Modified Surface Drip Irrigation and Hydraulic Barrier Impacts on Soil Moisture and Water Productivity for Tomatoes in a Greenhouse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Amentment of Greenhouse’s Ridges Homogenous Sandy Soil Profiles
2.3. Developing Subsurface Micro-Irrigation Method (M-DI)
2.4. Agronomic Practices and Yield
2.5. Irrigation Measurements
2.6. Soil Moisture Measurement
2.7. Water Productivity
2.8. Benefit/Cost Analysis
2.8.1. Break-even Levels of Production and Prices
2.8.2. Revenues over Variable Cost and Revenues on Investment
3. Results
3.1. Actual Applied Irrigation Water
3.2. Soil Moisture of the Sandy Soil Layer above the Clay Layer
3.3. Soil Matric Potential of the Sandy Soil Layer below the Clay Layer
3.4. Water Productivity
3.5. Economic of Tomato Fruit Production
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grasham, C.F.; Korzenevica, M.; Charles, K.J. On considering climate resilience in urban water security: A review of the vulnerability of the urban poor in sub-Saharan Africa. WIREs Water 2019, 6, 1344. [Google Scholar] [CrossRef]
- Subahi, A.F.; Bouazza, K.E. An Intelligent IoT-based system design for controlling and monitoring greenhouse temperature. IEEE Access 2020, 8, 125488–125500. [Google Scholar] [CrossRef]
- Al-Omran, A.M.; Falatah, A.M.; Sheta, A.S.; Al-harbi, A.R. Clay deposits for water management of sandy soils. Arid Land Res. Manag. 2004, 18, 171–183. [Google Scholar] [CrossRef]
- Locascio, J.S. Management of irrigation for vegetables: Past, present, future. Hort. Technol. 2005, 15, 482–485. [Google Scholar] [CrossRef]
- Al-Ogaidi, A.M.A.; Wayayok, A.; Rowahon, M.K.; Abdullah, A.F. Wetting patterns estimation under drip irrigation systems using an enhanced empirical model. Agric. Water Manag. 2016, 176, 203–213. [Google Scholar] [CrossRef]
- Al-Harbi, A.R.; Al-Omran, A.M. Effect of natural and synthetic soil conditioners on the growth and production of cucumber in greenhouse. Acta Hortic. 2003, 609, 441–445. [Google Scholar] [CrossRef]
- Ismail, S.M.; Zien El-Abedin, T.K.; Wassif, M.A.; El-Nesr, M.N. Drip irrigation systems in sandy soil using physical and hydraulic barriers. Misr J. Ag. Eng. 2006, 23, 1021–1076. [Google Scholar]
- Chesworth, W. Encyclopedia of Soil Science; Springer: Dordrecht, The Netherlands, 2008; p. 614. [Google Scholar]
- APS (Agricultural Production Survey). Bulletin. 2019. Available online: https://www.stats.gov.sa/sites/default/files/Agriculture%20Production%20Survey%202019%20EN.pdf (accessed on 15 April 2024).
- Stanghellini, C.; Kempkes, F.L.K.; Knies, P. Enhancing environmental quality in agricultural systems. In Proceedings of the International Symposium on Managing Greenhouse Crops Saline Environment, Pisa, Italy, 9–12 July 2003; Volume 609, pp. 277–283. [Google Scholar]
- Stanghellini, C. Horticultural production in greenhouses: Efficient use of water. In Proceedings of the International Symposium on Growing Media and Soilless Cultivation 1034, Leiden, The Netherlands, 17 June 2013; ISHS Acta Horticulturae: Leuven, Belgium, 2013. [Google Scholar] [CrossRef]
- Al-Ghobari, H.M. Field evaluation of drip irrigation systems in Saudi Arabia. WIT Trans. Ecol. Environ. 2007, 103, 1743–3541. [Google Scholar]
- Yang, P.; Wu, L.; Cheng, M.; Fan, J.; Li, S.; Wang, H.; Qian, L. Review on Drip Irrigation: Impact on Crop Yield, Quality, and Water Productivity in China. Water 2023, 15, 1733. [Google Scholar] [CrossRef]
- Lamm, F.R.; Colaizzi, P.D.; Sorensen, R.B.; Bordovsky, J.P.; Dougherty, M.; Balkcom, K.; Zaccaria, D.; Bali, K.M.; Rudnick, D.R.; Peters, R.T. A 2020 vision of subsurface drip-irrigation in the U.S. Trans. ASABE 2021, 64, 41319–41343. [Google Scholar] [CrossRef]
- Cheng, H.; Ji, S.; Ge, H.; Abdalhi, M.A.M.; Zhu, T.; Chen, X.; Ding, W.; Feng, S. Optimizing Deficit Irrigation Management to Improve Water Productivity of Greenhouse Tomato under Plastic Film Mulching Using the RZ-SHAW Model. Agriculture 2022, 12, 1253. [Google Scholar] [CrossRef]
- Hashem, M.S.; Zin El-Abedin, T.; Al-Ghobari, H.M. Assessing effects of deficit irrigation techniques on water productivity of tomato for subsurface drip irrigation system. Int. J. Agric. Biol. Eng. 2018, 11, 156–167. [Google Scholar] [CrossRef]
- ASABE S526.4; Soil and Water Terminology. American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2019. Available online: https://elibrary.asabe.org/abstract.asp?aid=46413&t=3&dabs=Y&redir=&redirType= (accessed on 5 October 2024).
- Kacimov, A.R.; Obnosov, Y.V. Analytical solution for tension-saturated and unsaturated flow from wicking porous pipes in subsurface irrigation: The Kornev-Philip legacies revisited. Water Resour. Res. 2017, 53, 2542–2552. [Google Scholar] [CrossRef]
- Noguchi, K.; Saito, H.; Saefuddin, R.; Šimunek, J. Evaluation of Subsurface Drip Irrigation Designs in a Soil Profile with a Capillary Barrier. Water 2021, 13, 1300. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y. Water and nitrate distributions as affected by layered-textural soil and buried dripline depth under subsurface drip fertigation. Irrig. Sci. 2011, 29, 469–478. [Google Scholar] [CrossRef]
- Li, J.-S.; Ji, H.-y.; Li, B.; Liu, Y.-c. Wetting patterns and nitrate distributions in layered-textural soils under drip irrigation. Agric. Sci. China 2007, 6, 970–980. [Google Scholar] [CrossRef]
- Yunasa, G.H.; Kassim, A.; Umar, M.; Talib, Z.A.; Abdulfatah, A.Y. Laboratory investigation of suction distribution in a modified capillary barrier system. IOP Conf. Ser. Earth Environ. Sci. 2020, 476, 012047. [Google Scholar] [CrossRef]
- Skaggs, T.H.; Trout, T.J.; Rothfuss, Y. Drip Irrigation Water Distribution Patterns: Effects of Emitter Rate, Pulsing, and Antecedent Water. Soil Sci. Soc. Am. J. 2010, 74, 1886–1896. [Google Scholar] [CrossRef]
- Dasberg, S.; Or, D. Drip Irrigation; Springer: Berlin/Heidelberg, Germany, 1999; p. 162. [Google Scholar]
- Kandelous, M.M.; Simunek, J. Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D. Agric. Water Manag. 2010, 97, 1070–1076. [Google Scholar] [CrossRef]
- Hooshmanda, H.; Mohammad, A.M.; Boroomand Nasaba, S.; Ansari, N.A. The effect of deficit irrigation on yield and yield components of greenhouse tomato (Solanum lycopersicum) in hydroponic culture in Ahvaz region, Iran. Sci. Hortic. 2019, 254, 84–90. [Google Scholar] [CrossRef]
- IRROMETER 2023. Available online: https://www.irrometer.com/sensors.html (accessed on 29 December 2023).
- Abdulaziz, A.H.; Abdulrasoul, A.O.; Thabet, A.; Hesham, A.R.; Khadejah, A.; Saad, M.; Abdullah, O. Tomato grafting impacts on yield and fruit quality under water stress conditions. J. Exp. Biol. Agric. Sci. 2017, 5, S136–S147. [Google Scholar] [CrossRef]
- Ibeje, A.O. Cost-benefit analysis of urban water supply and distribution scheme. J. Appl. Sci. Environ. Manag. 2019, 23, 365–370. [Google Scholar] [CrossRef]
- McGee, J. Break-even analysis. In Wiley Encyclopedia of Management; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Naumann, M.; Karl, R.C.; Truong, C.N.; Jossen, A.; Hesse, H.C. Lithium-ion battery cost analysis in PV-household application. Energy Procedia 2015, 73, 37–47. [Google Scholar] [CrossRef]
- Ohio University. Green House Industry. 2017. Available online: https://u.osu.edu/greenhouse/hydroponic-crop-program-links/ (accessed on 3 October 2023).
- Istrate, C. Financial auditing and financial reporting for Romanian state-owned companies—Modified opinions and observations. JAMIS 2018, 17, 513–531. [Google Scholar] [CrossRef]
- Elfeky, A.; Elfaki, J. A Review: Date Palm Irrigation Methods and Water Resources in the Kingdom of Saudi Arabia. JERR 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Al-Amoud, A. Subsurface drip irrigation for date palm trees to conserve water. In Proceedings of the IV International Date Palm Conference, International Society for Horticultural Science 882, Abu Dhabi, United Arab Emirates, 15–17 March 2010. [Google Scholar]
- Kalfountzos, D.; Alexiou, I.; Kotsopoulos, S.; Zavakos, G.; Vyrlas, P. Effect of subsurface drip irrigation on cotton plantations. Water Resour. Manag. 2007, 21, 1341–1351. [Google Scholar] [CrossRef]
- Benson, C.H.; Khire, M.V.; Raton, F. Earthen materials in surface barriers. In Workshop for Barrier Technology for Environmental Management; National Academy Press: Washington, DC, USA, 1997; Available online: https://www.researchgate.net/profile/CraigBenson3/publication/313495578_Earthen_materials_in_surface_barr (accessed on 16 June 2024).
- Rodríguez-Sinobas, L.; Zubelzu, S.; Martín-Sotoca, J.J.; Tarquis, A.M. Multiscaling analysis of soil water content during irrigation events. Comparison between surface and subsurface drip irrigation. Geoderma 2021, 382, 114777. [Google Scholar] [CrossRef]
- Chand, J.; Hewa, G.; Hassanli, A.; Myers, B. Evaluation of deficit irrigation and water quality on production and water productivity of tomato in Greenhouse. Agriculture 2020, 10, 297. [Google Scholar] [CrossRef]
- Singh, J.; Sandal, S.K.; Yousuf, A.; Sandhu, P.S. Effect of Drip Irrigation and Fertigation on Soil Water Dynamics and Productivity of Greenhouse Tomatoes. Water 2023, 15, 2086. [Google Scholar] [CrossRef]
- Shu, L.Z.; Liu, R.; Min, W.; Wang, Y.S.; Yu, H.; Zhu, P.F.; Zhu, J.R. Regulation of soil water threshold on tomato plant growth and fruit quality under alternate partial root-zone drip irrigation. Agric. Water Manag. 2020, 238, 106200. [Google Scholar] [CrossRef]
Soil Profile | Depth (cm) | Sand% | Silt% | Clay% | Organic % | CaCO3 % | EC (m/cm) | pH | Ks (cm/h) |
---|---|---|---|---|---|---|---|---|---|
Top homogenous sandy soil | 1–15 | 90 | 4 | 6 | 0.9 | 4.1 | 1.33 | 7.9 | 26.2 |
Layered soil (sand-clay-sand) | 15–30 | 50 | 20 | 30 | 4.8 | 17.4 | 0.71 | 7.8 | - |
Layered soil (sand-clay-sand) | 30–50 | 48 | 20 | 32 | 4.7 | 15.2 | 1.27 | 7.7 | - |
Water Quality | EC (dS/m) | SAR | CaCO3 (ppm) | NO3 (ppm) | pH | ||||
Indicators | 1.3 | 2.8 | 47 | 4.6 | 7.2 |
Source | DF | SS | MS | F | P |
---|---|---|---|---|---|
Irrigation method (M-DI, DI) | 1 | 0.170 | 0.170 | 57.78 | 0.0000 |
Irrigation regime (ETo) | 2 | 0.060 | 0.030 | 10.14 | 0.0001 |
Irrigation time (T) | 9 | 1.516 | 0.168 | 57.21 | 0.0000 |
M-DI,DI *ETo | 2 | 0.034 | 0.017 | 5.69 | 0.0044 |
M-DI, DI *T | 9 | 0.073 | 0.008 | 2.75 | 0.0059 |
ETo*T | 18 | 0.462 | 0.026 | 8.72 | 0.0000 |
M-DI,DI *ETo*T | 18 | 0.055 | 0.003 | 1.03 | 0.4307 |
Irrigation Time (T) | 100%ETo | 75%ETo | 50%ETo |
---|---|---|---|
24-December | 0.196IL | 0.147HL | 0.124FH |
31-December | 0.196L | 0.097KL | 0.087FH |
7-January | 0.218HL | 0.149HL | 0.144EG |
14-January | 0.228IL | 0.120IL | 0.125EF |
21-January | 0.151JL | 0.110JL | 0.108HK |
28-January | 0.160IL | 0.117IL | 0.122GJ |
4-February | 0.179HL | 0.114JL | 0.135FI |
11-February | 0.141HL | 0.128IL | 0.135HL |
25-February | 0.420A | 0.317CD | 0.261DE |
5-March | 0.401AB | 0.331CD | 0.322CD |
Method | DI (control) | M-DI, 50% | M-DI, 75% | M-DI, 100% |
---|---|---|---|---|
Tomato fruit yield, returns and costs: | ||||
Yield kg/m2 | 8.32 | 13.2 | 12.7 | 13.6 |
Fixed cost/m2 | 4.3 | 4.5 | 4.5 | 4.5 |
Variable cost/m2 | 19.7 | 19.7 | 19.7 | 19.7 |
Price/kg | 6.5 | 6.5 | 6.5 | 6.5 |
Return/m2 | 54.08 | 85.8 | 82.6 | 88.4 |
VC + FC | 24 | 24.2 | 24.2 | 24.2 |
net returns/m2 | 30.08 | 61.6 | 58.4 | 64.2 |
Fixed cost/kg | 0.52 | 0.34 | 0.35 | 0.33 |
Variable cost/kg | 2.36 | 1.5 | 1.6 | 1.44 |
Total cost/kg | 2.88 | 1.83 | 1.9 | 1.77 |
Profit/kg | 3.62 | 4.6 | 4.5 | 4.73 |
Net Return on investment | 1.25 | 2.5 | 2.4 | 2.6 |
Irrigation Method | Revenue per m2 (SR) | (VC + FC)/m2 (SR) | Benefit/Cost Ratio |
---|---|---|---|
Conventional surface drip irrigation (DI) | 54.08 | 24 | 2.3 |
Modified surface drip irrigation (M-DI, 100%) | 88.4 | 24.2 | 3.6 |
Modified surface drip irrigation (M-DI, 75%) | 82.6 | 24.2 | 3.4 |
Modified surface drip irrigation (M-DI, 50%) | 85.8 | 24.2 | 3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeineldin, F.I.; Turk, K.G.B.; Elmulthum, N.A. Modified Surface Drip Irrigation and Hydraulic Barrier Impacts on Soil Moisture and Water Productivity for Tomatoes in a Greenhouse. Water 2024, 16, 2926. https://doi.org/10.3390/w16202926
Zeineldin FI, Turk KGB, Elmulthum NA. Modified Surface Drip Irrigation and Hydraulic Barrier Impacts on Soil Moisture and Water Productivity for Tomatoes in a Greenhouse. Water. 2024; 16(20):2926. https://doi.org/10.3390/w16202926
Chicago/Turabian StyleZeineldin, Faisal Ibrahim, Khalid G. Biro Turk, and Nagat Ahmed Elmulthum. 2024. "Modified Surface Drip Irrigation and Hydraulic Barrier Impacts on Soil Moisture and Water Productivity for Tomatoes in a Greenhouse" Water 16, no. 20: 2926. https://doi.org/10.3390/w16202926
APA StyleZeineldin, F. I., Turk, K. G. B., & Elmulthum, N. A. (2024). Modified Surface Drip Irrigation and Hydraulic Barrier Impacts on Soil Moisture and Water Productivity for Tomatoes in a Greenhouse. Water, 16(20), 2926. https://doi.org/10.3390/w16202926