Distribution and Origins of Hardness in Shallow and Deep Groundwaters of the Hebei Plain, China
Abstract
:1. Introduction
2. Study Area
2.1. Geographical Conditions
2.2. Geological and Hydrogeological Conditions
3. Materials and Methods
3.1. Groundwater Sampling
3.2. Analytical Techniques
3.3. Principal Components Analysis (PCA)
4. Results and Discussion
4.1. Characteristics of Groundwater Chemistry
4.2. Distribution of Groundwater Total Hardness
4.3. Origins of Groundwater Total Hardness
4.3.1. Gibbs Diagram
4.3.2. Principal Components Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mukherjee, A.; Scanlon, B.; Aureli, A.; Langan, S.; Guo, H.; McKenzie, A. Global Groundwater: Source, Scarcity, Sustainability, Security and Solutions, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–18. [Google Scholar]
- Hu, X.; Shi, L.; Zeng, J.; Yang, J.; Zha, Y.; Yao, Y.; Cao, G. Estimation of actual irrigation amount and its impact on groundwater depletion: A case study in the Hebei Plain, China. J. Hydrol. 2016, 543, 433–449. [Google Scholar] [CrossRef]
- Alberti, L.; Antelmi, M.; Oberto, G.; La Licata, I.; Mazzon, P. Evaluation of Fresh Groundwater Lens Volume and Its Possible Use in Nauru Island. Water 2022, 14, 3201. [Google Scholar] [CrossRef]
- Water Resources Department of Hebei Province, 2020. Hebei Water Resources Bulletin of 2019. Available online: http://slt.hebei.gov.cn/resources/43/202010/1603098695816085596.pdf (accessed on 1 December 2023).
- Antelmi, M.; Mazzon, P.; Höhener, P.; Marchesi, M.; Alberti, L. Evaluation of MNA in A Chlorinated Solvents-Contaminated Aquifer Using Reactive Transport Modeling Coupled with Isotopic Fractionation Analysis. Water 2021, 13, 2945. [Google Scholar] [CrossRef]
- Zhang, F.; Huang, G.; Hou, Q.; Liu, C.; Zhang, Y.; Zhang, Q. Groundwater quality in the Pearl River Delta after the rapid expansion of industrialization and urbanization: Distributions, main impact indicators, and driving forces. J. Hydrol. 2019, 577, 124004. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, M.; Liu, C.; Li, L.; Chen, Z. Heavy metal(loid)s and organic contaminants in groundwater in the Pearl River Delta that has undergone three decades of urbanization and industrialization: Distributions, sources, and driving forces. Sci. Total Environ. 2018, 635, 913–925. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Liu, C.; Li, L.; Zhang, F.; Chen, Z. Spatial distribution and origin of shallow groundwater iodide in a rapidly urbanized delta: A case study of the Pearl River Delta. J. Hydrol. 2020, 585, 124860. [Google Scholar] [CrossRef]
- Huang, G.; Han, D.; Song, J.; Li, L.; Pei, L. A sharp contrasting occurrence of iron-rich groundwater in the Pearl River Delta during the past dozen years (2006–2018): The genesis and mitigation effect. Sci. Total Environ. 2022, 829, 154676. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, G.; Liu, C.; Zhang, Y.; Chen, Z.; Wang, J. Distributions and origins of nitrate, nitrite, and ammonium in various aquifers in an urbanized coastal area, south China. J. Hydrol. 2020, 582, 124528. [Google Scholar] [CrossRef]
- Liyanage, D.; Diyabalanage, S.; Dunuweera, S.; Rajapakse, S.; Rajapakse, R.; Chandrajith, R. Significance of Mg-hardness and fluoride in drinking water on chronic kidney disease of unknown etiology in Monaragala, Sri Lanka. Environ. Res. 2021, 203, 111779. [Google Scholar] [CrossRef]
- Haritash, A.K.; Kaushik, C.P.; Kaushik, A.; Kansal, A.; Yadav, A.K. Suitability assessment of groundwater for drinking, irrigation and industrial use in some North Indian villages. Environ. Monit. Assess. 2008, 145, 397–406. [Google Scholar] [CrossRef]
- Qian, Y.; Hou, Q.; Wang, C.; Zhen, S.; Yue, C.; Cui, X.; Guo, C. Hydrogeochemical Characteristics and Groundwater Quality in Phreatic and Confined Aquifers of the Hebei Plain, China. Water 2023, 15, 3071. [Google Scholar] [CrossRef]
- Vadillo, I.; Andreo, B.; Carrasco, F. Groundwater Contamination by Landfill Leachates in a Karstic Aquifer. Water Air Soil Pollut. 2005, 162, 143–169. [Google Scholar] [CrossRef]
- Shankar, B.S.; Balasubramanya, N.; Maruthesha Reddy, M.T. Impact of industrialization on groundwater quality-a case study of Peenya industrial area, Bangalore, India. Environ. Monit. Assess. 2008, 142, 263–268. [Google Scholar] [CrossRef]
- Kass, A.; Gavrieli, I.; Yechieli, Y.; Vengosh, A.; Starinsky, A. The impact of freshwater and wastewater irrigation on the chemistry of shallow groundwater: A case study from the Israeli Coastal Aquifer. J. Hydrol. 2005, 300, 314–331. [Google Scholar] [CrossRef]
- Yesilnacar, M.I.; Gulluoglu, M.S. Hydrochemical characteristics and the effects of irrigation on groundwater quality in Harran Plain, GAP Project, Turkey. Environ. Geol. 2007, 54, 183–196. [Google Scholar] [CrossRef]
- Cloutier, V.; Lefebvre, R.; Therrien, R.; Savard, M.M. Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J. Hydrol. 2008, 353, 294–313. [Google Scholar] [CrossRef]
- Cucchi, F.; Franceschini, G.; Zini, L. Hydrogeochemical investigations and groundwater provinces of the Friuli Venezia Giulia Plain aquifers, northeastern Italy. Environ. Geol. 2007, 55, 985–999. [Google Scholar] [CrossRef]
- Bi, E.; Mu, H.; Chen, Z.; Wang, Z. Impacts of human activities on the evolution of groundwater quality in Hebei Plain. Acta Geosci. Sin. 2001, 22, 365–368. [Google Scholar]
- Xing, L.; Guo, H.; Zhan, Y. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain. J. Asian Earth Sci. 2013, 70, 250–264. [Google Scholar] [CrossRef]
- Zhan, Y.; Guo, H.; Wang, Y.; Li, R.; Hou, C.; Shao, J.; Cui, Y. Evolution of groundwater major components in the Hebei Plain: Evidences from 30-year monitoring data. J. Earth Sci. 2014, 25, 563–574. [Google Scholar] [CrossRef]
- Zhao, L.; Su, M.; Wang, X.; Li, X.; Chang, X.; Zhang, P. Spatial-temporal evolution and prediction of habitat quality in Beijing–Tianjin–Hebei region based on land use change. Land 2023, 12, 667. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Fei, Y.; Chen, H.; Qian, Y.; Dun, Y. Investigation of quality and pollution characteristics of groundwater in the Hutuo River Alluvial Plain, North China Plain. Environ. Earth Sci. 2016, 75, 581. [Google Scholar] [CrossRef]
- Bai, X.; Tian, X.; Li, J.; Wang, X.; Li, Y.; Zhou, Y. Assessment of the Hydrochemical Characteristics and Formation Mechanisms of Groundwater in A Typical Alluvial-Proluvial Plain in China: An Example from Western Yongqing County. Water 2022, 14, 2395. [Google Scholar] [CrossRef]
- Guo, H.; Li, M.; Wang, L.; Wang, Y.; Zang, X.; Zhao, X.; Wang, H.; Zhu, J. Evaluation of Groundwater Suitability for Irrigation and Drinking Purposes in an Agricultural Region of the North China Plain. Water 2021, 13, 3426. [Google Scholar] [CrossRef]
- Wang, B.; Jin, M.; Nimmo, J.R.; Yang, L.; Wang, W. Estimating groundwater recharge in Hebei Plain, China under varying land use practices using tritium and bromide tracers. J. Hydrol. 2008, 356, 209–222. [Google Scholar] [CrossRef]
- Lu, X.; Jin, M.; van Genuchten, M.T.; Wang, B. Groundwater Recharge at Five Representative Sites in the Hebei Plain, China. Groundwater 2011, 49, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Shen, Y.; Yuan, Z. Water footprint of crop production for different crop structures in the Hebei southern plain, North China. Hydrol. Earth Syst. Sci. 2017, 21, 3061–3069. [Google Scholar] [CrossRef]
- Chen, Z.; Qi, J.; Xu, J.; Xu, J.; Ye, H.; Nan, Y. Paleoclimatic interpretation of the past 30 ka from isotopic studies of the deep confined aquifer of the North China Plain. Appl. Geochem. 2003, 18, 997–1009. [Google Scholar]
- Zhong, H.; Sun, L.; Fischer, G.; Tian, Z.; Liang, Z. Optimizing regional cropping systems with a dynamic adaptation strategy for water sustainable agriculture in the Hebei Plain. Agric. Syst. 2019, 173, 94–106. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, D.; Shen, Z.; Zhong, Z.; Xue, Y. Evolution and development of groundwater environment in North China Plain under human activities. Acta Geosci. Sin. 1997, 18, 337–344. [Google Scholar]
- Chen, Z.; Nie, Z.; Zhang, Z.; Qi, J.; Nan, Y. Isotopes and sustainability of ground water resources, North China Plain. Ground Water 2005, 43, 485–493. [Google Scholar]
- Zhang, Z.; Fei, Y.; Chen, Z.; Zhao, Z.; Xie, Z.; Wang, Y. Investigation and Assessment of Sustainable Utilization of Groundwater Resources in the North China Plain; Geology Press: Beijing, China, 2009; pp. 28–42. (In Chinese) [Google Scholar]
- Yang, H.; Cao, W.; Zhi, C.; Li, Z.; Bao, X.; Ren, Y.; Liu, F.; Fan, C.; Wang, S.; Wang, Y. Evolution of groundwater level in the North China Plain in the past 40 years and suggestions on its overexploitation treatment. Geol. China 2021, 48, 1142–1155. [Google Scholar]
- Huang, G.; Liu, C.; Sun, J.; Zhang, M.; Jing, J.; Li, L. A regional scale investigation on factors controlling the groundwater chemistry of various aquifers in a rapidly urbanized area: A case study of the Pearl River Delta. Sci. Total Environ. 2018, 625, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Pei, L.; Li, L.; Liu, C. Natural background levels in groundwater in the Pearl River Delta after the rapid expansion of urbanization: A new pre-selection method. Sci. Total Environ. 2021, 813, 151890. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Zhang, Q.; Huang, G.; Liu, C.; Zhang, Y. Elevated manganese concentrations in shallow groundwater of various aquifers in a rapidly urbanized delta, south China. Sci. Total Environ. 2019, 701, 134777. [Google Scholar] [CrossRef]
- Huang, G.; Liu, C.; Zhang, Y.; Chen, Z. Groundwater is important for the geochemical cycling of phosphorus in rapidly urbanized areas: A case study in the Pearl River Delta. Environ. Pollut. 2020, 260, 114079. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Hou, Q.; Han, D.; Liu, R.; Song, J. Large scale occurrence of aluminium-rich shallow groundwater in the Pearl River Delta after the rapid urbanization: Co-effects of anthropogenic and geogenic factors. J. Contam. Hydrol. 2023, 254, 104130. [Google Scholar] [CrossRef] [PubMed]
- Bi, P.; Huang, G.; Liu, C.; Li, L. Geochemical factors controlling natural background levels of phosphate in various groundwater units in a large-scale urbanized area. J. Hydrol. 2022, 608, 127594. [Google Scholar] [CrossRef]
- Bi, P.; Liu, R.; Huang, G.; Li, D. Evaluating natural background levels of heavy metals in shallow groundwater of the Pearl River Delta via removal of contaminated groundwaters: Comparison of three preselection related methods. Environ. Pollut. 2023, 335, 122382. [Google Scholar] [CrossRef]
- Huang, G.; Song, J.; Han, D.; Liu, R.; Liu, C.; Hou, Q. Assessing natural background levels of geogenic contaminants in groundwater of an urbanized delta through removal of groundwaters impacted by anthropogenic inputs: New insights into driving factors. Sci. Total Environ. 2023, 857, 159527. [Google Scholar] [CrossRef]
- Qian, Y.; Cui, X.; Yue, C.; Guo, C.; Zhen, S.; Wang, W.; Huang, G.; Li, H.; Wang, Y.; Su, C.; et al. Report on the Investigation and Evaluation of the Basic Environmental Conditions of Groundwater around the State Control Assessment Points in Hebei Province; The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences: Shijiazhuang, China, 2022. (In Chinese) [Google Scholar]
- Huang, G.; Sun, J.; Zhang, Y.; Chen, Z.; Liu, F. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China. Sci. Total Environ. 2013, 463, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Xie, X.; Qian, Y.; Hou, Q.; Han, D.; Song, J.; Huang, G. Groundwater sulfate in the Pearl River Delta driven by urbanization: Spatial distribution, sources and factors. Appl. Geochem. 2023, 156, 105766. [Google Scholar] [CrossRef]
- Gan, L.; Huang, G.; Pei, L.; Gan, Y.; Liu, C.; Yang, M.; Han, D.; Song, J. Distributions, origins, and health-risk assessment of nitrate in groundwater in typical alluvial-pluvial fans, North China Plain. Environ. Sci. Pollut. Res. 2021, 29, 17031–17048. [Google Scholar] [CrossRef]
- Edmunds, W.; Cook, J.; Darling, W.; Kinniburgh, D.; Miles, D.; Bath, A.; Morgan-Jones, M.; Andrews, J. Baseline geochemical conditions in the Chalk aquifer, Berkshire, U.K.: A basis for groundwater quality management. Appl. Geochem. 1987, 2, 251–274. [Google Scholar] [CrossRef]
- Marandi, A.; Shand, P. Groundwater chemistry and the Gibbs Diagram. Appl. Geochem. 2018, 97, 209–212. [Google Scholar] [CrossRef]
- General administration of quality supervision inspection and quarantine of the people’s republic of China (GAQSIQPRC). In Standard for Groundwater Quality; Standards Press of China: Beijing, China, 2017.
- Sahib, L.Y.; Marandi, A.; Schüth, C. Strontium isotopes as an indicator for groundwater salinity sources in the Kirkuk region, Iraq. Sci. Total Environ. 2016, 562, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Barica, J. Salinization of groundwater in arid zones. Water Res. 1972, 6, 925–933. [Google Scholar] [CrossRef]
- Gibbs, J.R. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef]
Items | Shallow Groundwater | Deep Groundwater | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Piedmont Plain | Central Plain | Littoral Plain | Piedmont Plain | Central Plain | |||||||||||
Min. | Med. | Max. | Min. | Med. | Max. | Min. | Med. | Max. | Min. | Med. | Max. | Min. | Med. | Max. | |
pH | 5.0 | 7.5 | 13.4 | 6.2 | 7.4 | 8.2 | 6.7 | 7.3 | 9.2 | 6.2 | 7.8 | 10.3 | 7.1 | 8.1 | 8.3 |
COD | 0.3 | 0.7 | 8.4 | 0.3 | 1.4 | 2.8 | 0.5 | 1.6 | 14.1 | 0.2 | 0.6 | 2.0 | 0.4 | 0.8 | 4.0 |
TDS | 140 | 507 | 3688 | 224 | 1857 | 12,180 | 284 | 1116 | 23,550 | 185 | 324 | 1857 | 325 | 714 | 9570 |
K+ | 0.3 | 1.4 | 13.8 | 0.4 | 1.8 | 12.4 | 0.6 | 5.0 | 51.0 | 0.3 | 1.5 | 3.8 | 0.3 | 1.2 | 7.5 |
Na+ | 6 | 33 | 724 | 35 | 384 | 2670 | 53 | 100 | 6465 | 7 | 52 | 489 | 74 | 206 | 1940 |
Ca2+ | 5 | 82 | 257 | 9 | 111 | 509 | 32 | 147 | 571 | 4 | 34 | 166 | 5 | 32 | 282 |
Mg2+ | 1 | 33 | 217 | 5 | 131 | 833 | 6 | 55 | 1219 | 1 | 13 | 135 | 2 | 24 | 759 |
SO42− | 4 | 61 | 1999 | 30 | 438 | 5967 | 21 | 178 | 3665 | 5 | 37 | 804 | 46 | 179 | 3964 |
CO32− | <DL | <DL | 18 | <DL | <DL | 12 | <DL | <DL | 59 | <DL | <DL | 12 | <DL | <DL | 30 |
HCO3− | 109 | 319 | 915 | 135 | 651 | 1118 | 227 | 449 | 604 | 103 | 229 | 877 | 57 | 226 | 1172 |
Cl− | 6 | 51 | 966 | 19 | 342 | 2040 | 21 | 213 | 13,830 | 2 | 19 | 466 | 12 | 132 | 2066 |
NO3−-N | <DL | 5.6 | 44.5 | <DL | 0.4 | 36.2 | <DL | 2.0 | 70.1 | <DL | 0.8 | 23.5 | <DL | 0.4 | 6.3 |
Items | SG in PP | Items | SG in CP | Items | SG in LP | Items | DG in CP | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC1 | PC2 | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | ||||
TDS | 0.94 | 0.25 | 0.17 | 0.11 | TDS | 0.98 | 0.09 | Mg2+ | 0.99 | −0.06 | −0.04 | TDS | 1.00 | 0.04 | −0.03 |
Na+ | 0.86 | −0.35 | −0.13 | 0.13 | TH | 0.97 | 0.18 | TDS | 0.99 | −0.08 | −0.06 | Mg2+ | 0.98 | 0.06 | −0.01 |
SO42− | 0.84 | 0.23 | −0.13 | −0.01 | Mg2+ | 0.97 | 0.16 | Cl− | 0.99 | 0.02 | −0.07 | SO42− | 0.98 | 0.03 | 0.01 |
Mg2+ | 0.77 | 0.15 | 0.49 | 0.10 | SO42− | 0.94 | −0.06 | TH | 0.99 | 0.07 | 0.02 | TH | 0.98 | 0.11 | 0.00 |
Cl− | 0.71 | −0.01 | 0.17 | 0.01 | Na+ | 0.94 | 0.08 | Na+ | 0.99 | −0.11 | −0.10 | Na+ | 0.97 | −0.03 | −0.07 |
TH | 0.62 | 0.60 | 0.46 | 0.06 | Cl− | 0.82 | 0.12 | COD | 0.95 | 0.24 | −0.03 | Cl− | 0.95 | 0.10 | −0.03 |
NO3− | −0.03 | 0.88 | 0.07 | 0.00 | Ca2+ | 0.77 | 0.16 | K+ | 0.85 | −0.02 | −0.08 | Ca2+ | 0.84 | 0.28 | 0.04 |
Ca2+ | 0.31 | 0.84 | 0.31 | −0.01 | K+ | 0.34 | −0.32 | SO42− | 0.70 | −0.56 | −0.08 | HCO3− | 0.68 | −0.13 | −0.17 |
K+ | −0.14 | 0.65 | −0.17 | 0.59 | HCO3− | 0.08 | 0.81 | pH | 0.24 | −0.86 | −0.21 | K+ | 0.13 | 0.92 | −0.01 |
pH | 0.06 | −0.23 | −0.78 | 0.03 | pH | −0.14 | −0.78 | HCO3− | 0.14 | 0.74 | −0.18 | COD | 0.17 | 0.88 | −0.16 |
HCO3− | 0.50 | −0.10 | 0.63 | 0.33 | COD | 0.24 | 0.72 | Ca2+ | 0.66 | 0.67 | 0.32 | NO3− | −0.07 | 0.33 | 0.12 |
COD | 0.17 | −0.01 | 0.13 | 0.91 | NO3− | 0.01 | 0.42 | NO3− | −0.10 | 0.04 | 0.98 | pH | −0.03 | 0.03 | 0.98 |
Eigenvalue | 4.2 | 2.6 | 1.7 | 1.3 | 6.1 | 2.2 | 7.5 | 2.1 | 1.2 | 7.0 | 1.8 | 1.0 | |||
EV (%) | 35.2 | 21.5 | 14.1 | 11.1 | 50.6 | 18.1 | 62.7 | 17.7 | 9.7 | 58.0 | 15.4 | 8.6 | |||
CV (%) | 35.2 | 56.7 | 70.8 | 81.9 | 50.6 | 68.7 | 62.7 | 80.3 | 90.1 | 58.0 | 73.3 | 81.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Y.; Zhen, S.; Yue, C.; Cui, X. Distribution and Origins of Hardness in Shallow and Deep Groundwaters of the Hebei Plain, China. Water 2024, 16, 310. https://doi.org/10.3390/w16020310
Qian Y, Zhen S, Yue C, Cui X. Distribution and Origins of Hardness in Shallow and Deep Groundwaters of the Hebei Plain, China. Water. 2024; 16(2):310. https://doi.org/10.3390/w16020310
Chicago/Turabian StyleQian, Yong, Shijun Zhen, Chen Yue, and Xiangxiang Cui. 2024. "Distribution and Origins of Hardness in Shallow and Deep Groundwaters of the Hebei Plain, China" Water 16, no. 2: 310. https://doi.org/10.3390/w16020310
APA StyleQian, Y., Zhen, S., Yue, C., & Cui, X. (2024). Distribution and Origins of Hardness in Shallow and Deep Groundwaters of the Hebei Plain, China. Water, 16(2), 310. https://doi.org/10.3390/w16020310