The Flood Simulation of the Modified Muskingum Model with a Variable Exponent Based on the Artificial Rabbit Optimization Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Variable Exponent Nonlinear Muskingum Model (VEP-NMM)
2.2. Artificial Rabbit Optimization Algorithm (ARO)
2.2.1. Detour Foraging Strategy (Exploration Phase)
2.2.2. Random Hiding Strategy (Exploitation Phase)
2.2.3. Energy Factor A
2.3. ARO-VEP-NMM Flood Simulation Model
2.4. Model Evaluation Metrics
3. Results and Discussion
3.1. Case 1—Wilson River (1974)
3.2. Case 2—Site Floods in the Zishui River Basin
3.3. Parameter Sensitivity Analysis
4. Conclusions
- Using the VEP-NMM model can enhance flood simulation accuracy, with parameter optimization being a crucial aspect of the model’s flood simulation. By utilizing the ARO algorithm for parameter optimization and testing with the Wilson (1974) River segment data for flood simulation, a comparison of seven different optimization methods revealed that the ARO algorithm provides higher optimization accuracy and better robustness. This offers a more effective method for Muskingum model parameter optimization.
- The ARO-VEP-NMM model, applied to simulate measured flood events in the Zishui River basin, accurately reproduces the movement and characteristics of floods. This further validates the excellent applicability of the ARO-VEP-NMM model in flood simulation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yin, J.B.; Guo, S.L.; Gentine, P.; Sullivan, S.C.; Gu, L.; He, S.K.; Chen, J.; Liu, P. Does the Hook Structure Constrain Future Flood Intensification Under Anthropogenic Climate Warming? Water Resour. Res. 2021, 57, e2020WR028491. [Google Scholar] [CrossRef]
- Wang, W.; Tian, W.; Chau, K.; Zang, H.; Ma, M.; Feng, Z.; Xu, D. Multi-Reservoir Flood Control Operation Using Improved Bald Eagle Search Algorithm with ε Constraint Method. Water 2023, 15, 692. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Su, B.; Wang, Y.; Xia, J.; Huang, J.; Jiang, T. Flood risk and its reduction in China. Adv. Water Resour. 2019, 130, 37–45. [Google Scholar] [CrossRef]
- Wang, Y.; Imai, K.; Miyashita, T.; Ariyoshi, K.; Takahashi, N.; Satake, K. Coastal tsunami prediction in Tohoku region, Japan, based on S-net observations using artificial neural network. Earth Planets Space 2023, 75, 154. [Google Scholar] [CrossRef]
- Sun, K.; Hu, L.; Guo, J.; Yang, Z.; Zhai, Y.; Zhang, S. Enhancing the understanding of hydrological responses induced by ecological water replenishment using improved machine learning models: A case study in Yongding River. Sci. Total Environ. 2021, 768, 145489. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Tian, W.; Xu, L.; Liu, C.; Xu, D. Mε-OIDE algorithm for solving constrained optimization problems and its application in flood control operation of reservoir group. Shuili Xuebao/J. Hydraul. Eng. 2023, 54, 148–158. [Google Scholar] [CrossRef]
- Norouzi, H.; Bazargan, J. Calculation of Water Depth during Flood in Rivers using Linear Muskingum Method and Particle Swarm Optimization (PSO) Algorithm. Water Resour. Manag. 2022, 36, 4343–4361. [Google Scholar] [CrossRef]
- McCarthy, G.T. The unit hydrograph and flood routing. In Proceedings of the Conference of North Atlantic Division, Wahsington, DC, USA, 24 June 1938. [Google Scholar]
- Lee, E.H. Development of a New 8-Parameter Muskingum Flood Routing Model with Modified Inflows. Water 2021, 13, 3170. [Google Scholar] [CrossRef]
- Gill, M.A. Flood routing by the Muskingum method. J. Hydrol. 1978, 36, 353–363. [Google Scholar] [CrossRef]
- Perumal, M.; Price, R.K. A fully mass conservative variable parameter McCarthy–Muskingum method: Theory and verification. J. Hydrol. 2013, 502, 89–102. [Google Scholar] [CrossRef]
- Easa, S.M. Evaluation of nonlinear Muskingum model with continuous and discontinuous exponent parameters. Ksce J. Civ. Eng. 2015, 19, 2281–2290. [Google Scholar] [CrossRef]
- Easa, S.M. Improved Nonlinear Muskingum Model with Variable Exponent Parameter. J. Hydrol. Eng. 2013, 18, 1790–1794. [Google Scholar] [CrossRef]
- Moradi, E.; Yaghoubi, B.; Shabanlou, S. A new technique for flood routing by nonlinear Muskingum model and artificial gorilla troops algorithm. Appl. Water Sci. 2023, 13, 49. [Google Scholar] [CrossRef]
- Okkan, U.; Kirdemir, U. Locally tuned hybridized particle swarm optimization for the calibration of the nonlinear Muskingum flood routing model. J. Water Clim. Chang. 2020, 11, 343–358. [Google Scholar] [CrossRef]
- Yuan, G.; Lu, J.; Wang, Z. The modified PRP conjugate gradient algorithm under a non-descent line search and its application in the Muskingum model and image restoration problems. Soft Comput. 2021, 25, 5867–5879. [Google Scholar] [CrossRef]
- Zhang, S.; Kang, L.; Zhou, L.; Guo, X. A new modified nonlinear Muskingum model and its parameter estimation using the adaptive genetic algorithm. Hydrol. Res. 2017, 48, 17–27. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Z.; Qiu, L.; Xu, D. Hybrid Chaotic Genetic Algorithms for Optimal Parameter Estimation of Muskingum Flood Routing Model. In Proceedings of the 2009 International Joint Conference on Computational Sciences and Optimization, Sanya, China, 24–26 April 2009; pp. 215–218. [Google Scholar]
- Wang, W.; Tian, W.; Chau, K.-W.; Xue, Y.; Xu, L.; Zang, H. An Improved Bald Eagle Search Algorithm with Cauchy Mutation and Adaptive Weight Factor for Engineering Optimization. CMES—Comput. Model. Eng. Sci. 2022, 136, 1603–1642. [Google Scholar] [CrossRef]
- Ehteram, M.; Othman, F.B.; Yaseen, Z.M.; Afan, H.A.; Allawi, M.F.; Malek, M.B.A.; Ahmed, A.N.; Shahid, S.; Singh, V.P.; El-Shafie, A. Improving the Muskingum Flood Routing Method Using a Hybrid of Particle Swarm Optimization and Bat Algorithm. Water 2018, 10, 807. [Google Scholar] [CrossRef]
- Wang, W.-C.; Xu, L.; Chau, K.-w.; Zhao, Y.; Xu, D.-M. An orthogonal opposition-based-learning Yin–Yang-pair optimization algorithm for engineering optimization. Eng. Comput. 2022, 38, 1149–1183. [Google Scholar] [CrossRef]
- Wang, L.Y.; Cao, Q.J.; Zhang, Z.X.; Mirjalili, S.; Zhao, W.G. Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2022, 114, 105082. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; Dahou, A.; Mabrouk, A.; El-Sappagh, S.; Aseeri, A.O. An Efficient Artificial Rabbits Optimization Based on Mutation Strategy For Skin Cancer Prediction. Comput. Biol. Med. 2023, 163, 107154. [Google Scholar] [CrossRef]
- Dangi, D.; Chandel, S.T.; Dixit, D.K.; Sharma, S.; Bhagat, A. An efficient model for sentiment analysis using artificial rabbits optimized vector functional link network. Expert Syst. Appl. 2023, 225, 119849. [Google Scholar] [CrossRef]
- Ozkaya, B.; Duman, S.; Kahraman, H.T.; Guvenc, U. Optimal solution of the combined heat and power economic dispatch problem by adaptive fitness-distance balance based artificial rabbits optimization algorithm. Expert Syst. Appl. 2024, 238, 122272. [Google Scholar] [CrossRef]
- Niazkar, M.; Afzali, S.H. Parameter estimation of an improved nonlinear Muskingum model using a new hybrid method. Hydrol. Res. 2017, 48, 1253–1267. [Google Scholar] [CrossRef]
- Swain, R.; Sahoo, B. Variable parameter McCarthy–Muskingum flow transport model for compound channels accounting for distributed non-uniform lateral flow. J. Hydrol. 2015, 530, 698–715. [Google Scholar] [CrossRef]
- Easa, S.M.; Barati, R.; Shahheydari, H.; Nodoshan, E.J.; Barati, T. Discussion: New and improved four-parameter non-linear Muskingum model. Proc. Inst. Civ. Eng. Water Manag. 2014, 167, 612–615. [Google Scholar] [CrossRef]
- Wang, W.C.; Tian, W.C.; Xu, D.M.; Chau, K.W.; Ma, Q.; Liu, C.J. Muskingum Models’ Development and their Parameter Estimation: A State-of-the-art Review. Water Resour. Manag. 2023, 37, 3129–3150. [Google Scholar] [CrossRef]
- Lu, C.; Ji, K.; Wang, W.; Zhang, Y.; Ealotswe, T.K.; Qin, W.; Lu, J.; Liu, B.; Shu, L. Estimation of the Interaction Between Groundwater and Surface Water Based on Flow Routing Using an Improved Nonlinear Muskingum-Cunge Method. Water Resour. Manag. 2021, 35, 2649–2666. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H.L. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. Int. J. Escience 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar] [CrossRef]
- Guojing, Z. Exploration of parameter estimation methods for the Maskingen model. J. China Hydrol. 1997, 3, 41–43+37. [Google Scholar] [CrossRef]
- Rui, W.; Jun, X.; Wenhua, Z. Application of Harmory Search Method in Parameter Estimation Based on Nonlinear Muskingum Model. Water Resour. Power 2008, 4, 36–39. [Google Scholar]
- Xixia, M.; Dandan, S.; Yugui, H. Parameter Estimation Method of Nonlinear Muskingum Model Based on PSO. J. Zhengzhou Univ. (Eng. Sci.) 2007, 4, 122–125. [Google Scholar]
- Xu, D.M.; Qiu, L.; Chen, S.Y. Estimation of Nonlinear Muskingum Model Parameter Using Differential Evolution. J. Hydrol. Eng. 2012, 17, 348–353. [Google Scholar] [CrossRef]
Index | ARO | AOA | HHO | AO |
---|---|---|---|---|
20.47 | 21.46 | 47.34 | 77.13 | |
25.21 | 35.63 | 27.69 | 65.28 | |
20.47 | 22.81 | 43.92 | 83.04 | |
20.47 | 38.50 | 68.00 | 122.33 | |
20.47 | 21.06 | 104.86 | 106.29 | |
20.53 | 42.29 | 52.63 | 80.51 | |
23.14 | 20.55 | 72.21 | 47.51 | |
20.47 | 24.38 | 37.48 | 89.49 | |
20.47 | 20.74 | 153.53 | 124.75 | |
20.47 | 21.02 | 29.98 | 36.63 | |
Best | 20.47 | 20.55 | 27.69 | 36.63 |
Average | 21.21 | 26.84 | 63.76 | 83.30 |
Standard deviation | 1.63 | 8.48 | 39.10 | 29.13 |
Time (s) | 6.35 | 2.54 | 2.97 | 3.98 |
Time Period /(h) | Actual Inflow /(m3/s) | Actual Measured Outflow /(m3/s) | Flood Routing Calculates Flow Rate /(m3/s) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
VEP-NMM | NMM | |||||||||
ARO | AOA | HHO | AO | DE | GA | HS | PSO | |||
0 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
6 | 23 | 21 | 22.7 | 22.7 | 22.9 | 22.8 | 22 | 22 | 22.7 | 22 |
12 | 35 | 21 | 23.7 | 23.7 | 24.2 | 24 | 22.4 | 22.4 | 23.5 | 22.6 |
18 | 71 | 26 | 26.5 | 26.5 | 26.1 | 25.9 | 26.6 | 26.3 | 26.1 | 28.1 |
24 | 103 | 34 | 33.6 | 33.6 | 32.4 | 32.4 | 34.5 | 34.2 | 35.9 | 32.2 |
30 | 111 | 44 | 43.4 | 43.4 | 42.5 | 42.9 | 44.2 | 44.2 | 45.2 | 45 |
36 | 109 | 55 | 56.1 | 56.1 | 55.7 | 56.5 | 56.9 | 56.9 | 57 | 57 |
42 | 100 | 66 | 67.2 | 67.2 | 67.2 | 68.3 | 68.1 | 68.2 | 67.5 | 67.5 |
48 | 86 | 75 | 76.2 | 76.2 | 76.2 | 77.4 | 77.1 | 77.1 | 76.2 | 75.9 |
54 | 71 | 82 | 82.3 | 82.3 | 82.2 | 83.4 | 83.3 | 83.2 | 81.1 | 81.2 |
60 | 59 | 85 | 84.9 | 84.8 | 84.5 | 85.4 | 85.9 | 85.7 | 4.5 | 85.6 |
66 | 47 | 84 | 83.6 | 83.5 | 83 | 83.5 | 84.5 | 84.2 | 83.5 | 84.2 |
72 | 39 | 80 | 79.8 | 79.8 | 79 | 79.1 | 80.6 | 80.2 | 80.1 | 79.6 |
78 | 32 | 73 | 73.3 | 73.2 | 72.5 | 72.2 | 73.7 | 73.3 | 73.3 | 73.3 |
84 | 28 | 64 | 65.4 | 65.3 | 64.6 | 64 | 65.4 | 65 | 65.4 | 65 |
90 | 24 | 54 | 55.1 | 55.2 | 54.2 | 53.4 | 56 | 55.8 | 55.7 | 56.2 |
96 | 22 | 44 | 44.8 | 44.9 | 43.9 | 43.5 | 46.7 | 46.7 | 46.1 | 46.5 |
102 | 21 | 36 | 36.6 | 36.6 | 36.2 | 36 | 37.8 | 38 | 36.6 | 37.3 |
108 | 20 | 30 | 29.7 | 29.7 | 29.8 | 29.7 | 30.5 | 30.9 | 29.5 | 29.7 |
114 | 19 | 25 | 24.5 | 24.4 | 24.6 | 24.9 | 25.2 | 25.7 | 24.3 | 24.3 |
120 | 19 | 22 | 22.9 | 22.8 | 23.4 | 23.4 | 21.7 | 22.1 | 20.8 | 20.6 |
126 | 18 | 19 | 19.3 | 19.1 | 19.5 | 19.9 | 20 | 20.2 | 20 | 19.6 |
NSE | 0.9983 | 0.9983 | 0.9978 | 0.9970 | 0.9969 | 0.9970 | 0.4669 | 0.9970 |
Model | ARO-VEP-NMM | AOA-VEP-NMM | HHO-VEP-NMM | AO-VEP-NMM | DE-NMM | GA-NMM | HS-NMM | PSO-NMM |
---|---|---|---|---|---|---|---|---|
SSQ | 20.47 | 20.55 | 27.69 | 36.63 | 36.77 | 38.23 | 36.78 | 36.89 |
SAD | 16.44 | 16.64 | 18.23 | 21.55 | 23.46 | 23 | 23.4 | 24.1 |
Flood Site | Measured Peak Value /(m3/s) | Simulated Peak/(m3/s) | QE /(%) | Peak Time Difference /(h) | NSE | Qualified or Not | |
---|---|---|---|---|---|---|---|
Regular rate | 20 June 2014 | 5180 | 4715.05 | 8.98 | 0 | 0.96 | Yes |
27 June 2014 | 1378.7 | 1290.26 | 6.42 | −4 | 0.39 | No | |
5 July 2014 | 1860 | 1761.21 | 5.31 | −2 | 0.74 | Yes | |
8 June 2015 | 3170 | 3468.67 | 9.42 | −3 | 0.82 | Yes | |
Average | 7.53 | 0.73 | |||||
Validation period | 10 June 2015 | 1701 | 1726.87 | 1.52 | 0 | 0.93 | Yes |
2 July 2015 | 3338 | 3883.24 | 16.33 | −2 | 0.87 | Yes | |
Average | 8.93 | 0.9 |
N | Best | Average | Worst | Standard Deviation | Time(s) |
---|---|---|---|---|---|
30 | 20.4657 | 21.2139 | 25.2026 | 1.6332 | 3.17 |
50 | 20.4657 | 20.5513 | 21.3215 | 0.2706 | 4.28 |
100 | 20.4657 | 20.4657 | 20.4657 | 6.86 × 10−14 | 6.35 |
200 | 20.4657 | 20.4657 | 20.4657 | 2.23 × 10−14 | 13.35 |
300 | 20.4657 | 20.4657 | 20.4657 | 5.32 × 10−14 | 15.67 |
Regular Rate | Validation Period | ||||
---|---|---|---|---|---|
N | QE | NSE | QE | NSE | Time(s) |
30 | 7.73 | 0.71 | 9.12 | 0.89 | 8.27 |
50 | 7.67 | 0.71 | 9.01 | 0.89 | 9.98 |
100 | 7.53 | 0.73 | 8.93 | 0.90 | 11.13 |
200 | 7.53 | 0.73 | 8.93 | 0.90 | 14.54 |
300 | 7.53 | 0.73 | 8.93 | 0.90 | 16.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Cui, Z.; Fan, T. The Flood Simulation of the Modified Muskingum Model with a Variable Exponent Based on the Artificial Rabbit Optimization Algorithm. Water 2024, 16, 339. https://doi.org/10.3390/w16020339
Li M, Cui Z, Fan T. The Flood Simulation of the Modified Muskingum Model with a Variable Exponent Based on the Artificial Rabbit Optimization Algorithm. Water. 2024; 16(2):339. https://doi.org/10.3390/w16020339
Chicago/Turabian StyleLi, Min, Zhirui Cui, and Tianyu Fan. 2024. "The Flood Simulation of the Modified Muskingum Model with a Variable Exponent Based on the Artificial Rabbit Optimization Algorithm" Water 16, no. 2: 339. https://doi.org/10.3390/w16020339
APA StyleLi, M., Cui, Z., & Fan, T. (2024). The Flood Simulation of the Modified Muskingum Model with a Variable Exponent Based on the Artificial Rabbit Optimization Algorithm. Water, 16(2), 339. https://doi.org/10.3390/w16020339