Enhancing the Prediction of Influent Total Nitrogen in Wastewater Treatment Plant Using Adaptive Neuro-Fuzzy Inference System–Gradient-Based Optimization Algorithm
Abstract
:1. Introduction
- Preprocessing techniques, such as the normalization technique in the case of ANFIS models, help to provide better prediction results.
- There are no existing studies in the literature that compare ANFIS, ANFIS-PSO, and ANFIS-GWO methods for predicting TNinf from sewage plants.
- No available studies in the literature evaluate daily TN predictions using both ANFIS-GBO and ANFIS-GWO models.
- Hybrid models provide better prediction results than the standalone models. The hybrid of GBO with ANFIS is the first application for forecasting TN.
2. Materials and Methods
2.1. Utilized Data and Study Area
2.2. Data Normalization
2.3. Adaptive Neuro-Fuzzy Inference System
3. The Rules Layer
4. The Standardization Layer
5. The Output Layer or Defuzzification Layer
5.1. Particle Swarm Optimization
5.2. Grey Wolf Optimizer (GWO)
5.3. Gradient-Based Optimizer (GBO)
5.3.1. Initialization
5.3.2. Gradient Search Rule
5.3.3. Local Escaping Operator (LEO)
5.4. GBO-Based ANFIS Parameter Optimization
- Determine the factors that affect the problem’s input–output dynamics that are being studied. Assign training and testing sets to the input and the output datasets.
- To generate the FIS, derive a collection of rules that characterize the whole data using the FCM clustering technique. The dimensions of each search agent are specified by deriving the parameters for ANFIS, including those of the membership function. By following these procedures, you may employ GBO to train and tune the FIS.
- First stage: Create the starting MF parameter population.
- Second stage: Using the formula in Equation (28), determine the fitness value of every search agent in the population.
- Use the GBO algorithm to update the search agent’s position in stage three.
- Fourth Stage: Proceed to stage 2 if the stoppage condition is not fulfilled; otherwise, terminate and deliver the optimal ANFIS settings. Use the best answers to anticipate the output during the testing phase when the training is over. Evaluate ANFIS-GBO’s effectiveness using performance measures. Compare ANFIS-GBO’s performance against that of ANFIS-GWO, ANFIS-PSO, and ANFIS. Four statistical indicators (Equations (28)–(31)) are used to numerically assess ANFIS-GBO performance:
6. Results and Discussion
6.1. Input Combinations
6.1.1. Prediction Results of ANFIS Model
6.1.2. ANFIS-PSO Model Results
6.1.3. ANFIS-GWO Model Results
6.1.4. ANFIS-GBO Model Results
6.2. Comparison of ANFIS, ANFIS-PSO, ANFIS-GWO, and ANFIS-GBO Models
6.3. Comparison with Previous Research
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aydın Temel, F.; Özyazıcı, G.; Uslu, V.R.; Ardalı, Y. Full scale subsurface flow constructed wetlands for domestic wastewater treatment: 3 years’ experience. Environ. Prog. Sustain. Energy 2018, 37, 1348–1360. [Google Scholar] [CrossRef]
- Abba, S.I.; Elkiran, G.; Nourani, V. Improving novel extreme learning machine using PCA algorithms for multi-parametric modeling of the municipal wastewater treatment plant. Desalin. Water Treat 2021, 215, 414–426. [Google Scholar] [CrossRef]
- Mahmoud, M.; Mossad, M.; Mahanna, H. Degradation of levofloxacin using electro coagulation residuals-alginate beads as a novel heterogeneous electro-fenton composite. J. Environ. Manag. 2024, 359, 120972. [Google Scholar] [CrossRef] [PubMed]
- Gómez, T.; Gémar, G.; Molinos-Senante, M.; Sala-Garrido, R.; Caballero, R. Assessing the efficiency of wastewater treatment plants: A double-bootstrap approach. J. Clean. Prod. 2017, 164, 315–324. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, Y.; Wang, J.; Shi, Y.; Puig, V. Water quality indicator interval prediction in wastewater treatment process based on the improved BES-LSSVM algorithm. Sensors 2022, 22, 422. [Google Scholar] [CrossRef]
- Ansari, M.; Othman, F.; El-Shafie, A. Optimized fuzzy inference system to enhance prediction accuracy for influent characteristics of a sewage treatment plant. Sci. Total Environ. 2020, 722, 137878. [Google Scholar] [CrossRef]
- Wang, J.H.; Zhao, X.L.; Guo, Z.W.; Yan, P.; Gao, X.; Shen, Y.; Chen, Y.P. A full-view management method based on artificial neural networks for energy and material-savings in wastewater treatment plants. Environ. Res. 2022, 211, 113054. [Google Scholar] [CrossRef]
- Vilela, P.; Safder, U.; Heo, S.; Nguyen, H.T.; Lim, J.Y.; Nam, K.; Oh, T.S.; Yoo, C. Dynamic calibration of process-wide partial-nitritation modeling with airlift granular for nitrogen removal in a full-scale wastewater treatment plant. Chemosphere 2022, 305, 135411. [Google Scholar] [CrossRef]
- Salgot, M.; Folch, M. Wastewater treatment and water reuse. Curr. Opin. Environ. Sci. Health 2018, 2, 64–74. [Google Scholar] [CrossRef]
- Karunanidhi, D.; Aravinthasamy, P.; Subramani, T.; Roy, P.D.; Srinivasamoorthy, K. Risk of fluoride-rich groundwater on human health: Remediation through managed aquifer recharge in a hard rock terrain, South India. Nat. Resour. Res. 2020, 29, 2369–2395. [Google Scholar] [CrossRef]
- Hameed, M.; Sharqi, S.S.; Yaseen, Z.M.; Afan, H.A.; Hussain, A.; Elshafie, A. Application of artificial intelligence (AI) techniques in water quality index prediction: A case study in tropical region, Malaysia. Neural Comput. Appl. 2017, 28, 893–905. [Google Scholar] [CrossRef]
- Gao, F.; Nan, J.; Zhang, X. Simulating a cyclic activated sludge system by employing a modified ASM3 model for wastewater treatment. Bioprocess Biosyst. Eng. 2017, 40, 877–890. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Han, D. Water quality monitoring in smart city: A pilot project. Autom. Constr. 2018, 89, 307–316. [Google Scholar] [CrossRef]
- ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial neural networks in hydrology. II: Hydrologic applications. J. Hydrol. Eng. 2000, 5, 124–137. [Google Scholar] [CrossRef]
- Çinar, Ö. New tool for evaluation of performance of wastewater treatment plant: Artificial neural network. Process Biochem. 2005, 40, 2980–2984. [Google Scholar] [CrossRef]
- Fan, M.; Hu, J.; Cao, R.; Ruan, W.; Wei, X. A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence. Chemosphere 2018, 200, 330–343. [Google Scholar] [CrossRef]
- Elkiran, G.; Nourani, V.; Abba, S.I. Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach. J. Hydrol. 2019, 577, 123962. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, T.; Qiao, Z.; Sun, P.; Hao, J.; Yang, Y. Application of artificial intelligence to wastewater treatment: A bibliometric analysis and systematic review of technology, economy, management, and wastewater reuse. Process Saf. Environ. Prot. 2020, 133, 169–182. [Google Scholar] [CrossRef]
- Hamed, M.M.; Khalafallah, M.G.; Hassanien, E.A. Prediction of wastewater treatment plant performance using artificial neural networks. Environ. Model. Softw. 2004, 19, 919–928. [Google Scholar] [CrossRef]
- Tumer, A.E.; Edebali, S. An artificial neural network model for wastewater treatment plant of Konya. Int. J. Intell. Syst. Appl. Eng. 2015, 3, 131–135. [Google Scholar] [CrossRef]
- Arismendy, L.; Cárdenas, C.; Gómez, D.; Maturana, A.; Mejía, R.; Quintero, M.C.G. Intelligent system for the predictive analysis of an industrial wastewater treatment process. Sustainability 2020, 12, 6348. [Google Scholar] [CrossRef]
- Alsulaili, A.; Refaie, A. Artificial neural network modeling approach for the prediction of five-day biological oxygen demand and wastewater treatment plant performance. Water Supply 2021, 21, 1861–1877. [Google Scholar] [CrossRef]
- Yaqub, M.; Asif, H.; Kim, S.; Lee, W. Modeling of a full-scale sewage treatment plant to predict the nutrient removal efficiency using a long short-term memory (LSTM) neural network. J. Water Process Eng. 2020, 37, 101388. [Google Scholar] [CrossRef]
- Hejabi, N.; Saghebian, S.M.; Aalami, M.T.; Nourani, V. Evaluation of the effluent quality parameters of wastewater treatment plant based on uncertainty analysis and post-processing approaches (case study). Water Sci. Technol. 2021, 83, 1633–1648. [Google Scholar] [CrossRef]
- Nadiri, A.A.; Shokri, S.; Tsai, F.T.C.; Moghaddam, A.A. Prediction of effluent quality parameters of a wastewater treatment plant using a supervised committee fuzzy logic model. J. Clean. Prod. 2018, 180, 539–549. [Google Scholar] [CrossRef]
- Cheng, T.; Harrou, F.; Kadri, F.; Sun, Y.; Leiknes, T. Forecasting of wastewater treatment plant key features using deep learning-based models: A case study. IEEE Access 2020, 8, 184475–184485. [Google Scholar] [CrossRef]
- Granata, F.; Papirio, S.; Esposito, G.; Gargano, R.; De Marinis, G. Machine learning algorithms for the forecasting of wastewater quality indicators. Water 2017, 9, 105. [Google Scholar] [CrossRef]
- Safder, U.; Kim, J.; Pak, G.; Rhee, G.; You, K. Investigating Machine Learning Applications for Effective Real-Time Water Quality Parameter Monitoring in Full-Scale Wastewater Treatment Plants. Water 2022, 14, 3147. [Google Scholar] [CrossRef]
- Bagherzadeh, F.; Mehrani, M.J.; Basirifard, M.; Roostaei, J. Comparative study on total nitrogen prediction in wastewater treatment plant and effect of various feature selection methods on machine learning algorithms performance. J. Water Process Eng. 2021, 41, 102033. [Google Scholar] [CrossRef]
- Nourani, V.; Elkiran, G.; Abba, S.I. Wastewater treatment plant performance analysis using artificial intelligence—An ensemble approach. Water Sci. Technol. 2018, 78, 2064–2076. [Google Scholar] [CrossRef]
- Araromi, D.O.; Majekodunmi, O.T.; Adeniran, J.A.; Salawudeen, T.O. Modeling of an activated sludge process for effluent prediction—A comparative study using ANFIS and GLM regression. Environ. Monit. Assess. 2018, 190, 495. [Google Scholar] [CrossRef]
- Pai, T.Y.; Yang, P.Y.; Wang, S.C.; Lo, M.H.; Chiang, C.F.; Kuo, J.L.; Chang, Y.H. Predicting effluent from the wastewater treatment plant of industrial park based on fuzzy network and influent quality. Appl. Math. Model. 2011, 35, 3674–3684. [Google Scholar] [CrossRef]
- Qiao, L.; Yang, P.; Leng, Q.; Xu, L.; Bi, Y.; Xu, J.; Ding, C. Exploring ANFIS application based on actual data from wastewater treatment plant for predicting effluent removal quality of selected major pollutants. J. Water Process Eng. 2023, 56, 104247. [Google Scholar] [CrossRef]
- Malviya, A.; Jaspal, D. Artificial intelligence as an upcoming technology in wastewater treatment: A comprehensive review. Environ. Technol. Rev. 2021, 10, 177–187. [Google Scholar] [CrossRef]
- Akbaş, H.; Bilgen, B.; Turhan, A.M. An integrated prediction and optimization model of biogas production system at a wastewater treatment facility. Bioresour. Technol. 2015, 196, 566–576. [Google Scholar] [CrossRef]
- Sarkar, B.; Sharma, U.; Adhikari, K.; Lahiri, S.K.; Baltrėnaitė, E.; Baltrėnas, P.; Dutta, S. Application of artificial neural network and particle swarm optimization for modelling and optimization of biosorption of lead (II) and nickel (II) from wastewater using dead cyanobacterial biomass. J. Indian Chem. Soc. 2021, 98, 100039. [Google Scholar] [CrossRef]
- Mahadeva, R.; Kumar, M.; Patole, S.P.; Manik, G. An optimized PSO-ANN model for improved prediction of water treatment desalination plant performance. Water Supply 2022, 22, 2874–2882. [Google Scholar] [CrossRef]
- Tikhamarine, Y.; Souag-Gamane, D.; Ahmed, A.N.; Kisi, O.; El-Shafie, A. Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm. J. Hydrol. 2020, 582, 124435. [Google Scholar] [CrossRef]
- Xia, J.; Zeng, J. Environmental factors assisted the evaluation of entropy water quality indices with efficient machine learning technique. Water Resour. Manag. 2022, 36, 2045–2060. [Google Scholar] [CrossRef]
- Riahi-Madvar, H.; Dehghani, M.; Memarzadeh, R.; Gharabaghi, B. Short to long-term forecasting of river flows by heuristic optimization algorithms hybridized with ANFIS. Water Resour. Manag. 2021, 35, 1149–1166. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Bozorg-Haddad, O.; Chu, X. Gradient-based optimizer: A new metaheuristic optimization algorithm. Inf. Sci. 2020, 540, 131–159. [Google Scholar] [CrossRef]
- Konakoglu, B.; Aydemir, S.B.; Kutlu Onay, F. Application of a metaheuristic gradient-based optimizer algorithm integrated into artificial neural network model in a local geoid modeling with global navigation satellite systems/leveling measurements. Concurr. Comput. Pract. Exp. 2022, 34, e7017. [Google Scholar] [CrossRef]
- Kadkhodazadeh, M.; Farzin, S. A novel LSSVM model integrated with GBO algorithm to assessment of water quality parameters. Water Resour. Manag. 2021, 35, 3939–3968. [Google Scholar] [CrossRef]
- Adnan, R.M.; Mostafa, R.R.; Elbeltagi, A.; Yaseen, Z.M.; Shahid, S.; Kisi, O. Development of new machine learning model for streamflow prediction: Case studies in Pakistan. Stoch. Environ. Res. Risk Assess. 2022, 36, 999–1033. [Google Scholar] [CrossRef]
- Nourani, V.; Hakimzadeh, H.; Amini, A.B. Implementation of artificial neural network technique in the simulation of dam breach hydrograph. J. Hydroinform. 2012, 14, 478–496. [Google Scholar] [CrossRef]
- Nourani, V.; Baghanam, A.H.; Gebremichael, M. Investigating the Ability of Artificial Neural Network (ANN) Models to Estimate Missing Rain-gauge Data. J. Environ. Inform. 2012, 19, 38–50. [Google Scholar] [CrossRef]
- Sugeno, M.; Kang, G.T. Structure identification of fuzzy model. Fuzzy Sets Syst. 1988, 28, 15–33. [Google Scholar] [CrossRef]
- Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1985, 15, 116–132. [Google Scholar] [CrossRef]
- Jang, J.S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Jang, J.S.; Sun, C.T. Neuro-fuzzy modeling and control. Proc. IEEE 1995, 83, 378–406. [Google Scholar] [CrossRef]
- Jang, J.S.R.; Gulley, N. MATLAB/Fuzzy Logic Toolbox; MathWorks. Inc.: Natick, MA, USA, 1997. [Google Scholar]
- Adnan, R.M.; Liang, Z.; El-Shafie, A.; Zounemat-Kermani, M.; Kisi, O. Prediction of Suspended Sediment Load Using Data-Driven Models. Water 2019, 11, 2060. [Google Scholar] [CrossRef]
- Kisi, O.; Shiri, J.; Karimi, S.; Adnan, R.M. Three different adaptive neuro fuzzy computing techniques for forecasting long-period daily streamflow. Big Data Eng. Appl. 2018, 44, 303–321. [Google Scholar]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 39–43. [Google Scholar]
- Montalvo, I.; Izquierdo, J.; Pérez, R.; Tung, M.M. Particle swarm optimization applied to the design of water supply systems. Comput. Math. Appl. 2008, 56, 769–776. [Google Scholar] [CrossRef]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Ikram, R.M.A.; Cao, X.; Sadeghifar, T.; Kuriqi, A.; Kisi, O.; Shahid, S. Improving Significant Wave Height Prediction Using a Neuro-Fuzzy Approach and Marine Predators Algorithm. J. Mar. Sci. Eng. 2023, 11, 1163. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Saremi, S.; Mirjalili, S.Z.; Mirjalili, S.M. Evolutionary population dynamics and grey wolf optimizer. Neural Comput. Appl. 2015, 26, 1257–1263. [Google Scholar] [CrossRef]
- Wang, H.; Bai, Y.; Li, C.; Guo, Z.; Zhang, J. Time series prediction model of grey wolf optimized echo state network. Data Sci. J. 2019, 18, 16. [Google Scholar] [CrossRef]
- Ikram, R.M.A.; Mostafa, R.R.; Chen, Z.; Islam, A.R.M.T.; Kisi, O.; Kuriqi, A.; Zounemat-Kermani, M. Advanced Hybrid Metaheuristic Machine Learning Models Application for Reference Crop Evapotranspiration Prediction. Agronomy 2023, 13, 98. [Google Scholar] [CrossRef]
- Gao, Z.M.; Zhao, J. An improved grey wolf optimization algorithm with variable weights. Comput. Intell. Neurosci. 2019, 2019, 2981282. [Google Scholar] [CrossRef]
- Himanshu, N.; Kumar, V.; Burman, A.; Maity, D.; Gordan, B. Grey wolf optimization approach for searching critical failure surface in soil slopes. Eng. Comput. 2021, 37, 2059–2072. [Google Scholar] [CrossRef]
- Ypma, T.J. Historical development of the Newton–Raphson method. SIAM Rev. 1995, 37, 531–551. [Google Scholar] [CrossRef]
- Ahmadi, M.M.; Mahdavirad, H.; Bakhtiari, B. Multi-criteria analysis of site selection for groundwater recharge with treated municipal wastewater. Water Sci. Technol. 2017, 76, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Nasr, M.S.; Moustafa, M.A.; Seif, H.A.; El Kobrosy, G. Application of Artificial Neural Network (ANN) for the prediction of EL-AGAMY wastewater treatment plant performance-EGYPT. Alex. Eng. J. 2012, 51, 37–43. [Google Scholar] [CrossRef]
Dataset | Statistics | Qw | PH | SS | TP | NH3-N | COD | BOD | TN |
---|---|---|---|---|---|---|---|---|---|
Whole dataset | Mean | 64,123 | 7.40 | 146 | 5.79 | 47.4 | 564 | 153 | 54.8 |
Min. | 32,954 | 7.00 | 103 | 2.04 | 12.0 | 313 | 107 | 20.0 | |
Max. | 106,660 | 7.80 | 195 | 10.8 | 67.4 | 931 | 205 | 75.0 | |
Skewness | 0.708 | −0.337 | −0.131 | 0.260 | −0.371 | 0.121 | −0.293 | −0.558 | |
Std.dev. | 9204.6 | 0.124 | 10.9 | 1.11 | 6.85 | 93.7 | 18.1 | 6.55 | |
Training | Mean | 63,949 | 7.41 | 147 | 5.87 | 47.3 | 575 | 155 | 54.8 |
Min. | 32,954 | 7.00 | 103 | 2.43 | 23.3 | 313 | 109 | 28.0 | |
Max. | 103,136 | 7.80 | 195 | 10.8 | 67.4 | 931 | 205 | 75.0 | |
Skewness | 0.446 | −0.337 | −0.106 | 0.389 | 0.061 | 0.004 | −0.306 | −0.206 | |
Std.dev. | 9144.9 | 0.126 | 11.1 | 1.16 | 6.50 | 98.8 | 18.1 | 6.26 | |
Testing | Mean | 64,665 | 7.38 | 143 | 5.53 | 47.5 | 529 | 149 | 54.7 |
Min. | 43,973 | 7.00 | 106 | 2.04 | 12.0 | 332 | 107 | 20.0 | |
Max. | 106,660 | 7.60 | 175 | 7.36 | 64.3 | 690 | 186 | 70.0 | |
Skewness | 1.475 | −0.440 | −0.486 | −1.123 | −1.150 | −0.585 | −0.388 | −1.219 | |
Std.dev. | 9367.9 | 0.116 | 9.9 | 0.90 | 7.84 | 64.2 | 17.0 | 7.37 |
Input Combinations | Models | ||||
---|---|---|---|---|---|
ANFIS | ANFIS-PSO | ANFIS-GWO | ANFIS-GBO | ||
1 | Qw | ANFIS-1 | ANFIS-PSO-1 | ANFIS-GWO-1 | ANFIS-GBO-1 |
2 | Qw, pH | ANFIS-2 | ANFIS-PSO-2 | ANFIS-GWO-2 | ANFIS-GBO-2 |
3 | Qw, pH, SS | ANFIS-3 | ANFIS-PSO-3 | ANFIS-GWO-3 | ANFIS-GBO-3 |
4 | Qw, pH, SS, TP | ANFIS-4 | ANFIS-PSO-4 | ANFIS-GWO-4 | ANFIS-GBO-4 |
5 | Qw, pH, SS, TP, NH3-N | ANFIS-5 | ANFIS-PSO-5 | ANFIS-GWO-5 | ANFIS-GBO-5 |
6 | Qw, pH, SS, TP, NH3-N, COD | ANFIS-6 | ANFIS-PSO-6 | ANFIS-GWO-6 | ANFIS-GBO-6 |
7 | Qw, pH, SS, TP, NH3-N, COD, BOD | ANFIS-7 | ANFIS-PSO-7 | ANFIS-GWO-7 | ANFIS-GBO-7 |
Input Combinations | Models | Training Period | Test Period | ||||||
---|---|---|---|---|---|---|---|---|---|
ANFIS | RMSE | MAE | R2 | NSE | RMSE | MAE | R2 | NSE | |
1 | ANFIS-1 | 5.8576 | 4.4930 | 0.2793 | 0.2665 | 6.9199 | 5.4010 | 0.1284 | 0.1131 |
2 | ANFIS-2 | 5.7675 | 4.3069 | 0.3631 | 0.3607 | 6.4672 | 5.1905 | 0.2359 | 0.2253 |
3 | ANFIS-3 | 5.5218 | 4.2199 | 0.3996 | 0.3888 | 6.2589 | 4.8927 | 0.2819 | 0.2744 |
4 | ANFIS-4 | 5.1630 | 3.9628 | 0.5659 | 0.5363 | 5.8786 | 4.4947 | 0.3795 | 0.3599 |
5 | ANFIS-5 | 2.2944 | 1.8727 | 0.8672 | 0.8647 | 3.6263 | 2.3876 | 0.7673 | 0.7564 |
6 | ANFIS-6 | 2.3585 | 1.9873 | 0.8567 | 0.8547 | 4.0166 | 2.6683 | 0.7239 | 0.7012 |
7 | ANFIS-7 | 2.2442 | 1.7273 | 0.8722 | 0.8722 | 3.4275 | 2.2720 | 0.7848 | 0.7824 |
Input Combinations | Models | Training Period | Test Period | ||||||
---|---|---|---|---|---|---|---|---|---|
ANFIS-PSO | RMSE | MAE | R2 | NSE | RMSE | MAE | R2 | NSE | |
1 | ANFIS-PSO-1 | 5.8387 | 4.4543 | 0.3129 | 0.3051 | 6.3512 | 4.7836 | 0.2719 | 0.2529 |
2 | ANFIS-PSO-2 | 5.6782 | 4.3764 | 0.3817 | 0.3672 | 6.1846 | 4.6737 | 0.3206 | 0.2916 |
3 | ANFIS-PSO-3 | 5.4716 | 4.2782 | 0.4362 | 0.4139 | 5.9539 | 4.5868 | 0.3761 | 0.3434 |
4 | ANFIS-PSO-4 | 5.0034 | 3.9776 | 0.5742 | 0.5479 | 5.5387 | 4.3547 | 0.4562 | 0.4318 |
5 | ANFIS-PSO-5 | 2.2117 | 1.6955 | 0.8758 | 0.8711 | 3.0626 | 1.8792 | 0.8385 | 0.8304 |
6 | ANFIS-PSO-6 | 2.2944 | 1.7418 | 0.8705 | 0.8671 | 3.1513 | 2.0271 | 0.8307 | 0.8161 |
7 | ANFIS-PSO-7 | 2.1440 | 1.6184 | 0.8833 | 0.8798 | 3.0034 | 1.8581 | 0.8514 | 0.8329 |
Input Combinations | Models | Training Period | Test Period | ||||||
---|---|---|---|---|---|---|---|---|---|
ANFIS-GWO | RMSE | MAE | R2 | NSE | RMSE | MAE | R2 | NSE | |
1 | ANFIS-GWO-1 | 5.7160 | 4.4034 | 0.3210 | 0.3082 | 6.2055 | 4.7184 | 0.2961 | 0.2868 |
2 | ANFIS-GWO-2 | 4.9357 | 3.7871 | 0.3909 | 0.3817 | 6.1194 | 4.6451 | 0.3456 | 0.3358 |
3 | ANFIS-GWO-3 | 5.2109 | 3.9294 | 0.4402 | 0.4240 | 5.9152 | 4.5361 | 0.4248 | 0.3990 |
4 | ANFIS-GWO-4 | 4.8026 | 3.7394 | 0.5881 | 0.5619 | 5.0426 | 3.8069 | 0.5566 | 0.5290 |
5 | ANFIS-GWO-5 | 2.1609 | 1.6339 | 0.8815 | 0.8762 | 2.9150 | 1.8556 | 0.8503 | 0.8426 |
6 | ANFIS-GWO-6 | 2.2338 | 1.7131 | 0.8734 | 0.8717 | 3.0389 | 1.9188 | 0.8435 | 0.8290 |
7 | ANFIS-GWO-7 | 2.0714 | 1.5695 | 0.8876 | 0.8828 | 2.8772 | 1.8030 | 0.8542 | 0.8467 |
Input Combinations | Models | Training Period | TEST PERIOD | ||||||
---|---|---|---|---|---|---|---|---|---|
ANFIS-GBO | RMSE | MAE | R2 | NSE | RMSE | MAE | R2 | NSE | |
1 | ANFIS-GBO-1 | 5.3760 | 4.1532 | 0.3349 | 0.3135 | 6.0533 | 4.6611 | 0.3058 | 0.2957 |
2 | ANFIS-GBO-2 | 5.5798 | 4.3196 | 0.3917 | 0.3708 | 5.9388 | 4.5565 | 0.3723 | 0.3468 |
3 | ANFIS-GBO-3 | 4.9075 | 3.8129 | 0.4723 | 0.4662 | 5.7478 | 4.3072 | 0.4438 | 0.4164 |
4 | ANFIS-GBO-4 | 4.3951 | 3.0178 | 0.6276 | 0.6038 | 5.0059 | 3.7927 | 0.5644 | 0.5359 |
5 | ANFIS-GBO-5 | 1.9420 | 1.4455 | 0.9069 | 0.9043 | 2.8097 | 1.7127 | 0.8571 | 0.8538 |
6 | ANFIS-GBO-6 | 2.1390 | 1.5408 | 0.8929 | 0.8839 | 2.8996 | 1.8062 | 0.8536 | 0.8443 |
7 | ANFIS-GBO-7 | 1.7334 | 1.3201 | 0.9249 | 0.9224 | 2.6810 | 1.6713 | 0.8675 | 0.8574 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikram, M.; Liu, H.; Al-Janabi, A.M.S.; Kisi, O.; Mo, W.; Ali, M.; Adnan, R.M. Enhancing the Prediction of Influent Total Nitrogen in Wastewater Treatment Plant Using Adaptive Neuro-Fuzzy Inference System–Gradient-Based Optimization Algorithm. Water 2024, 16, 3038. https://doi.org/10.3390/w16213038
Ikram M, Liu H, Al-Janabi AMS, Kisi O, Mo W, Ali M, Adnan RM. Enhancing the Prediction of Influent Total Nitrogen in Wastewater Treatment Plant Using Adaptive Neuro-Fuzzy Inference System–Gradient-Based Optimization Algorithm. Water. 2024; 16(21):3038. https://doi.org/10.3390/w16213038
Chicago/Turabian StyleIkram, Misbah, Hongbo Liu, Ahmed Mohammed Sami Al-Janabi, Ozgur Kisi, Wang Mo, Muhammad Ali, and Rana Muhammad Adnan. 2024. "Enhancing the Prediction of Influent Total Nitrogen in Wastewater Treatment Plant Using Adaptive Neuro-Fuzzy Inference System–Gradient-Based Optimization Algorithm" Water 16, no. 21: 3038. https://doi.org/10.3390/w16213038
APA StyleIkram, M., Liu, H., Al-Janabi, A. M. S., Kisi, O., Mo, W., Ali, M., & Adnan, R. M. (2024). Enhancing the Prediction of Influent Total Nitrogen in Wastewater Treatment Plant Using Adaptive Neuro-Fuzzy Inference System–Gradient-Based Optimization Algorithm. Water, 16(21), 3038. https://doi.org/10.3390/w16213038