Iron–Cobalt Bimetallic Metal–Organic Framework-Derived Carbon Materials Activate PMS to Degrade Tetracycline Hydrochloride in Water
Abstract
:1. Introduction
2. Experiment
2.1. Experimental Reagents
2.2. Material Preparation
2.3. Material Characterization
2.4. Activation of Fe/Co-CNs for Degradation of Organic Pollutants Using Peroxydisulfate
3. Results and Discussion
3.1. Characterization of Materials
3.1.1. XRD Analysis
3.1.2. SEM Analysis
3.1.3. TEM Analysis
3.1.4. XPS Analysis
3.1.5. FTIR Analysis
3.1.6. BET Analysis
3.1.7. Raman Analysis
3.2. Evaluation of Fe/Co-CNs’ Performance in Pollutant Degradation
4. Degradation Experiment Research
4.1. Decomposing Impact Factors
4.1.1. Catalyst Dosage
4.1.2. PMS Dosage
4.1.3. TC Concentration
4.1.4. Initial pH of the Solution
4.1.5. Anions
4.2. Stability of Fe/Co-CNs-2 in Pollutant Degradation
4.3. Mechanism Analysis of Pollutant Degradation by Fe/Co-CNs-2
4.3.1. Free Radical-Quenching Experiment of Fe/Co-CNs-2
4.3.2. XPS Spectra of Fe/Co-CNs-2 After Degradation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nsenga Kumwimba, M.; Meng, F.; Iseyemi, O.; Moore, M.T.; Zhu, B.; Tao, W.; Liang, T.J.; Ilunga, L. Removal of Non-Point Source Pollutants from Domestic Sewage and Agricultural Runoff by Vegetated Drainage Ditches (VDDs): Design, Mechanism, Management Strategies, and Future Directions. Sci. Total Environ. 2018, 639, 742–759. [Google Scholar] [CrossRef] [PubMed]
- Launay, M.A.; Dittmer, U.; Steinmetz, H. Organic Micropollutants Discharged by Combined Sewer Overflows—Characterisation of Pollutant Sources and Stormwater-Related Processes. Water Res. 2016, 104, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Guo, N.; Li, H.; Wang, Q.; Xu, X.; Yu, Y.; Han, X.; Yu, H. Construction of Flower-like MoS2/Ag2S/Ag Z-Scheme Photocatalysts with Enhanced Visible-Light Photocatalytic Activity for Water Purification. Sci. Total Environ. 2019, 659, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; He, Y.; He, Y.; Liu, X.; Xu, B.; Yu, J.; Dai, C.; Huang, A.; Pang, Y.; Luo, L. Analyses of Tetracycline Adsorption on Alkali-Acid Modified Magnetic Biochar: Site Energy Distribution Consideration. Sci. Total Environ. 2019, 650, 2260–2266. [Google Scholar] [CrossRef]
- Ghanbari, F.; Moradi, M. Application of Peroxymonosulfate and Its Activation Methods for Degradation of Environmental Organic Pollutants: Review. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- Zhao, C.; Shao, B.; Yan, M.; Liu, Z.; Liang, Q.; He, Q.; Wu, T.; Liu, Y.; Pan, Y.; Huang, J.; et al. Activation of Peroxymonosulfate by Biochar-Based Catalysts and Applications in the Degradation of Organic Contaminants: A Review. Chem. Eng. J. 2021, 416, 128829. [Google Scholar] [CrossRef]
- Suslick, K.S.; Flannigan, D.J. Inside a Collapsing Bubble: Sonoluminescence and the Conditions during Cavitation. Annu. Rev. Phys. Chem. 2008, 59, 659–683. [Google Scholar] [CrossRef]
- Glaze, W.H.; Kang, J.-W.; Chapin, D.H. The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation. Ozone Sci. Eng. 1987, 9, 335–352. [Google Scholar] [CrossRef]
- Song, Q.; Feng, Y.; Wang, Z.; Liu, G.; Lv, W. Degradation of Triphenyl Phosphate (TPhP) by CoFe2O4-Activated Peroxymonosulfate Oxidation Process: Kinetics, Pathways, and Mechanisms. Sci. Total Environ. 2019, 681, 331–338. [Google Scholar] [CrossRef]
- Sun, H.; Kwan, C.; Suvorova, A.; Ang, H.M.; Tadé, M.O.; Wang, S. Catalytic Oxidation of Organic Pollutants on Pristine and Surface Nitrogen-Modified Carbon Nanotubes with Sulfate Radicals. Appl. Catal. B 2014, 154–155, 134–141. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, F.; Pang, H. A Review of MOFs and Their Composites-based Photocatalysts: Synthesis and Applications. Adv. Funct. Mater. 2021, 31, 2104231. [Google Scholar] [CrossRef]
- Du, X.; Zhou, M. Strategies to Enhance Catalytic Performance of Metal–Organic Frameworks in Sulfate Radical-Based Advanced Oxidation Processes for Organic Pollutants Removal. Chem. Eng. J. 2021, 403, 126346. [Google Scholar] [CrossRef]
- Mao, S.; Shi, J.-W.; Sun, G.; Ma, D.; He, C.; Pu, Z.; Song, K.; Cheng, Y. Au Nanodots@thiol-UiO66@ZnIn2S4 Nanosheets with Significantly Enhanced Visible-Light Photocatalytic H2 Evolution: The Effect of Different Au Positions on the Transfer of Electron-Hole Pairs. Appl. Catal. B 2021, 282, 119550. [Google Scholar] [CrossRef]
- Li, R.; Chen, T.; Lu, J.; Hu, H.; Zheng, H.; Zhu, P.; Pan, X. Metal–Organic Frameworks Doped with Metal Ions for Efficient Sterilization: Enhanced Photocatalytic Activity and Photothermal Effect. Water Res. 2023, 229, 119366. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Guan, Q.; Liu, Q.; Qin, Z.; Rasheed, B.; Liang, X.; Yang, X. Synthesis, Modifications and Applications of MILs Metal-Organic Frameworks for Environmental Remediation: The Cutting-Edge Review. Sci. Total Environ. 2022, 810, 152279. [Google Scholar] [CrossRef]
- Behera, P.; Subudhi, S.; Tripathy, S.P.; Parida, K. MOF Derived Nano-Materials: A Recent Progress in Strategic Fabrication, Characterization and Mechanistic Insight towards Divergent Photocatalytic Applications. Coord. Chem. Rev. 2022, 456, 214392. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.; Xu, B.; Zhang, X.; Xu, Y.; Yu, P.; Sun, Y. MOF Etching-Induced Co-Doped Hollow Carbon Nitride Catalyst for Efficient Removal of Antibiotic Contaminants by Enhanced Perxymonosulfate Activation. Chem. Eng. J. 2022, 441, 136074. [Google Scholar] [CrossRef]
- Zuo, X.; Chang, K.; Zhao, J.; Xie, Z.; Tang, H.; Li, B.; Chang, Z. Bubble-Template-Assisted Synthesis of Hollow Fullerene-like MoS 2 Nanocages as a Lithium Ion Battery Anode Material. J. Mater. Chem. A 2016, 4, 51–58. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, J.; Zhang, Y.; Zhou, L.; Huang, S.; Zhou, S. MOFs-Derived Mn/C Composites Activating Peroxymonosulfate for Efficient Degradation of Sulfamethazine: Kinetics, Pathways, and Mechanism. Surf. Interfaces 2023, 36, 102551. [Google Scholar] [CrossRef]
- Mao, W.; Wang, D.; Wang, X.; Hu, X.; Gao, F.; Su, Z. Efficient Cobalt-Based Metal-Organic Framework Derived Magnetic co@C-600 Nanoreactor for Peroxymonosulfate Activation and Oxytetracycline Degradation. Colloids Surf. A 2022, 648, 129234. [Google Scholar] [CrossRef]
- Lin, K.-Y.A.; Chen, B.-J. Magnetic Carbon-Supported Cobalt Derived from a Prussian Blue Analogue as a Heterogeneous Catalyst to Activate Peroxymonosulfate for Efficient Degradation of Caffeine in Water. J. Colloid Interface Sci. 2017, 486, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cui, H.; Li, J.; Liu, Y.; Yang, Y.; Wang, M. Frogspawn Inspired Hollow Fe 3 C@N–C as an Efficient Sulfur Host for High-Rate Lithium–Sulfur Batteries. Nanoscale 2019, 11, 21532–21541. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lin, T.; Yu, F.; An, Y.; Dai, Y.; Li, S.; Zhong, L.; Wang, H.; Gao, P.; Sun, Y.; et al. Mechanism of the Mn Promoter via CoMn Spinel for Morphology Control: Formation of Co 2 C Nanoprisms for Fischer–Tropsch to Olefins Reaction. ACS Catal. 2017, 7, 8023–8032. [Google Scholar] [CrossRef]
- Gu, A.; Wang, P.; Chen, K.; Djam Miensah, E.; Gong, C.; Jiao, Y.; Mao, P.; Chen, K.; Jiang, J.; Liu, Y.; et al. Core-Shell Bimetallic Fe-Co MOFs to Activated Peroxymonosulfate for Efficient Degradation of 2-Chlorophenol. Sep. Purif. Technol. 2022, 298, 121461. [Google Scholar] [CrossRef]
- Wang, J.; Liao, Z.; Ifthikar, J.; Shi, L.; Du, Y.; Zhu, J.; Xi, S.; Chen, Z.; Chen, Z. Treatment of Refractory Contaminants by Sludge-Derived Biochar/Persulfate System via Both Adsorption and Advanced Oxidation Process. Chemosphere 2017, 185, 754–763. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Yao, Y.; Miao, X.; Chen, J.; Tang, J. Nanoporous Bimetallic Metal-Organic Framework (FeCo-BDC) as a Novel Catalyst for Efficient Removal of Organic Contaminants. Environ. Pollut. 2019, 255, 113337. [Google Scholar] [CrossRef]
- Lai, L.; Potts, J.R.; Zhan, D.; Wang, L.; Poh, C.K.; Tang, C.; Gong, H.; Shen, Z.; Lin, J.; Ruoff, R.S. Exploration of the Active Center Structure of Nitrogen-Doped Graphene-Based Catalysts for Oxygen Reduction Reaction. Energy Environ. Sci. 2012, 5, 7936. [Google Scholar] [CrossRef]
- Long, Y.; Bu, S.; Huang, Y.; Shao, Y.; Xiao, L.; Shi, X. N-Doped Hierarchically Porous Carbon for Highly Efficient Metal-Free Catalytic Activation of Peroxymonosulfate in Water: A Non-Radical Mechanism. Chemosphere 2019, 216, 545–555. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Zhang, Y.; Li, R.; Meng, W.; Song, Z.; Qi, F.; Xu, B.; Chu, W.; Yuan, D.; et al. Enhancement of Fe@porous Carbon to Be an Efficient Mediator for Peroxymonosulfate Activation for Oxidation of Organic Contaminants: Incorporation NH2-Group into Structure of Its MOF Precursor. Chem. Eng. J. 2018, 354, 835–848. [Google Scholar] [CrossRef]
- Mengelizadeh, N.; Mohseni, E.; Dehghani, M.H. Heterogeneous Activation of Peroxymonosulfate by GO-CoFe2O4 for Degradation of Reactive Black 5 from Aqueous Solutions: Optimization, Mechanism, Degradation Intermediates and Toxicity. J. Mol. Liq. 2021, 327, 114838. [Google Scholar] [CrossRef]
- Tang, L.; Liu, Y.; Wang, J.; Zeng, G.; Deng, Y.; Dong, H.; Feng, H.; Wang, J.; Peng, B. Enhanced Activation Process of Persulfate by Mesoporous Carbon for Degradation of Aqueous Organic Pollutants: Electron Transfer Mechanism. Appl. Catal. B 2018, 231, 1–10. [Google Scholar] [CrossRef]
- Lei, Y.; Chen, C.-S.; Ai, J.; Lin, H.; Huang, Y.-H.; Zhang, H. Selective Decolorization of Cationic Dyes by Peroxymonosulfate: Non-Radical Mechanism and Effect of Chloride. RSC Adv. 2016, 6, 866–871. [Google Scholar] [CrossRef]
- Wang, J.; Liao, Z.; Ifthikar, J.; Shi, L.; Chen, Z.; Chen, Z. One-Step Preparation and Application of Magnetic Sludge-Derived Biochar on Acid Orange 7 Removal via Both Adsorption and Persulfate Based Oxidation. RSC Adv. 2017, 7, 18696–18706. [Google Scholar] [CrossRef]
- Zhang, M.; Luo, R.; Wang, C.; Zhang, W.; Yan, X.; Sun, X.; Wang, L.; Li, J. Confined Pyrolysis of Metal–Organic Frameworks to N-Doped Hierarchical Carbon for Non-Radical Dominated Advanced Oxidation Processes. J. Mater. Chem. A 2019, 7, 12547–12555. [Google Scholar] [CrossRef]
- Yang, Y.; Banerjee, G.; Brudvig, G.W.; Kim, J.-H.; Pignatello, J.J. Oxidation of Organic Compounds in Water by Unactivated Peroxymonosulfate. Environ. Sci. Technol. 2018, 52, 5911–5919. [Google Scholar] [CrossRef]
- Cao, J.; Sun, S.; Li, X.; Yang, Z.; Xiong, W.; Wu, Y.; Jia, M.; Zhou, Y.; Zhou, C.; Zhang, Y. Efficient Charge Transfer in Aluminum-Cobalt Layered Double Hydroxide Derived from Co-ZIF for Enhanced Catalytic Degradation of Tetracycline through Peroxymonosulfate Activation. Chem. Eng. J. 2020, 382, 122802. [Google Scholar] [CrossRef]
- Li, C.; Wu, J.; Peng, W.; Fang, Z.; Liu, J. Peroxymonosulfate Activation for Efficient Sulfamethoxazole Degradation by Fe3O4/β-FeOOH Nanocomposites: Coexistence of Radical and Non-Radical Reactions. Chem. Eng. J. 2019, 356, 904–914. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, J.; Tan, J.; Yu, H.; Liu, X. Facile Route for Fabricating Co(OH)2@WO3 Microspheres from Scheelite and Its Environmental Application for High-Performance Peroxymonosulfate Activation. J. Clean. Prod. 2022, 340, 130714. [Google Scholar] [CrossRef]
- Li, H.; Yao, Y.; Chen, J.; Wang, C.; Huang, J.; Du, J.; Xu, S.; Tang, J.; Zhao, H.; Huang, M. Heterogeneous Activation of Peroxymonosulfate by Bimetallic MOFs for Efficient Degradation of Phenanthrene: Synthesis, Performance, Kinetics, and Mechanisms. Sep. Purif. Technol. 2021, 259, 118217. [Google Scholar] [CrossRef]
- Hou, C.; Chen, W.; Fu, L.; Zhang, S.; Liang, C.; Wang, Y. Facile Synthesis of a Co/Fe Bi-MOFs/CNF Membrane Nanocomposite and Its Application in the Degradation of Tetrabromobisphenol A. Carbohydr. Polym. 2020, 247, 116731. [Google Scholar] [CrossRef]
- Gong, C.; Chen, F.; Yang, Q.; Luo, K.; Yao, F.; Wang, S.; Wang, X.; Wu, J.; Li, X.; Wang, D.; et al. Heterogeneous Activation of Peroxymonosulfate by Fe-Co Layered Doubled Hydroxide for Efficient Catalytic Degradation of Rhoadmine B. Chem. Eng. J. 2017, 321, 222–232. [Google Scholar] [CrossRef]
- Liu, F.; Cao, J.; Yang, Z.; Xiong, W.; Xu, Z.; Song, P.; Jia, M.; Sun, S.; Zhang, Y.; Zhong, X. Heterogeneous Activation of Peroxymonosulfate by Cobalt-Doped MIL-53(al) for Efficient Tetracycline Degradation in Water: Coexistence of Radical and Non-Radical Reactions. J. Colloid Interface Sci. 2021, 581, 195–204. [Google Scholar] [CrossRef] [PubMed]
Co Doping Amount | NH2-H2BDC | FeCl3·6H2O | Co(NO3)2·6H2O | Labeled as |
---|---|---|---|---|
10% | 1.24 mmol | 2.25 mmol | 0.25 mmol | Fe/Co-CNs-1 |
20% | 1.24 mmol | 2 mmol | 0.5 mmol | Fe/Co-CNs-2 |
30% | 1.24 mmol | 1.75 mmol | 0.75 mmol | Fe/Co-CNs-3 |
40% | 1.24 mmol | 1.5 mmol | 1 mmol | Fe/Co-CNs-4 |
50% | 1.24 mmol | 1.25 mmol | 1.25 mmol | Fe/Co-CNs-5 |
70% | 1.24 mmol | 0.75 mol | 1.75 mmol | Fe/Co-CNs-7 |
Element | Wt% | At% |
---|---|---|
C | 81.62 | 86.74 |
O | 3.90 | 5.41 |
Fe | 9.47 | 4.89 |
Co | 4.76 | 2.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Zhang, H.; Zhang, K.; Li, J.; Cui, J.; Shi, T. Iron–Cobalt Bimetallic Metal–Organic Framework-Derived Carbon Materials Activate PMS to Degrade Tetracycline Hydrochloride in Water. Water 2024, 16, 2997. https://doi.org/10.3390/w16202997
Liu Q, Zhang H, Zhang K, Li J, Cui J, Shi T. Iron–Cobalt Bimetallic Metal–Organic Framework-Derived Carbon Materials Activate PMS to Degrade Tetracycline Hydrochloride in Water. Water. 2024; 16(20):2997. https://doi.org/10.3390/w16202997
Chicago/Turabian StyleLiu, Qin, Huali Zhang, Kanghui Zhang, Jinxiu Li, Jiaheng Cui, and Tongshan Shi. 2024. "Iron–Cobalt Bimetallic Metal–Organic Framework-Derived Carbon Materials Activate PMS to Degrade Tetracycline Hydrochloride in Water" Water 16, no. 20: 2997. https://doi.org/10.3390/w16202997
APA StyleLiu, Q., Zhang, H., Zhang, K., Li, J., Cui, J., & Shi, T. (2024). Iron–Cobalt Bimetallic Metal–Organic Framework-Derived Carbon Materials Activate PMS to Degrade Tetracycline Hydrochloride in Water. Water, 16(20), 2997. https://doi.org/10.3390/w16202997