Numerical Simulations of a Permeability Test on Non-Cohesive Soil Under an Increasing Water Level
Abstract
:1. Introduction
2. Indoor Permeation Test
3. Numerical Simulation
3.1. Principles of Saturated-Unsaturated Seepage Analysis
3.2. Finite Element Modeling
3.3. Finite Element Model Validation
4. Parametric Analysis of Simulation
4.1. Variation of Flow Rate and Velocity Under Different Permeability Coefficients
4.2. Variation of Flow Rate and Velocity Under Different Seepage Length
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.Z.; Pan, Q.; Chen, Y.; Luo, Z.J.; Shi, Z.M.; Zhou, Y.Y. Characteristics of landslide-debris flow accumulation in mountainous areas. Heliyon 2019, 5, 10. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Fan, X.M.; Subramanian, S.S.; Yang, F.; Tang, R.; Xu, Q.; Huang, R.Q. Probabilistic rainfall thresholds for debris flows occurred after the Wenchuan earthquake using a Bayesian technique. Eng. Geol. 2021, 280, 15. [Google Scholar] [CrossRef]
- Qiao, L.; Meng, X.M.; Chen, G.; Zhang, Y.; Guo, P.; Zeng, R.Q.; Li, Y.J. Effect of rainfall on a colluvial landslide in a debris flow valley. J. Mt. Sci. 2017, 14, 1113–1123. [Google Scholar] [CrossRef]
- Siman-Tov, S.; Marra, F. Antecedent rainfall as a critical factor for the triggering of debris flows in arid regions. Nat. Hazards Earth Syst. Sci. 2023, 23, 1079–1093. [Google Scholar] [CrossRef]
- Wall, S.A.; Roering, J.J.; Rengers, F.K. Runoff-initiated post-fire debris flow Western Cascades, Oregon. Landslides 2020, 17, 1649–1661. [Google Scholar] [CrossRef]
- Xia, X.L.; Jarsve, K.T.; Dijkstra, T.; Liang, Q.H.; Meng, X.M.; Chen, G. An integrated hydrodynamic model for runoff-generated debris flows with novel formulation of bed erosion and deposition. Eng. Geol. 2023, 326, 17. [Google Scholar] [CrossRef]
- Liu, X.L.; Wang, F.; Nawnit, K.; Lv, X.F.; Wang, S.J. Experimental study on debris flow initiation. Bull. Eng. Geol. Environ. 2020, 79, 1565–1580. [Google Scholar] [CrossRef]
- Zhang, S.J.; Lei, X.H.; Yang, H.J.; Hu, K.H.; Ma, J.; Liu, D.L.; Wei, F.Q. Investigation of the functional relationship between antecedent rainfall and the probability of debris flow occurrence in Jiangjia Gully, China. Hydrol. Earth Syst. Sci. 2024, 28, 2343–2355. [Google Scholar] [CrossRef]
- Cannon, S.H.; Boldt, E.M.; Laber, J.L.; Kean, J.W.; Staley, D.M. Rainfall intensity-duration thresholds for postfire debris-flow emergency-response planning. Nat. Hazards 2011, 59, 209–236. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. The rainfall intensity-duration control of shallow landslides and debris flows: An update. Landslides 2008, 5, 3–17. [Google Scholar] [CrossRef]
- Staley, D.M.; Negri, J.A.; Kean, J.W.; Laber, J.L.; Tillery, A.C.; Youberg, A.M. Prediction of spatially explicit rainfall intensity-duration thresholds for post-fire debris-flow generation in the western United States. Geomorphology 2017, 278, 149–162. [Google Scholar] [CrossRef]
- Bi, Y.D.; Huang, Y.; Zhang, B.; Pu, J. CFD-DEM numerical investigation of the effects of water content and inclination angle on interactions between debris flows and slit dam. Comput. Geotech. 2024, 170, 16. [Google Scholar] [CrossRef]
- Jeong, S.-W.; Lee, S.; Oh, H.-J.; Kim, M. Determining the debris flow yield strength of weathered soils: A case study of the Miryang debris flow in the Republic of Korea. Sci. Rep. 2024, 14, 20975. [Google Scholar] [CrossRef] [PubMed]
- Yune, C.Y.; Kim, B.J.; Jun, K.J.; Park, S.D.; Lee, S.W.; Kim, G.H.; Lee, C.W.; Paik, J.C. Real-scale experiment of debris flow in a natural gulley: Key findings and lessons learned. Landslides 2023, 20, 2757–2774. [Google Scholar] [CrossRef]
- Chen, N.S.; Gao, Y.C.; Yang, C.L.; Hu, G.S. Effect of clay content to the strength of gravel soil in the source region of debris flow. J. Mt. Sci. 2018, 15, 2320–2334. [Google Scholar] [CrossRef]
- Tayyebi, S.M.; Pastor, M.; Stickle, M.M. Two-phase SPH numerical study of pore-water pressure effect on debris flows mobility: Yu Tung debris flow. Comput. Geotech. 2021, 132, 14. [Google Scholar] [CrossRef]
- Tu, X.B.; Kwong, A.K.L.; Dai, F.C.; Tham, L.G.; Min, H. Field monitoring of rainfall infiltration in a loess slope and analysis of failure mechanism of rainfall-induced landslides. Eng. Geol. 2009, 105, 134–150. [Google Scholar] [CrossRef]
- Mitchell, A.; Zubrycky, S.; McDougall, S.; Aaron, J.; Jacquemart, M.; Hübl, J.; Kaitna, R.; Graf, C. Variable hydrograph inputs for a numerical debris-flow runout model. Nat. Hazards Earth Syst. Sci. 2022, 22, 1627–1654. [Google Scholar] [CrossRef]
- Pudasaini, S.P.; Mergili, M. A Multi-Phase Mass Flow Model. J. Geophys. Res.-Earth Surf. 2019, 124, 2920–2942. [Google Scholar] [CrossRef]
- Zhu, X.H.; Liu, B.X.; Peng, J.B.; Zhang, Z.F.; Zhuang, J.Q.; Huang, W.L.; Leng, Y.Q.; Duan, Z. Experimental study on the longitudinal evolution of the overtopping breaching of noncohesive landslide dams. Eng. Geol. 2021, 288, 16. [Google Scholar] [CrossRef]
- Zhou, G.G.D.; Li, S.; Lu, X.Q.; Tang, H. Large-scale landslide dam breach experiments: Overtopping and “overtopping and seepage” failures. Eng. Geol. 2022, 304, 19. [Google Scholar] [CrossRef]
- Jiang, X.A.; Worman, A.; Chen, X.Q.; Zhu, Z.Y.; Zou, Z.Y.; Xiao, W.M.; Li, P.; Liu, G.J.; Kang, D.Y. Internal erosion of debris-flow deposits triggered by seepage. Eng. Geol. 2023, 314, 12. [Google Scholar] [CrossRef]
- Shafiee, A. Permeability of compacted granule-clay mixtures. Eng. Geol. 2008, 97, 199–208. [Google Scholar] [CrossRef]
- Yin, Y.Z.; Cui, Y.F.; Tang, Y.; Liu, D.Z.; Lei, M.Y.; Chan, D. Solid-fluid sequentially coupled simulation of internal erosion of soils due to seepage. Granul. Matter 2021, 23, 14. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, X.B.; Shang, N.; Zhang, Q. A New Numerical Method to Evaluate the Stability of Dike Slope Considering the Influence of Backward Erosion Piping. Water 2024, 16, 14. [Google Scholar] [CrossRef]
- Tang, F.L.; Ma, T.; Guan, Y.S.; Zhang, Z.X. Parametric modeling and structure verification of asphalt pavement based on BIM-ABAQUS. Autom. Constr. 2020, 111, 10. [Google Scholar] [CrossRef]
- Huang, F.M.; Luo, X.Y.; Liu, W.P. Stability Analysis of Hydrodynamic Pressure Landslides with Different Permeability Coefficients Affected by Reservoir Water Level Fluctuations and Rainstorms. Water 2017, 9, 16. [Google Scholar] [CrossRef]
Fine Particle Content (%) | Emax | Emin | Dr | Seepage Length (cm) | Gs |
---|---|---|---|---|---|
15% | 0.56 | 0.29 | 0.3 | 30 | 2.70 |
Parameter Name | Densities | Elastic Modulus | Gravitational Acceleration | Permeability Coefficient | Poisson’s Ratio | Size |
---|---|---|---|---|---|---|
unit | kg/m3 | Pa | N/kg | m/s | \ | m |
number | 2700 | 3 × 106 | 10 | 0.0007 | 0.3 | 0.3 × 0.14 |
Number | Permeability Coefficient/(m/s) | Seepage Length/(cm) |
---|---|---|
K1 | 0.0001 | 30 |
K3 | 0.0003 | 30 |
K5 | 0.0005 | 30 |
K7 | 0.0007 | 30 |
K9 | 0.0009 | 30 |
Number | Permeability Coefficient/(m/s) | Seepage Length/(cm) |
---|---|---|
L15 | 0.0007 | 15 |
L20 | 0.0007 | 20 |
L25 | 0.0007 | 25 |
L30 | 0.0007 | 30 |
L50 | 0.0007 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Chen, H.; Xiong, L.; Chen, L. Numerical Simulations of a Permeability Test on Non-Cohesive Soil Under an Increasing Water Level. Water 2024, 16, 2992. https://doi.org/10.3390/w16202992
Zhang W, Chen H, Xiong L, Chen L. Numerical Simulations of a Permeability Test on Non-Cohesive Soil Under an Increasing Water Level. Water. 2024; 16(20):2992. https://doi.org/10.3390/w16202992
Chicago/Turabian StyleZhang, Weijie, Hongxin Chen, Lei Xiong, and Liang Chen. 2024. "Numerical Simulations of a Permeability Test on Non-Cohesive Soil Under an Increasing Water Level" Water 16, no. 20: 2992. https://doi.org/10.3390/w16202992
APA StyleZhang, W., Chen, H., Xiong, L., & Chen, L. (2024). Numerical Simulations of a Permeability Test on Non-Cohesive Soil Under an Increasing Water Level. Water, 16(20), 2992. https://doi.org/10.3390/w16202992