Assessment of Future Water Security under Climate Change: Practical Water Allocation Scenarios in a Drought-Prone Watershed in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil and Water Assessment Tool
2.3. K-WEAP
2.3.1. Model Setting
2.3.2. Input Data
2.4. Climate Change Scenarios
2.4.1. Coupled Model Intercomparison Project 6
2.4.2. Extreme Precipitation Indices
2.5. Water Allocation Scenarios
2.6. Future Water Security
3. Results and Discussion
3.1. Calibration Results
3.2. Determination of Dry Scenarios
3.3. Evaluation of Future Water Security
3.3.1. Unmet Demand/Demand Coverage
3.3.2. RRV and AI
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, H.; Wang, Z.; Zhao, S.; Li, J. Changes in anthropogenic particulate matters and resulting global climate effects since the Industrial Revolution. Int. J. Climatol. 2022, 42, 315–330. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 6th ed.; Pörtner, H.-O., Roberts, D.C., Poloczanska, E.S., Mintenbeck, K., Tignor, M., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 3–33. [Google Scholar] [CrossRef]
- ME (Ministry of the Environment). The 1st Master Plan for National Water Management (2021–2030); ME (Ministry of the Environment): Sejong, Republic of Korea, 2021. (In Korean) [Google Scholar]
- NIMS (National Institute of Meteorological Sciences). Report on High-Resolution Projection of Future Climate Change; NIMS (National Institute of Meteorological Sciences): Jeju-island, Republic of Korea, 2022. (In Korean) [Google Scholar]
- Dubrovsky, M.; Svoboda, M.D.; Trnka, M.; Hayes, M.J.; Wilhite, D.A.; Zalud, Z.; Hlavinka, P. Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia. Theor. Appl. Climatol. 2009, 96, 155–171. [Google Scholar] [CrossRef]
- Wilhite, D.A. Integrated drought management: Moving from managing disasters to managing risk. Integr. Drought Manag. 2024, 2, 507–514. [Google Scholar]
- Lloyd-Hughes, B. The impracticality of a universal drought definition. Theor. Appl. Climatol. 2014, 117, 607–611. [Google Scholar] [CrossRef]
- Vargas Molina, J.; Paneque Salgado, P. Methodology for the analysis of causes of drought vulnerability on river basin scale. Nat. Hazards 2017, 89, 609–621. [Google Scholar] [CrossRef]
- Watts, G.; von Christierson, B.; Hannaford, J.; Lonsdale, K. Testing the resilience of water supply systems to long droughts. J. Hydrol. 2012, 414–415, 255–267. [Google Scholar] [CrossRef]
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dyn. 2008, 31, 79–105. [Google Scholar] [CrossRef]
- Cayan, D.R.; Das, T.; Pierce, D.W.; Barnett, T.P.; Tyree, M.; Gershunov, A. Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc. Natl. Acad. Sci. USA 2010, 107, 21271–21276. [Google Scholar] [CrossRef]
- WWAP. The United Nations World Water Development Report 2016: Water and Jobs; United Nations World Water Assessment Programme; UNESCO: Paris, France, 2016. [Google Scholar]
- Guimarães, L.T.; Magrini, A. A proposal of indicators for sustainable development in the management of river basins. Water Resour. Manag. 2008, 22, 1191–1202. [Google Scholar] [CrossRef]
- Harmancioglu, N.B. Overview of water policy developments: Pre- and post-2015 development agenda. Water Resour. Manag. 2017, 31, 3001–3021. [Google Scholar] [CrossRef]
- Navarro-Ramírez, V.; Ramírez-Hernandez, J.; Gil-Samaniego, M.; Eliana Rodríguez-Burgueño, J.E. Methodological frameworks to assess sustainable water resources management in industry: A review. Ecol. Indic. 2020, 119, 106819. [Google Scholar] [CrossRef]
- OCED Publishing. Water Resources Allocation: Sharing Risks and Opportunities; OECD Publishing: Paris, France, 2015. [Google Scholar]
- Lee, H.J.; Shim, M.P. Decision making for priority of water allocation during drought by analytic hierarchy process. J. Korea Water Resour. Assoc. 2002, 35, 703–714. [Google Scholar] [CrossRef]
- Choi, S.J.; Kim, J.H.; Lee, D.R. Decision of the water shortage mitigation policy using multi-criteria decision analysis. KSCE J. Civ. Eng. 2012, 16, 247–253. [Google Scholar] [CrossRef]
- Lim, J.S.; Kang, S.W.; Kim, H.N.; Lee, E.R. Evaluation of potential securing instream flow according to estimating operation rule in Naeseongcheon watershed. Korean Soc. Hazard Mitig. 2017, 17, 265–277. [Google Scholar] [CrossRef]
- Kim, D.; Chun, J.A.; Choi, S.J. Incorporating the logistic regression into a decision-centric assessment of climate change impacts on a complex river system. Hydrol. Earth Syst. Sci. 2019, 23, 1145–1162. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Cheng, L.; Liu, K.; Ye, A.; Cai, X. Optimizing operating rules for a reservoir system in northern China considering ecological flow requirements and water use priorities. J. Water Resour. Plan. Manag. 2020, 146, 04020051. [Google Scholar] [CrossRef]
- Luo, P.; Sun, Y.; Wang, S.; Wang, S.; Lyu, J.; Zhou, M.; Nakagami, K.; Takara, K.; Nover, D. Historical assessment and future sustainability challenges of Egyptian water resources management. J. Clean. Prod. 2020, 263, 121154. [Google Scholar] [CrossRef]
- Zehtabian, E.; Masoudi, R.; Yazdandoost, F.; Sedghi-Asl, M.; Loáiciga, H.A. Investigation of water allocation using integrated water resource management approaches in the Zayandehroud River basin, Iran. J. Clean. Prod. 2023, 395, 136339. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development 1. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, R.D.; Harmel, A.; van Griensven, M.W.; Van Liew, N.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Krysanova, V.; White, M. Advances in water resources assessment with SWAT—An overview. Hydrol. Sci. J. 2015, 60, 1–13. [Google Scholar] [CrossRef]
- Choi, S.J.; Lee, D.R.; Moon, J.W.; Kang, S.K. Application of K-WEAP (Korea-integrated water resources evaluation and planning model). J. Korea Water Resour. Assoc. 2010, 43, 625–633. [Google Scholar] [CrossRef]
- Kang, S.K.; Choi, S.J.; Lee, D.R. Evaluation and re-estimation of instream flow considering the water quality and aquatic ecosystem of the Seomjingang River watershed. J. Korean Soc. Hazard Mitig. 2021, 21, 347–355. [Google Scholar] [CrossRef]
- Jeong, G.; Kang, D. Hydro-Economic Water Allocation model for water supply risk analysis: A case study of Namhan River Basin, South Korea. Sustainability 2021, 13, 6005. [Google Scholar] [CrossRef]
- Kim, Y.J.; Wu, D.; Lee, J.H.; Kim, J.S.; Park, S.Y. Evaluation and securing of ecological flow by linking fish growth scenarios and basin water budget analysis. Ecol. Indic. 2024, 158, 111468. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure and Transport. The 4th Long-Term Comprehensive Plan of Water Resources 2001–2020, 3rd ed.; K-Water; MOLIT: Seoul, Republic of Korea, 2016. (In Korean) [Google Scholar]
- Huang, Q.; Ju, W.; Zhang, F.; Zhang, Q. Roles of climate change and increasing CO2 in driving changes of net primary productivity in China simulated using a dynamic global vegetation model. Sustainability 2019, 11, 4176. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Simpkins, G. Progress in climate modelling. Nat. Clim. Change 2017, 7, 684–685. [Google Scholar] [CrossRef]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Change 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Estrela, T.; Vargas, E. Drought management plans in the European Union. The case of Spain. Water Resour. Manag. 2012, 26, 1537–1553. [Google Scholar] [CrossRef]
- Capra, A.; Consoli, S.; Scicolone, B. Long-term climatic variability in Calabria and effects on drought and agrometeorological parameters. Water Resour. Manag. 2013, 27, 601–617. [Google Scholar] [CrossRef]
- Lee, J.J.; Kwon, H.H.; Kim, T.W. Spatio-temporal analysis of extreme precipitation regimes across South Korea and its application to regionalization. J. Hydro-Environ. Res. 2012, 6, 101–110. [Google Scholar] [CrossRef]
- Hashimoto, T.; Stedinger, J.R.; Loucks, D.P. Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resour. Res. 1982, 18, 14–20. [Google Scholar] [CrossRef]
- Varady, R.G.; Zuniga-Teran, A.A.; Garfin, G.M.; Martín, F.; Vicuña, S. Adaptive management and water security in a global context: Definitions, concepts, and examples. Curr. Opin. Environ. Sustain. 2016, 21, 70–77. [Google Scholar] [CrossRef]
- Bi, D.; Dix, M.; Marsland, S.; O’Farrell, S.; Sullivan, A.; Bodman, R.; Law, R.; Harman, I.; Srbinovsky, J.; Rashid, H.A.; et al. Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model. J. South. Hemisph. Earth Syst. Sci. 2020, 70, 225–251. [Google Scholar] [CrossRef]
- Swart, N.C.; Cole, J.N.S.; Kharin, V.V.; Lazare, M.; Scinocca, J.F.; Gillett, N.P.; Anstey, J.; Arora, V.; Christian, J.R.; Jiao, Y. CCCma CanESM5 Model Output Prepared for CMIP6 ScenarioMIP; Earth System Grid Federation: Washington, DC, USA, 2019. [Google Scholar]
- Voldoire, A. CNRM-CERFACS CNRM-CM6-1 Model Output Prepared for CMIP6 ScenarioMIP; Earth System Grid Federation: Washington, DC, USA, 2019. [Google Scholar]
- John, J.G.; Blanton, C.; McHugh, C.; Radhakrishnan, A.; Rand, K.; Vahlenkamp, H.; Wilson, C.; Zadeh, N.T.; Dunne, J.P.; Dussin, R.; et al. NOAA-GFDL GFDL-ESM4 Model Output Prepared for CMIP6 ScenarioMIP; Earth System Grid Federation: Washington, DC, USA, 2018. [Google Scholar]
- Volodin, E.; Mortikov, E.; Gritsun, A.; Lykossov, V.; Galin, V.; Diansky, N.; Gusev, A.; Kostrykin, S.; Iakovlev, N.; Shestakova, A.; et al. INM INM-CM4-8 Model Output Prepared for CMIP6 ScenarioMIP; Earth System Grid Federation: Washington, DC, USA, 2019. [Google Scholar]
- Volodin, E.; Mortikov, E.; Gritsun, A.; Lykossov, V.; Galin, V.; Diansky, N.; Gusev, A.; Kostrykin, S.; Iakovlev, N.; Shestakova, A.; et al. INM INM-CM5-0 Model Output Prepared for CMIP6 ScenarioMIP ssp370; Earth System Grid Federation: Washington, DC, USA, 2019. [Google Scholar]
- Boucher, O.; Denvil, S.; Levavasseur, G.; Cozic, A.; Caubel, A.; Foujols, M.A.; Meurdesoif, Y.; Cadule, P.; Devilliers, M.; Dupont, E.; et al. IPSL IPSL-CM6A-LR Model Output Prepared for CMIP6 ScenarioMIP; Earth System Grid Federation: Washington, DC, USA, 2019. [Google Scholar]
- Tatebe, H.; Ogura, T.; Nitta, T.; Komuro, Y.; Ogochi, K.; Takemura, T.; Sudo, K.; Sekiguchi, M.; Abe, M.; Saito, F.; et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 2019, 12, 2727–2765. [Google Scholar] [CrossRef]
- Mauritsen, T.; Bader, J.; Becker, T.; Behrens, J.; Bittner, M.; Brokopf, R.; Brovkin, V.; Claussen, M.; Crueger, T.; Esch, M.; et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. J. Adv. Model. Earth Syst. 2019, 11, 998–1038. [Google Scholar] [CrossRef]
- Wieners, K.H.; Giorgetta, M.; Jungclaus, J.; Reick, C.; Esch, M.; Bittner, M.; Gayler, V.; Haak, H.; de Vrese, P.; Raddatz, T.; et al. MPI-M MPIESM1.2-LR Model Output Prepared for CMIP6 ScenarioMIP; Earth System Grid Federation: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- Yukimoto, S.; Koshiro, T.; Kawai, H.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M.; et al. MRI MRI-ESM2.0 Model Output Prepared for CMIP6 ScenarioMIP; Earth System Grid Federation: Washington, DC, USA, 2019. [Google Scholar]
- Seland, Ø.; Bentsen, M.; Olivié, D.; Toniazzo, T.; Gjermundsen, A.; Graff, L.S.; Debernard, J.B.; Gupta, A.K.; He, Y.C.; Kirkevåg, A.; et al. Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev. 2020, 13, 6165–6200. [Google Scholar] [CrossRef]
- Good, P.; Sellar, A.; Tang, Y.; Rumbold, S.; Ellis, R.; Kelley, D.; Kuhlbrodt, T.; Walton, J.; Ukesm, M. 1.0-LL Model Output Prepared for CMIP6 ScenarioMIP; Earth System Grid Federation: Washington, DC, USA, 2019. [Google Scholar]
Calibration Point | R2 | Percent BIAS (%) |
---|---|---|
Point 1 | 0.81 | +2.35 |
Point 2 | 0.63 | +2.90 |
Point 3 | 0.78 | −0.08 |
Point 4 | 0.65 | −3.31 |
Point 5 | 0.64 | +3.05 |
Point 6 | 0.62 | +0.86 |
Climate Model | SSP | Category | Water Allocation | Unmet Demand (Mm3/year) (Demand Coverage) | |||
---|---|---|---|---|---|---|---|
Total | Domestic | Industrial | Agricultural | ||||
INM-CM4-8 | SSP5 | Dry | Scenario 1 | 102.155 (91.37%) | 1.066 (99.10%) | 28.107 (91.80%) | 72.982 (89.90%) |
Scenario 2 | 93.904 (92.07%) | 0.929 (99.22%) | 19.849 (94.21%) | 73.126 (89.88%) | |||
Scenario 3 | 95.074 (91.97%) | 1.721 (98.55%) | 20.776 (93.94%) | 72.577 (89.95%) | |||
Scenario 4 | 111.313 (90.60%) | 4.970 (95.82%) | 32.669 (90.47%) | 73.674 (89.80%) | |||
Scenario 5 | 103.842 (91.23%) | 5.047 (95.75%) | 25.070 (92.69%) | 73.725 (89.80%) | |||
INM-CM4-8 | SSP2 | Scenario 1 | 93.809 (92.08%) | 0.718 (99.40%) | 27.392 (92.01%) | 65.699 (90.91%) | |
Scenario 2 | 84.850 (92.83%) | 0.599 (99.50%) | 18.508 (94.60%) | 65.743 (90.90%) | |||
Scenario 3 | 84.795 (92.84%) | 1.219 (98.97%) | 18.349 (94.65%) | 65.227 (90.97%) | |||
Scenario 4 | 103.202 (91.28%) | 4.533 (96.18%) | 32.376 (90.56%) | 66.293 (90.82%) | |||
Scenario 5 | 95.134 (91.97%) | 4.530 (96.19%) | 24.304 (92.91%) | 66.300 (90.82%) | |||
MIROC6 | SSP3 | Scenario 1 | 84.030 (92.90%) | 1.079 (99.09%) | 28.102 (91.80%) | 54.849 (92.41%) | |
Scenario 2 | 76.264 (93.56%) | 0.970 (99.18%) | 20.785 (93.94%) | 54.509 (92.46%) | |||
Scenario 3 | 75.727 (93.60%) | 1.488 (98.75%) | 19.608 (94.28%) | 54.631 (92.44%) | |||
Scenario 4 | 92.331 (92.20%) | 4.515 (96.20%) | 32.661 (90.47%) | 55.155 (92.37%) | |||
Scenario 5 | 84.199 (92.89%) | 4.538 (96.18%) | 24.491 (92.86%) | 55.170 (92.36%) | |||
MRI-ESM2-0 | SSP3 | Moderate | Scenario 1 | 43.188 (96.35%) | 0.069 (99.94%) | 19.393 (94.34%) | 23.726 (96.72%) |
Scenario 2 | 33.258 (97.19%) | 0.063 (99.95%) | 9.460 (97.24%) | 23.735 (96.71%) | |||
Scenario 3 | 29.600 (97.50%) | 0.122 (99.90%) | 5.842 (98.30%) | 23.636 (96.73%) | |||
Scenario 4 | 44.111 (96.27%) | 0.652 (99.45%) | 19.724 (94.25%) | 23.735 (96.71%) | |||
Scenario 5 | 34.562 (97.08%) | 0.601 (99.49%) | 10.254 (97.01%) | 23.707 (96.72%) |
Category | Water Allocation | Unmet Demand (Mm3/year) (Demand Coverage) | |||
---|---|---|---|---|---|
Total | Point C | Point G | Point L | ||
Dry | Scenario 1 | 6.616 | 4.267 (90.54%) | 1.078 (96.40%) | 0.383 (98.82%) |
Scenario 2 | 6.508 | 4.262 (90.55%) | 1.057 (96.47%) | 0.377 (98.84%) | |
Scenario 3 | 5.775 | 4.441 (90.15%) | 0.688 (97.70%) | 0.189 (99.42%) | |
Scenario 4 | 4.616 | 3.752 (91.68%) | 0.721 (97.59%) | - | |
Scenario 5 | 4.629 | 3.761 (91.66%) | 0.714 (97.62%) | 0.008 (99.99%) | |
Moderate | Scenario 1 | 1.072 | 1.052 (97.67%) | - | - |
Scenario 2 | 1.074 | 1.052 (97.67%) | - | - | |
Scenario 3 | 1.171 | 1.170 (97.41%) | - | - | |
Scenario 4 | 0.958 | 0.958 (97.88%) | - | - | |
Scenario 5 | 0.958 | 0.958 (97.88%) | - | - |
Water Use | Climate | Index | Water Allocation Scenario | ||||
---|---|---|---|---|---|---|---|
Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | |||
Domestic | Dry | Rel (%) | 0.951 | 0.956 | 0.925 | 0.886 | 0.890 |
Res | 0.311 | 0.316 | 0.255 | 0.176 | 0.178 | ||
Vul (Mm3) | 0.093 | 0.092 | 0.123 | 0.330 | 0.345 | ||
Moderate | Rel (%) | 0.996 | 0.997 | 0.982 | 0.958 | 0.964 | |
Res | 0.588 | 0.543 | 0.428 | 0.223 | 0.235 | ||
Vul (Mm3) | 0.030 | 0.048 | 0.020 | 0.092 | 0.092 | ||
Industrial | Dry | Rel (%) | 0.946 | 0.956 | 0.961 | 0.944 | 0.952 |
Res | 0.453 | 0.510 | 0.476 | 0.412 | 0.426 | ||
Vul (Mm3) | 1.419 | 1.097 | 1.334 | 1.532 | 1.542 | ||
Moderate | Rel (%) | 0.956 | 0.964 | 0.972 | 0.957 | 0.964 | |
Res | 0.542 | 0.588 | 0.620 | 0.511 | 0.550 | ||
Vul (Mm3) | 0.971 | 0.557 | 0.424 | 1.098 | 0.645 | ||
Agricultural | Dry | Rel (%) | 0.967 | 0.968 | 0.968 | 0.968 | 0.968 |
Res | 0.297 | 0.297 | 0.294 | 0.293 | 0.293 | ||
Vul (Mm3) | 1.501 | 1.510 | 1.500 | 1.532 | 1.542 | ||
Moderate | Rel (%) | 0.987 | 0.987 | 0.987 | 0.987 | 0.987 | |
Res | 0.423 | 0.423 | 0.424 | 0.423 | 0.423 | ||
Vul (Mm3) | 0.852 | 0.851 | 0.834 | 0.837 | 0.837 | ||
Instream flow | Dry | Rel (%) | 0.966 | 0.967 | 0.972 | 0.977 | 0.977 |
Res | 0.288 | 0.289 | 0.279 | 0.276 | 0.275 | ||
Vul (Mm3) | 0.732 | 0.720 | 0.782 | 0.777 | 0.779 | ||
Moderate | Rel (%) | 0.991 | 0.991 | 0.992 | 0.993 | 0.993 | |
Res | 0.384 | 0.385 | 0.359 | 0.338 | 0.338 | ||
Vul (Mm3) | 0.342 | 0.339 | 0.412 | 0.415 | 0.414 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W.; Choi, S.; Kang, S.; Woo, S. Assessment of Future Water Security under Climate Change: Practical Water Allocation Scenarios in a Drought-Prone Watershed in South Korea. Water 2024, 16, 2933. https://doi.org/10.3390/w16202933
Kim W, Choi S, Kang S, Woo S. Assessment of Future Water Security under Climate Change: Practical Water Allocation Scenarios in a Drought-Prone Watershed in South Korea. Water. 2024; 16(20):2933. https://doi.org/10.3390/w16202933
Chicago/Turabian StyleKim, Wonjin, Sijung Choi, Seongkyu Kang, and Soyoung Woo. 2024. "Assessment of Future Water Security under Climate Change: Practical Water Allocation Scenarios in a Drought-Prone Watershed in South Korea" Water 16, no. 20: 2933. https://doi.org/10.3390/w16202933
APA StyleKim, W., Choi, S., Kang, S., & Woo, S. (2024). Assessment of Future Water Security under Climate Change: Practical Water Allocation Scenarios in a Drought-Prone Watershed in South Korea. Water, 16(20), 2933. https://doi.org/10.3390/w16202933