Back-Calculation of Manning’s Roughness Coefficient by 2D Flow Simulation and Influence of In-Channel Physical Parameters in a Mountain River, Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Summary of Methods
2.2. Study Field
2.3. Field Observations
2.4. Analysis Method
2.4.1. Preparation of Data Set for Unsteady Two-Dimensional Flow Calculations
2.4.2. Two-Dimensional Flow Calculation Method
- (1)
- Overview of the software (Nays2DH)
- (2)
- Calculation conditions
- (3)
- Boundary conditions
- (4)
- Back-calculation of Manning’s roughness coefficient
- (5)
- Accuracy verification
2.4.3. In-Channel Physical Parameters Related to the Roughness Coefficient
2.4.4. Regression Analysis to Examine In-Channel Physical Parameters Most Strongly Affecting the Roughness Coefficient
3. Results and Discussion
3.1. The Back-Calculated Manning’s Roughness Coefficients and Their Relationship with the Relative Water Depth
3.2. Effects of In-Channel Physical Parameters on the Roughness Coefficient
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milliman, J.D.; Syvitski, J.P.M. Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers. J. Geol. 1992, 100, 525–544. [Google Scholar] [CrossRef]
- Reid, L.M. Research and Cumulative Watershed Effects. In General Technical Report; US Department of Agriculture, Forest Service, Pacific Southwest Research Station: Berkeley, CA, USA, 1993; Volume 141, 118p. [Google Scholar] [CrossRef]
- Nehlsen, W.; Williams, J.E.; Lichatowich, J.A. Pacific Salmon at the Crossroads: Stocks at Risk from California, Oregon, Idaho, and Washington. Fisheries 1991, 16, 4–21. [Google Scholar] [CrossRef]
- Frissell, C.A. Topology of Extinction and Endangerment of Native Fishes in the Pacific Northwest and California (U.S.A.). Conserv. Biol. 1993, 7, 342–354. [Google Scholar] [CrossRef]
- Asano, Y.; Uchida, T.; Nishiguchi, Y. Measured Channel Resistance at Mountain Rivers during Flood. Jpn. Soc. Eros. Control Eng. 2018, 70, 12–23. [Google Scholar]
- Comiti, F.; Mao, L.; Wilcox, A.; Wohl, E.E.; Lenzi, M.A. Field-Derived Relationships for Flow Velocity and Resistance in High-Gradient Streams. J. Hydrol. 2007, 340, 48–62. [Google Scholar] [CrossRef]
- David, G.C.L.; Wohl, E.; Yochum, S.E.; Bledsoe, B.P. Controls on Spatial Variations in Flow Resistance along Steep Mountain Streams. Water Resources Research 2010, 46, W03513. [Google Scholar] [CrossRef]
- Reid, D.E.; Hickin, E.J. Flow Resistance in Steep Mountain Streams. Earth Surf. Process. Landf. 2008, 33, 2211–2240. [Google Scholar] [CrossRef]
- Rickenmann, D.; Recking, A. Evaluation of Flow Resistance in Gravel-Bed Rivers through a Large Field Data Set. Water Resour. Res. 2011, 47, W0758. [Google Scholar] [CrossRef]
- Yochum, S.E.; Comiti, F.; Wohl, E.; David, G.C.L.; Mao, L. Photographic Guidance for Selecting Flow Resistance Coefficients in High-Gradient Channels. In General Technical Report RMRS-GTR; GTR-323; USDA Forest Service: Washington, DC, USA, 2014; pp. 1–91. [Google Scholar]
- Marcus, W.A.; Roberts, K.; Harvey, L.; Tackman, G. An Evaluation of Methods for Estimating Manning’s n in Small Mountain Streams. Mt. Res. Dev. 1992, 12, 227–239. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Buffington, J.M. Channel-Reach Morphology in Mountain Drainage Basins. Geol. Soc. Am. Bull. 1997, 109, 596–611. [Google Scholar] [CrossRef]
- Barnes, H.H., Jr. Roughness Characteristics of Natural Channels. In U.S. Geological Survey Water-Supply Paper; US Government Printing Office: Washington, DC, USA, 1967. [Google Scholar]
- Yarahmadi, M.B.; Parsaie, A.; Shafai-Bejestan, M.; Heydari, M.; Badzanchin, M. Estimation of Manning Roughness Coefficient in Alluvial Rivers with Bed Forms Using Soft Computing Models. Water Resour. Manage. 2023, 37, 3563–3584. [Google Scholar] [CrossRef]
- Takemura, Y.; Nigo, S.; Ohno, J.; Fukuoka, S. Problem of Conventional 2D Analysis Method for Flood Flows in Mountain Streams with Boulders and Proposal of a New Analysis Method. Adv. River Eng. 2019, 25, 267–272. [Google Scholar]
- Liu, Y.; Shimatani, Y.; Yamashita, T.; Sato, T.; Ikematsu, S. Stepped-Bed Morphology Changes in Restoredmountain Stream Inuced by Flood. Adv. River Eng. 2012, 18, 83–88. [Google Scholar]
- Shimizu, Y.; Takebayashi, H.; Inoue, T.; Hamaki, M.; Iwasaki, T.; Nabi, M. Nays2DH_SolverManual_Japanese_v4.Pdf. Available online: https://i-ric.org/webadmin/wp-content/uploads/2023/06/Nays2DH_SolverManual_Japanese_v4.pdf (accessed on 1 December 2023).
- Ministry of Land, Infrastructure, Transport and Tourism Civil Engineering Work Design Guidelines Part II River Edition Chapter 4 Sabo Facilities. Available online: https://www.qsr.mlit.go.jp/site_files/file/s_top/h22doboku/kasen/2-05.pdf (accessed on 15 December 2023).
- Asano, Y.; Uchida, T. Detailed Documentation of Dynamic Changes in Flow Depth and Surface Velocity during a Large Flood in a Steep Mountain Stream. J. Hydrol. 2016, 541, 127–135. [Google Scholar] [CrossRef]
- Abrahams, A.D.; Li, G.; Atkinson, J.F. Step-pool Streams: Adjustment to Maximum Flow Resistance. Water Resour. Res. 1995, 31, 2593–2602. [Google Scholar] [CrossRef]
- Shawn, M.; Chartrand, P.J.W. Alluvial Architecture in Headwater Streams with Special Emphasis on Step–Pool Topography. Earth Surf. Process. Landf. 2000, 25, 583–600. [Google Scholar]
- Hasegawa, K.; Kanbayashi, S. Formation Mechanism of Step-Pool Systems in Steep Rivers and Guide Lines for the Design of Construction. Proc. Hydraulic. Eng. 1996, 40, 893–900. [Google Scholar] [CrossRef]
- Fukuoka, S.; Shimatani, Y.; Tamura, H.; Tomari, K.; Nakayama, M.; Takase, A.; Iuch, T. Field Experiments on Reed Deformation and Falling and Roughness Coefficient on Floodchannel by Flows. Adv. River Eng. 2003, 9, 49–54. [Google Scholar]
- Ashida, K.; Egashira, S.; Takayuki, N. Structure and friction law of flow over a step-pool bed form. Disaster Prev. Res. Inst. Annu. 1986, 29, 391–403. [Google Scholar]
- Wilcox, A.C.; Wohl, E.E.; Comiti, F.; Mao, L. Hydraulics, Morphology, and Energy Dissipation in an Alpine Step-Pool Channel. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
Date and Time | Estimated Discharge at wl04 (m³/s) |
---|---|
8 August 2021 13:00 | 0.062 |
8 August 2021 15:20 | 0.416 |
8 August 2021 17:00 | 1.261 |
8 August 2021 17:20 | 1.876 |
8 August 2021 18:40 | 3.611 |
8 August 2021 19:10 | 5.617 |
8 August 2021 21:00 | 6.754 |
8 August 2021 22:20 | 8.056 |
13 August 2021 7:50 | 9.894 |
13 August 2021 8:20 | 11.519 |
Section Name | Mean Squared Error |
---|---|
S1–3 | 0.00017 |
S2–4 | 0.00031 |
S3–5 | 0.00003 |
S4–6 | 0.00008 |
S5–8 | 0.00023 |
S6–9 | 0.00048 |
S8–10 | 0.00183 |
S12–14 | 0.00012 |
S13–15 | 0.00021 |
S14–16 | 0.00003 |
Cal. Section Name | Manning’s Roughness Coefficient (s/m1/3) | Ratio of Width to Depth (m/m) | Slope (m/m) | D84 (m) | Relative Depth (m/m) | Ratio of Plant (m2/m2) | Step (%) | Riffle (%) | Rapid (%) | Pool (%) | H/L/S |
---|---|---|---|---|---|---|---|---|---|---|---|
S1–3 | 0.11 | 6.46 | 0.005 | 0.40 | 2.32 | 0.00 | 3.07 | 36.87 | 2.90 | 1.50 | 4.02 |
S2–4 | 0.06 | 4.94 | 0.025 | 1.25 | 0.87 | 0.00 | 3.38 | 22.70 | 3.83 | 3.04 | 1.06 |
S3–5 | 0.06 | 6.95 | 0.028 | 1.45 | 0.61 | 0.00 | 3.22 | 21.87 | 2.22 | 6.34 | 1.41 |
S4–6 | 0.09 | 6.51 | 0.018 | 0.55 | 1.88 | 0.01 | 3.79 | 31.39 | 0.82 | 5.80 | 3.11 |
S5–8 | 0.02 | 9.00 | 0.035 | 0.60 | 1.42 | 0.22 | 7.08 | 16.04 | 3.18 | 5.77 | 2.36 |
S6–9 | 0.05 | 10.29 | 0.035 | 0.75 | 1.31 | 0.39 | 5.84 | 20.04 | 2.35 | 4.71 | 2.06 |
S8–10 | 0.05 | 18.23 | 0.040 | 0.55 | 1.34 | 0.63 | 4.24 | 24.62 | 2.26 | 2.32 | 1.46 |
S12–14 | 0.10 | 9.44 | 0.023 | 0.70 | 1.84 | 0.30 | 6.96 | 17.45 | 2.02 | 8.06 | 3.13 |
S13–15 | 0.07 | 11.47 | 0.042 | 0.90 | 1.08 | 0.20 | 9.02 | 18.32 | 3.18 | 4.65 | 2.13 |
S14–16 | 0.07 | 12.39 | 0.041 | 1.05 | 0.76 | 0.14 | 9.03 | 16.88 | 3.95 | 7.27 | 2.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takata, H.; Obata, S.; Sato, T.; Shimatani, Y. Back-Calculation of Manning’s Roughness Coefficient by 2D Flow Simulation and Influence of In-Channel Physical Parameters in a Mountain River, Japan. Water 2024, 16, 320. https://doi.org/10.3390/w16020320
Takata H, Obata S, Sato T, Shimatani Y. Back-Calculation of Manning’s Roughness Coefficient by 2D Flow Simulation and Influence of In-Channel Physical Parameters in a Mountain River, Japan. Water. 2024; 16(2):320. https://doi.org/10.3390/w16020320
Chicago/Turabian StyleTakata, Hiroshi, Shogo Obata, Tatsuro Sato, and Yukihiro Shimatani. 2024. "Back-Calculation of Manning’s Roughness Coefficient by 2D Flow Simulation and Influence of In-Channel Physical Parameters in a Mountain River, Japan" Water 16, no. 2: 320. https://doi.org/10.3390/w16020320
APA StyleTakata, H., Obata, S., Sato, T., & Shimatani, Y. (2024). Back-Calculation of Manning’s Roughness Coefficient by 2D Flow Simulation and Influence of In-Channel Physical Parameters in a Mountain River, Japan. Water, 16(2), 320. https://doi.org/10.3390/w16020320