jittered data. J. Clean. Prod. 2021, 291, 125772. [Google Scholar] [CrossRef]
- Santín, I.; Barbu, M.; Pedret, C.; Vilanova, R. Fuzzy logic for plant-wide control of biological wastewater treatment process including greenhouse gas emissions. ISA Trans. 2018, 77, 146–166. [Google Scholar] [CrossRef] [PubMed]
- Boiocchi, R.; Gernaey, K.V.; Sin, G. Control of wastewater N2O emissions by balancing the microbial communities using a fuzzy-logic approach. IFAC-Pap. 2016, 49, 1157–1162. [Google Scholar] [CrossRef]
- Yelagandula, S.; Ginuga, P.R. Control of a Waste Water Treatment Plant Using Fuzzy Logic Controller. J. Inst. Eng. India Ser. E 2022, 103, 167–177. [Google Scholar] [CrossRef]
- Kumar, S.S.; Latha, K. A supervisory fuzzy logic control scheme to improve effluent quality of a wastewater treatment plant. Water Sci. Technol. 2021, 84, 3415–3424. [Google Scholar] [CrossRef]
- Qiao, J.-F.; Hou, Y.; Zhang, L.; Han, H.-G. Adaptive fuzzy neural network control of wastewater treatment process with multiobjective operation. Neurocomputing 2018, 275, 383–393. [Google Scholar] [CrossRef]
- Liu, H.; Huang, M.; Yoo, C. A fuzzy neural network-based soft sensor for modeling nutrient removal mechanism in a full-scale wastewater treatment system. Desalination Water Treat. 2013, 51, 6184–6193. [Google Scholar] [CrossRef]
- Nadiri, A.A.; Shokri, S.; Tsai, F.T.-C.; Moghaddam, A.A. Prediction of effluent quality parameters of a wastewater treatment plant using a supervised committee fuzzy logic model. J. Clean. Prod. 2018, 180, 539–549. [Google Scholar] [CrossRef]
- Araromi, D.O.; Majekodunmi, O.T.; Adeniran, J.A.; Salawudeen, T.O. Modeling of an activated sludge process for effluent prediction—A comparative study using ANFIS and GLM regression. Environ. Monit. Assess. 2018, 190, 495. [Google Scholar] [CrossRef]
- Corominas, L.; Garrido-Baserba, M.; Villez, K.; Olsson, G.; Cortés, U.; Poch, M. Transforming data into knowledge for improved wastewater treatment operation: A critical review of techniques. Environ. Model. Softw. 2018, 106, 89–103. [Google Scholar] [CrossRef]
- Han, H.-G.; Yang, F.-F.; Yang, H.-Y.; Wu, X.-L. Type-2 fuzzy broad learning controller for wastewater treatment process. Neurocomputing 2021, 459, 188–200. [Google Scholar] [CrossRef]
- Yang, T.; Qiu, W.; Ma, Y.; Chadli, M.; Zhang, L. Fuzzy model-based predictive control of dissolved oxygen in activated sludge processes. Neurocomputing 2014, 136, 88–95. [Google Scholar] [CrossRef]
- Chiavola, A.; Romano, R.; Bongirolami, S.; Giulioli, S. Optimization of Energy Consumption in the Biological Reactor of a Wastewater Treatment Plant by Means of Oxy Fuzzy and ORP Control. Water Air Soil. Pollut. 2017, 228, 277. [Google Scholar] [CrossRef]
- Li, M.; Hu, S.; Xia, J.; Wang, J.; Song, X.; Shen, H. Dissolved Oxygen Model Predictive Control for Activated Sludge Process Model Based on the Fuzzy C-means Cluster Algorithm. Int. J. Control Autom. Syst. 2020, 18, 2435–2444. [Google Scholar] [CrossRef]
- Santín, I.; Vilanova, R.; Pedret, C.; Barbu, M. New approach for regulation of the internal recirculation flow rate by fuzzy logic in biological wastewater treatments. ISA Trans. 2022, 120, 167–189. [Google Scholar] [CrossRef]
- Han, H.-G.; Zhang, L.; Liu, H.-X.; Qiao, J.-F. Multiobjective design of fuzzy neural network controller for wastewater treatment process. Appl. Soft Comput. 2018, 67, 467–478. [Google Scholar] [CrossRef]
- Han, H.; Liu, H.; Li, J.; Qiao, J. Cooperative Fuzzy-Neural Control for Wastewater Treatment Process. IEEE Trans. Ind. Inform. 2021, 17, 5971–5981. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Shoib, R.S.N.S.B.R.; Faizi, K.; Rashid, A.S.A. Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles. Neural Comput. Appl. 2017, 28, 391–405. [Google Scholar] [CrossRef]
- Cao, W.; Yang, Q. Online sequential extreme learning machine based adaptive control for wastewater treatment plant. Neurocomputing 2020, 408, 169–175. [Google Scholar] [CrossRef]
- Zaghloul, M.S.; Achari, G. Application of machine learning techniques to model a full-scale wastewater treatment plant with biological nutrient removal. J. Environ. Chem. Eng. 2022, 10, 107430. [Google Scholar] [CrossRef]
- Bagheri, M.; Mirbagheri, S.A.; Bagheri, Z.; Kamarkhani, A.M. Modeling and optimization of activated sludge bulking for a real wastewater treatment plant using hybrid artificial neural networks-genetic algorithm approach. Process Saf. Environ. Prot. 2015, 95, 12–25. [Google Scholar] [CrossRef]
- Santín, I.; Pedret, C.; Vilanova, R.; Meneses, M. Advanced decision control system for effluent violations removal in wastewater treatment plants. Control Eng. Pract. 2016, 49, 60–75. [Google Scholar] [CrossRef]
- Pisa, I.; Morell, A.; Vicario, J.L.; Vilanova, R. Denoising Autoencoders and LSTM-Based Artificial Neural Networks Data Processing for Its Application to Internal Model Control in Industrial Environments—The Wastewater Treatment Plant Control Case. Sensors 2020, 20, 3743. [Google Scholar] [CrossRef]
- Pisa, I.; Morell, A.; Vicario, J.L.; Vilanova, R. ANN-based Internal Model Control strategy applied in the WWTP industry. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 10–13 September 2019; pp. 1477–1480. [Google Scholar] [CrossRef]
- Al Aani, S.; Bonny, T.; Hasan, S.W.; Hilal, N. Can machine language and artificial intelligence revolutionize process automation for water treatment and desalination? Desalination 2019, 458, 84–96. [Google Scholar] [CrossRef]
- Do, H.T.; Van Bach, N.; Van Nguyen, L.; Tran, H.T.; Nguyen, M.T. A design of higher-level control based genetic algorithms for wastewater treatment plants. Eng. Sci. Technol. Int. J. 2021, 24, 872–878. [Google Scholar] [CrossRef]
- Hai, D.T.; Van Nam, B. Design of a Fuzzy Logic Controller Based on Genetic Algorithm for Controlling Dissolved Oxygen in Wasted-Water Treatment System Using Activated Sludge Method. In Proceedings of the International Conference on Engineering Research and Applications, Thai Nguyen, Vietnam, 1–2 December 2018; pp. 217–228. [Google Scholar] [CrossRef]
- Ruan, J.; Zhang, C.; Li, Y.; Li, P.; Yang, Z.; Chen, X.; Huang, M.; Zhang, T. Improving the efficiency of dissolved oxygen control using an on-line control system based on a genetic algorithm evolving FWNN software sensor. J. Environ. Manag. 2017, 187, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Han, H.-G.; Qian, H.-H.; Qiao, J.-F. Nonlinear multiobjective model-predictive control scheme for wastewater treatment process. J. Process Control 2014, 24, 47–59. [Google Scholar] [CrossRef]
- Santín, I.; Pedret, C.; Vilanova, R. Fuzzy Control and Model Predictive Control Configurations for Effluent Violations Removal in Wastewater Treatment Plants. Ind. Eng. Chem. Res. 2015, 54, 2763–2775. [Google Scholar] [CrossRef]
- Grochowski, M.; Rutkowski, T.A. Supervised model predictive control of wastewater treatment plant. In Proceedings of the 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 29 August–1 September 2016; pp. 613–618. [Google Scholar] [CrossRef]
- Boruah, N.; Roy, B.K. Event triggered nonlinear model predictive control for a wastewater treatment plant. J. Water Process Eng. 2019, 32, 100887. [Google Scholar] [CrossRef]
- Du, S.; Zhang, Q.; Han, H.; Sun, H.; Qiao, J. Event-triggered model predictive control of wastewater treatment plants. J. Water Process Eng. 2022, 47, 102765. [Google Scholar] [CrossRef]
- Vega, P.; Revollar, S.; Francisco, M.; Martín, J.M. Integration of set point optimization techniques into nonlinear MPC for improving the operation of WWTPs. Comput. Chem. Eng. 2014, 68, 78–95. [Google Scholar] [CrossRef]
- Stentoft, P.A.; Guericke, D.; Munk-Nielsen, T.; Mikkelsen, P.S.; Madsen, H.; Vezzaro, L.; Møller, J.K. Model Predictive Control of Stochastic Wastewater Treatment Process for Smart Power, Cost-Effective Aeration. IFAC-Pap. 2019, 52, 622–627. [Google Scholar] [CrossRef]
- Kallio, A.; Tuimala, J. Data Mining. In Encyclopedia of Systems Biology; Springer: New York, NY, USA, 2013; pp. 525–528. [Google Scholar] [CrossRef]
- Bhavsar, P.; Safro, I.; Bouaynaya, N.; Polikar, R.; Dera, D. Machine Learning in Transportation Data Analytics. In Data Analytics for Intelligent Transportation Systems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 283–307. [Google Scholar] [CrossRef]
- Asadi, A.; Verma, A.; Yang, K.; Mejabi, B. Wastewater treatment aeration process optimization: A data mining approach. J. Environ. Manag. 2017, 203, 630–639. [Google Scholar] [CrossRef]
- Zadorojniy, A.; Wasserkrug, S.; Zeltyn, S.; Lipets, V. Unleashing Analytics to Reduce Costs and Improve Quality in Wastewater Treatment. INFORMS J. Appl. Anal. 2019, 49, 262–268. [Google Scholar] [CrossRef]
- Yang, Q.; Cao, W.; Meng, W.; Si, J. Reinforcement-Learning-Based Tracking Control of Waste Water Treatment Process under Realistic System Conditions and Control Performance Requirements. IEEE Trans. Syst. Man. Cybern. Syst. 2022, 52, 5284–5294. [Google Scholar] [CrossRef]
- Hernández-del-Olmo, F.; Gaudioso, E.; Dormido, R.; Duro, N. Energy and Environmental Efficiency for the N-Ammonia Removal Process in Wastewater Treatment Plants by Means of Reinforcement Learning. Energies 2016, 9, 755. [Google Scholar] [CrossRef]
- Wang, D.; Thunéll, S.; Lindberg, U.; Jiang, L.; Trygg, J.; Tysklind, M.; Souihi, N. A machine learning framework to improve effluent quality control in wastewater treatment plants. Sci. Total Environ. 2021, 784, 147138. [Google Scholar] [CrossRef] [PubMed]
- Xylem Inc. Wastewater Treatment Plant Uses AI to Reduce Aeration Energy Use by 30%. Available online: https://www.xylem.com/en-us/making-waves/water-utilities-news/wastewater-treatment-plant-uses-ai-to-reduce-aeration-energy-use-by-30-percent/ (accessed on 3 January 2024).
- Sharafati, A.; Asadollah, S.B.H.S.; Hosseinzadeh, M. The potential of new ensemble machine learning models for effluent quality parameters prediction and related uncertainty. Process Saf. Environ. Prot. 2020, 140, 68–78. [Google Scholar] [CrossRef]
- Nourani, V.; Elkiran, G.; Abba, S.I. Wastewater treatment plant performance analysis using artificial intelligence—An ensemble approach. Water Sci. Technol. 2018, 78, 2064–2076. [Google Scholar] [CrossRef] [PubMed]
- AVEVATM. AVEVATM Predictive Analytics. Available online: https://www.aveva.com/en/products/predictive-analytics/ (accessed on 3 January 2024).
- Xylem, EWE WASSER GmbH—Case Study Cuxhaven, Germany. 2023. Available online: https://www.xylem.com/siteassets/support/case-studies/case-studies-pdf/casestudy_plant-rtds_ewe-wasser_01-26-23_en_us.pdf (accessed on 3 January 2024).
- Drewnowski, J. Advanced Supervisory Control System Implemented at Full-Scale WWTP—A Case Study of Optimization and Energy Balance Improvement. Water 2019, 11, 1218. [Google Scholar] [CrossRef]
- Han, H.; Zhu, S.; Qiao, J.; Guo, M. Data-driven intelligent monitoring system for key variables in wastewater treatment process. Chin. J. Chem. Eng. 2018, 26, 2093–2101. [Google Scholar] [CrossRef]
- Jan, Z.; Ahamed, F.; Mayer, W.; Patel, N.; Grossmann, G.; Stumptner, M.; Kuusk, A. Artificial intelligence for industry 4.0: Systematic review of applications, challenges, and opportunities. Expert. Syst. Appl. 2023, 216, 119456. [Google Scholar] [CrossRef]
- Bruun, E.P.G.; Duka, A. Artificial Intelligence, Jobs and the Future of Work: Racing with the Machines. Basic. Income Stud. 2018, 13, 20180018. [Google Scholar] [CrossRef]
- Vrontis, D.; Christofi, M.; Pereira, V.; Tarba, S.; Makrides, A.; Trichina, E. Artificial intelligence, robotics, advanced technologies and human resource management: A systematic review. Int. J. Human. Resour. Manag. 2022, 33, 1237–1266. [Google Scholar] [CrossRef]
- El-Hajj, M.; Fadlallah, A.; Chamoun, M.; Serhrouchni, A. A taxonomy of PUF Schemes with a novel Arbiter-based PUF resisting machine learning attacks. Comput. Netw. 2021, 194, 108133. [Google Scholar] [CrossRef]
- Bolukbasi, T.; Chang, K.-W.; Zou, J.Y.; Saligrama, V.; Kalai, A.T. Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings. In Neural Information Processing Systems, 2016. Available online: https://proceedings.neurips.cc/paper_files/paper/2016/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf (accessed on 5 January 2024).
- Veale, M.; Binns, R. Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data. Big Data Soc. 2017, 4, 205395171774353. [Google Scholar] [CrossRef]
- Jobin, A.; Ienca, M.; Vayena, E. The global landscape of AI ethics guidelines. Nat. Mach. Intell. 2019, 1, 389–399. [Google Scholar] [CrossRef]
- Hernández-del-Olmo, F.; Gaudioso, E.; Dormido, R.; Duro, N. Tackling the start-up of a reinforcement learning agent for the control of wastewater treatment plants. Knowl. Based Syst. 2018, 144, 9–15. [Google Scholar] [CrossRef]
Model Type | Application | Controlled Variable(s) | Metric of Evaluation (Compared with Default Controller) | Reference |
---|---|---|---|---|
MPC based on neuro-fuzzy control | Field—500,000 PE | DO Recycle flow (Qr) | 16% energy saving 8.1% reduction in effluent N total | [39] |
FLC in cascade with PI | Simulation—BSM2G | Recycle flow rate (Q) External flow rate Dissolved oxygen Setpoint (DOsp) | 1.73% on EQI (effluent quality index) 17.20% on OCI (operating cost index) 8.60% of total CO2 | [41] |
FLC | Simulation—BSM2 Field—3500 PE | Effluent ammonia concentration | +7–8% on EQI (simulation) +13% on energy saving (simulation) +40–50% energy saving (field) | [35] |
FLC in cascade with PI | Simulation—BSM1 | Effluent ammonia concentration Recycle flow (Qr) | +15.57 to 20.3% effluent quality | [44] |
FLC | Simulation—BSM1 | Dissolved oxygen (DO) | Faster rejection of disturbance to maintain a set point compared with the PID | [43] |
FLC | Simulation—BSM2N | The ratio of nitrate produced by NOB and the ammonium consumed. by AOB | 35% reduction in N2O emissions | [42] |
AFNN + optimization algorithm | Simulation—BSM1 | DO setpoint (DOsp) and NO2 setpoint | 7% aeration energy 8% pumping energy | [45] |
Type-2 fuzzy broad learning controller | Simulation—BSM1 | DO and NO3-N | Compared with FNN: 70% faster computational time 90% + less integral square error | [50] |
Fuzzy-based predictive controller | Simulation—BSM1 | DO | Faster rejection of disturbance to maintain set point compared with the PID | [51] |
Oxy fuzzy logic | Field—75,000 PE | Effluent ammonia concentration (NH3) | 13% reduction in annual energy consumption | [52] |
Fuzzy-based MPC | Simulation—BSM1 | DO | Faster rejection of disturbance to maintain set point compared with the PID | [53] |
FLC | Simulation—BSM2 | Recirculation flow rate (Qa) NH3-H | 2.25% to 57.94% reduction in Ntot violations 55.22% to 79.69% reduction in NH3-N limit violations 0.84% to 38.06% reduction in the cost of pumping energy | [54] |
Fuzzy-neural network controller (FNNC) + multi-objective optimal control (MOOC) | Simulation—BSM1 | DO and NO3 | Energy consumption (EC) reduced by 1.6% in dry, 1.15% in rain, and 2.17% in storm conditions | [55] |
Cooperative fuzzy-neural control (CFNC) | Simulation—BSM1 | DO and NO3-N | 0.0021 DO-integral of absolute error (DO-IAE) 0.2357 DO-integrated square differential error (ISDE) 0.0049—NO3-N—IAE 0.4587—NO3-N—ISDE | [56] |
Cooperative fuzzy-neural control (CFNC) | Field—16,000 m3/d | DO and NO3-N | 0.0084 DO-IAE 0.3677 DO-ISD 0.0143—NO3-N—IAE 0.4987—NO3-N—ISDE | [56] |
Model Type | Type of Test | Controlled Variable(s) | Metric of Evaluation (Compared to Default Controller) | Reference |
---|---|---|---|---|
ANN-based internal model control (IMC) | Simulation—BSM1 | DO | 16% IAE | [63] |
53% ISE | ||||
ANN-based IMC | Simulation—BSM1 | DO | 21.25% IAE | [62] |
54.64% ISE | ||||
Fuzzy-neural network controller (FNNC) + multi-objective optimal control (MOOC) | Simulation—BSM1 | DO and NO3 | Energy consumption (EC) reduced by 1.6% in dry, 1.15% in rain, and 2.17% in storm conditions | [55] |
Adaptive control based on online sequential extreme learning machine (OS-ELM) neural network | Simulation—BSM1 | DO | Dry weather: | [58] |
IAE—0.0475 | ||||
ISE—0.00069 | ||||
Rain Weather: | ||||
IAE—0.0375 | ||||
ISE—0.00067 |
Model Type | Type of Test | Controlled Variable(s) | Metric of Evaluation (Compared with Default Controller) | Reference |
---|---|---|---|---|
Nonlinear multi-objective model-predictive control (NMMPC) | Simulation—BSM1 | DO and NO3 | 3.2% to 9.1% aeration energy | [68] |
MPC + FF (feedforward) and FL | Simulation—BSM1 | DO and NO2 | 3.9% on OCI 5% on EQI | [69] |
Hierarchical structured MPC + FF, FL, and ANN MPC + FF | Simulation—BSM2 | DO and NH3-N | 2.62% to 37.09% OCI 3.41% to 12.6% EQI | [61] |
Fuzzy-supervised NMPC | Benchmark Simulation with ASM2D | TN and TP | 18% reduction in plant operating cost | [70] |
Event-triggered MPC (ETMPC) | Simulation | DO and NO3 | 60% computation reduction and 0.1 improvements for the integral of the squared error (ISE) | [72] |
Event-triggered NMPC (ETNMPC) | Simulation—BSM1 | DO and NO3 | 50% computation reduction | [71] |
Fuzzy-based MPC | Simulation—BSM1 | DO | Faster rejection of disturbance to maintain set point compared with the PID | [53] |
NMPC | Simulation—BSM1 | DO and NO3 | 20% reduction in operation costs | [73] |
MPC + genetic algorithm (GA) | Field—4000 PE | DO | 50% reduction in the relative amount of aeration used | [74] |
Model Type | Type of Test | Optimized or Predicted Variable | Metric of Evaluation | Reference |
---|---|---|---|---|
Multi-adaptive regression spline (MARS) | Offline modelling and optimization | DO | 31%+ reduction in airflow rate | [77] |
Constrained Markov decision process (CMDP) | Offline modelling and optimization with field pilot test implementation | DO, WAS pump rate, and internal recycle pump rate | 13.5% energy reduction 14% less chemicals use for phosphorus 17% reduction in sludge production | [78] |
Reinforcement learning (RL) | Simulation—BSM1 | N-ammonia | Cost reduction of N-ammonia removal | [80] |
Direct heuristic dynamic programming (dHDP)-based RL. | Simulation—BSM1 | DO NO2 | Single objective DO control design: IAE of 0.068 ISE of 0.00063 | [79] |
Ensemble of feedforward neural network (FFNN), ANFIS, SVM, and a multi-linear regression (MLR) | Effluent quality parameter prediction | BOD | Comparison of ensemble techniques in terms of performance efficiency: SAE 14% WAE 20% NNE 24% | [84] |
Ensemble of AdaBoost, gradient boost, and random forest regression | Effluent quality parameter prediction | TDS BOD5 COD | Adaboost TDS correlation coefficient = 0.96 Gradient boost BOD5 correlation coefficient = 0.90 COD correlation coefficient = 0.75 | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monday, C.; Zaghloul, M.S.; Krishnamurthy, D.; Achari, G. A Review of AI-Driven Control Strategies in the Activated Sludge Process with Emphasis on Aeration Control. Water 2024, 16, 305. https://doi.org/10.3390/w16020305
Monday C, Zaghloul MS, Krishnamurthy D, Achari G. A Review of AI-Driven Control Strategies in the Activated Sludge Process with Emphasis on Aeration Control. Water. 2024; 16(2):305. https://doi.org/10.3390/w16020305
Chicago/Turabian StyleMonday, Celestine, Mohamed S. Zaghloul, Diwakar Krishnamurthy, and Gopal Achari. 2024. "A Review of AI-Driven Control Strategies in the Activated Sludge Process with Emphasis on Aeration Control" Water 16, no. 2: 305. https://doi.org/10.3390/w16020305
APA StyleMonday, C., Zaghloul, M. S., Krishnamurthy, D., & Achari, G. (2024). A Review of AI-Driven Control Strategies in the Activated Sludge Process with Emphasis on Aeration Control. Water, 16(2), 305. https://doi.org/10.3390/w16020305