Application of Metal–Organic Framework-Based Composite Materials for Photodegradation of Dye Pollutants in Wastewater
Abstract
:1. Introduction
2. Dye Pollutants
3. Metal–Organic Frameworks (MOFs)
3.1. Fundamentals of MOFs for Photocatalytic Process
3.2. Functionalized MOFs
3.3. Photocatalytic Activity of MOFs and Functionalized MOFs Towards Dye Pollutants
3.4. Effect of Various Parameters on the Photodegradation of Dyes with MOFs
3.4.1. Light Source
3.4.2. Initial Concentration of Dye Solution
3.4.3. Initial pH of Dye Solution
3.5. Stability and Regeneration of MOFs
4. Photocatalytic Activity of MOF-Based Composite Materials
4.1. Metal-MOF Composite Materials
4.2. Nonmetal–MOF Composite Materials
4.3. Bio–MOF Composite Materials
4.4. Polymer–MOF Composite Materials
4.5. Semiconductor–MOF Composite Materials
5. Conclusions and Future Perspective
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khan, M.S.; Li, Y.; Li, D.S.; Qiu, J.; Xu, X.; Yang, H.Y. A review of metal-organic framework (MOF) materials as an effective photocatalyst for degradation of organic pollutants. Nanoscale Adv. 2023, 2, 6318–6348. [Google Scholar] [CrossRef] [PubMed]
- Garg, R.; Sabouni, R.; Alaamer, A.; Alali, A.; Al-Muqbel, D.; Alqassem, H.; Almazrooei, K. Recent development in metal-organic framework-based hybrid nanocomposites for pollutants remediation from wastewater: Challenges and opportunities. Environ. Technol. Innov. 2023, 32, 103446. [Google Scholar] [CrossRef]
- Amenaghawon, A.N.; Anyalewechi, C.L.; Osazuwa, O.U.; Elimian, E.A.; Eshiemogie, S.O.; Oyefolu, P.K.; Kusuma, H.S. A comprehensive review of recent advances in the synthesis and application of metal-organic frameworks (MOFs) for the adsorptive sequestration of pollutants from wastewater. Sep. Purif. Technol. 2023, 311, 123246. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Kadhom, M.; Khan, I.; Hama Aziz, K.H.; Alli, Y.A. Advancements in adsorption and photodegradation technologies for Rhodamine B dye wastewater treatment: Fundamentals, applications, and future directions. Green Chem. Eng. 2024, 5, 440–460. [Google Scholar] [CrossRef]
- Mahmoudi, F.; Saravanakumar, K.; Maheskumar, V.; Njaramba, L.K.; Yoon, Y.; Park, C.M. Application of perovskite oxides and their composites for degrading organic pollutants from wastewater using advanced oxidation processes: Review of the recent progress. J. Hazard. Mater. 2022, 436, 129074. [Google Scholar] [CrossRef]
- Samarasinghe, L.V.; Muthukumaran, S.; Baskaran, K. Recent advances in visible light-activated photocatalysts for degradation of dyes: A comprehensive review. Chemosphere 2024, 349, 140818. [Google Scholar] [CrossRef] [PubMed]
- Aramesh, N.; Reza Bagheri, A.; Zhang, Z.; Yadollahi, B.; Kee Lee, H. Polyoxometalate-based materials against environmental pollutants: A review. Coord. Chem. Rev. 2024, 507, 215767. [Google Scholar] [CrossRef]
- Solayman, H.M.; Abd Aziz, A.; Yahya, N.Y.; Leong, K.H.; Sim, L.C.; Hossain, M.K.; Khan, M.B.; Zoh, K.D. CQDs embed g-C3N4 photocatalyst in dye removal and hydrogen evolution: An insight review. J. Water Process Eng. 2024, 57, 104645. [Google Scholar] [CrossRef]
- Mathew, S.; Ramachandra, M.; Devi, K.R.S.; Pinheiro, D.; Manickam, S.; Peng, C.H.; Sonawane, S.H. Synthesis, mechanisms, challenges, and future prospects of Ti3C2 MXene and its heterojunctions for photocatalytic dye degradation efficiency: A comprehensive review. Mater. Today Sustain. 2023, 24, 100568. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, T.; Wang, H.; Yan, M.; Qi, Y. BiOBr nanoflakes with engineered thickness for boosted photodegradation of RhB under visible light irradiation. J. Alloys Compd. 2023, 947, 169613. [Google Scholar] [CrossRef]
- Chabalala, M.B.; Mothudi, B.M.; Ntsendwana, B. MOF based nanocomposites for photocatalytic degradation of pollutants in water: A critical review. J. Photochem. Photobiol. A Chem. 2024, 447, 115244. [Google Scholar] [CrossRef]
- Sarker, T.; Tahmid, I.; Sarker, R.K.; Dey, S.C.; Islam, M.T.; Sarker, M. ZIF-67-based materials as adsorbent for liquid phase adsorption-a review. Polyhedron 2024, 260, 117069. [Google Scholar] [CrossRef]
- Tang, S.; Wang, Y.; He, P.; Wang, Y.; Wei, G. Recent Advances in Metal-Organic Framework (MOF)-Based Composites for Organic Effluent Remediation. Materials 2024, 17, 2660. [Google Scholar] [CrossRef] [PubMed]
- Alvaro, M.; Carbonell, E.; Ferrer, B.; Llabrés I Xamena, F.X.; Garcia, H. Semiconductor behavior of a metal-organic framework (MOF). Chem. Eur. J. 2007, 13, 5106–5112. [Google Scholar] [CrossRef]
- Chen, D.; Zheng, Y.T.; Huang, N.Y.; Xu, Q. Metal-organic framework composites for photocatalysis. Energy Chem. 2023, 6, 100115. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, P.; Sharma, V.K.; Ma, X.; Zhou, H.C. Metal-organic frameworks for environmental applications. Cell. Rep. Phys. Sci. 2021, 2, 100342. [Google Scholar] [CrossRef]
- Rabiee, N. Sustainable metal-organic frameworks (MOFs) for drug delivery systems. Mater. Today Commun. 2023, 35, 106244. [Google Scholar] [CrossRef]
- Yuvaraj, A.R.; Jayarama, A.; Sharma, D.; Nagarkar, S.S.; Duttagupta, S.P.; Pinto, R. Role of metal-organic framework in hydrogen gas storage: A critical review. Int. J. Hydrogen Energy 2024, 59, 1434–1458. [Google Scholar] [CrossRef]
- Shahzad, U.; Marwani, H.M.; Saeed, M.; Asiri, A.M.; Althomali, R.H.; Rahman, M.M. Exploration of porous metal-organic frameworks (MOFs) for an efficient energy storage application. J. Energy Storage 2023, 74, 109518. [Google Scholar] [CrossRef]
- He, Y.; Liu, W.; Liu, J. MOF-based/derived catalysts for electrochemical overall water splitting. J Colloid Interface Sci. 2024, 661, 409–435. [Google Scholar] [CrossRef]
- Zha, F.; Shi, M.; Li, H.; Rao, J.; Chen, B. Biomimetic mineralization of lipase@MOF biocatalyst for ease of biodiesel synthesis: Structural insights into the catalytic behavior. Fuel 2024, 357, 129854. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, X.; Hou, Y.; Liu, C.; Xie, G.; Chen, X. Current research status of MOF materials for catalysis applications. Mol. Catal. 2024, 555, 113851. [Google Scholar] [CrossRef]
- Wang, Z.; Yue, X.; Xiang, Q. MOFs-based S-scheme heterojunction photocatalysts. Coord. Chem. Rev. 2024, 504, 215674. [Google Scholar] [CrossRef]
- Swain, J.; Priyadarshini, A.; Hajra, S.; Panda, S.; Panda, J.; Samantaray, R.; Yamauchi, Y.; Han, M.; Kim, H.J.; Sahu, R. Photocatalytic dye degradation by BaTiO3/zeolitic imidazolate framework composite. J. Alloys Compd. 2023, 965, 171438. [Google Scholar] [CrossRef]
- Cen, L.; Tang, T.; Yu, F.; Wu, H.; Li, C.; Zhu, H.; Guo, Y. Fabrication of ZIF-8/TiO2 electrospinning nanofibers for synergistic photodegradation in dyeing wastewater. J. Ind. Eng. Chem. 2023, 126, 537–545. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, H.; Miao, Y.; Tian, C.; Li, W.; Song, Y.; Zhang, Y. Influence of the Conductivity of Polymer Matrix on the Photocatalytic Activity of PAN–PANI–ZIF8 Electrospun Fiber Membranes. Fibers Polym. 2023, 24, 1253–1264. [Google Scholar] [CrossRef]
- Shahriyari Far, H.; Najafi, M.; Hasanzadeh, M.; Rahimi, R. Synthesis of MXene/Metal-Organic Framework (MXOF) composite as an efficient photocatalyst for dye contaminant degradation. Inorg. Chem. Commun. 2023, 152, 110680. [Google Scholar] [CrossRef]
- Bouider, B.; Haffad, S.; Bouakaz, B.S.; Berd, M.; Ouhnia, S.; Habi, A. MOF-5/Graphene Oxide Composite Photocatalyst for Enhanced Photocatalytic Activity of Methylene Blue Degradation Under Solar Light. J. Inorg. Organomet. Polym. Mater. 2023, 33, 4001–4011. [Google Scholar] [CrossRef]
- Li, L.Y.; Wang, X.; Ma, L.X.; Zhou, W.J.; Li, B.L.; Li, H.Y.; Hu, C.J. A two-dimensional Cu(II) metal-organic framework and its g-C3N4 heterojunction composite for high efficient photodegradation of organic dyes. J. Solid State Chem. 2023, 326, 124173. [Google Scholar] [CrossRef]
- Li, L.; Han, J.; Huang, X.; Qiu, S.; Liu, X.; Liu, L.; Zhao, M.; Qu, J.; Zou, J.; Zhang, J. Organic pollutants removal from aqueous solutions using metal-organic frameworks (MOFs) as adsorbents: A review. J. Environ. Chem. Eng. 2023, 11, 111217. [Google Scholar] [CrossRef]
- Bhuyan, A.; Ahmaruzzaman, M. Recent advances in MOF-5-based photocatalysts for efficient degradation of toxic organic dyes in aqueous medium. Next Sustain. 2024, 3, 100016. [Google Scholar] [CrossRef]
- Sağlam, S.; Türk, F.N.; Arslanoğlu, H. Use and applications of metal-organic frameworks (MOF) in dye adsorption: Review. J. Environ. Chem. Eng. 2023, 11, 110568. [Google Scholar] [CrossRef]
- Zhao, H.; Xing, Z.; Su, S.; Song, S.; Xu, T.; Li, Z.; Zhou, W. Recent advances in metal organic frame photocatalysts for environment and energy applications. Appl. Mater. Today 2020, 21, 100821. [Google Scholar] [CrossRef]
- Sandhu, Z.A.; Farwa, U.; Danish, M.; Raza, M.A.; Talib, A.; Amjad, H.; Riaz, R.; Al-Sehemi, A.G. Sustainability and photocatalytic performance of MOFs: Synthesis strategies and structural insights. J. Clean. Prod. 2024, 470, 143263. [Google Scholar] [CrossRef]
- Singh, V.; Gautam, S.; Kaur, S.; Kajal, N.; Kaur, M.; Gupta, R. Highly functionalized photo-activated metal–organic frameworks for dye degradation: Recent advancements. Mater. Today Commun. 2023, 34, 105180. [Google Scholar] [CrossRef]
- Juma, A.K.; Merican, Z.M.A.; Haruna, A. Recent progress of MOF-based photocatalysts for environmental application and sustainability considerations. Chem. Eng. Res. Des. 2024, 208, 391–435. [Google Scholar] [CrossRef]
- Nasalevich, M.A.; Goesten, M.G.; Savenije, T.J.; Kapteijn, F.; Gascon, J. Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis. Chem. Comm. 2013, 49, 10575–10577. [Google Scholar] [CrossRef]
- Naghdi, S.; Shahrestani, M.M.; Zendehbad, M.; Djahaniani, H.; Kazemian, H.; Eder, D. Recent advances in application of metal-organic frameworks (MOFs) as adsorbent and catalyst in removal of persistent organic pollutants (POPs). J. Hazard. Mater. 2023, 442, 130127. [Google Scholar] [CrossRef]
- Kaur, B.; Soni, V.; Kumar, R.; Singh, P.; Selvasembian, R.; Singh, A.; Thakur, S.; Parwaz Khan, A.A.; Kaya, S.; Nguyen, L.H.; et al. Recent advances in manipulating strategies of NH2-functionalized metallic organic frameworks-based heterojunction photocatalysts for the sustainable mitigation of various pollutants. Environ. Res. 2024, 259, 119575. [Google Scholar] [CrossRef]
- Liaqat, R.; Jamshaid, M.; Abo-Dief, H.M.; Ali, S.E.; El-Bahy, Z.M.; Fiaz, M.; Wattoo, M.A.; Rehman, A.u. Mo@Ni-MOF nanocomposite: A promising photocatalyst for photodegradation of Methylene blue. J. Mol. Struct. 2024, 1315, 139011. [Google Scholar] [CrossRef]
- Redwan Habib, N.; Taddesse, A.M.; Sainz, R.; Sánchez-Sánchez, M.; Diaz, I. Copper-loaded sustainable MOFs as photocatalysts for dye removal. J. Photochem. Photobiol. A Chem. 2024, 456, 115842. [Google Scholar] [CrossRef]
- Zhang, L.L.; Liu, M.; Wang, K.A.; Bin Zhu, H. Assembling Ag/UiO-66-NH2 Composites for Photocatalytic Dye Degradation. J. Inorg. Organomet. Polym. Mater. 2022, 32, 1896–1901. [Google Scholar] [CrossRef]
- Pan, Y.; Abazari, R.; Tahir, B.; Sanati, S.; Zheng, Y.; Tahir, M.; Gao, J. Iron-based metal–organic frameworks and their derived materials for photocatalytic and photoelectrocatalytic reactions. Coord. Chem. Rev. 2024, 499, 215538. [Google Scholar] [CrossRef]
- Zhao, N.; Sun, F.; Zhang, N.; Zhu, G. Novel Pyrene-Based Anionic Metal-Organic Framework for Efficient Organic Dye Elimination. Cryst. Growth Des. 2017, 17, 2453–2457. [Google Scholar] [CrossRef]
- Li, S.; Yang, S.; Liang, G.; Yan, M.; Wei, C.; Lu, Y. Regulation and photocatalytic degradation mechanism of a hydroxyl modified UiO-66 type metal organic framework. RSC Adv. 2023, 13, 5273–5282. [Google Scholar] [CrossRef]
- Jing, H.P.; Wang, C.C.; Zhang, Y.W.; Wang, P.; Li, R. Photocatalytic degradation of methylene blue in ZIF-8. RSC Adv. 2014, 4, 54454–54462. [Google Scholar] [CrossRef]
- Yang, S.; Li, X.; Zeng, G.; Cheng, M.; Huang, D.; Liu, Y.; Zhou, C.; Xiong, W.; Yang, Y.; Wang, W.; et al. Materials Institute Lavoisier (MIL) based materials for photocatalytic applications. Coord. Chem. Rev. 2021, 438, 213874. [Google Scholar] [CrossRef]
- Ai, L.; Zhang, C.; Li, L.; Jiang, J. Iron terephthalate metal-organic framework: Revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation. Appl. Catal. B Environ. 2014, 148–149, 191–200. [Google Scholar] [CrossRef]
- Rezaei, H.; Zinatizadeh, A.A.; Joshaghani, M.; Zinadini, S. Amino acid-based carbon quantum dot modified MIL-53 (Fe): Investigation of its visible-driven photocatalytic activity provided by a highly efficient photoreactor. Mater. Sci. Semicond. Process. 2023, 154, 107190. [Google Scholar] [CrossRef]
- Chu, H.; Wang, C.C. MIL-100(Fe)-based functional materials for water decontamination: A state of the art review. Prog. Nat. Sci.-Mater. Int. 2023, 33, 386–406. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Abdi, J.; Oveisi, M.; Alinia Asli, M.; Vossoughi, M. Metal-organic framework (MIL-100 (Fe)): Synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling. Mater. Res. Bull. 2018, 100, 357–366. [Google Scholar] [CrossRef]
- Guesh, K.; Caiuby, C.A.D.; Mayoral, Á.; Díaz-García, M.; Díaz, I.; Sanchez-Sanchez, M. Sustainable Preparation of MIL-100(Fe) and Its Photocatalytic Behavior in the Degradation of Methyl Orange in Water. Cryst. Growth Des. 2017, 17, 1806–1813. [Google Scholar] [CrossRef]
- Xia, L.; Ni, J.; Wu, P.; Ma, J.; Bao, L.; Shi, Y.; Wang, J. Photoactive metal-organic framework as a bifunctional material for 4-hydroxy-4′-nitrobiphenyl detection and photodegradation of methylene blue. Dalton Trans. 2018, 47, 16551–16557. [Google Scholar] [CrossRef]
- Li, H.; Li, Q.; He, X.; Xu, Z.; Wang, Y.; Jia, L. Synthesis of AgBr@MOFs nanocomposite and its photocatalytic activity for dye degradation. Polyhedron 2019, 165, 31–37. [Google Scholar] [CrossRef]
- Gholizadeh Khasevani, S.; Gholami, M.R. Evaluation of the reaction mechanism for photocatalytic degradation of organic pollutants with MIL-88A/BiOI structure under visible light irradiation. Res. Chem. Intermed. 2019, 45, 1341–1356. [Google Scholar] [CrossRef]
- Abdi, J.; Banisharif, F.; Khataee, A. Amine-functionalized Zr-MOF/CNTs nanocomposite as an efficient and reusable photocatalyst for removing organic contaminants. J. Mol. Liq. 2021, 334, 116129. [Google Scholar] [CrossRef]
- Ao, D.; Zhang, J.; Liu, H. Visible-light-driven photocatalytic degradation of pollutants over Cu-doped NH2-MIL-125(Ti). J. Photochem. Photobiol. A 2018, 364, 524–533. [Google Scholar] [CrossRef]
- Faaizatunnisa, N.; Ediati, R.; Yusof, E.N.M.; Fadlan, A.; Karelius, K.; Kulsum, U.; Ariesta, M.N. The mixed-ligand strategy for structural modification of MOF materials to enhance the photocatalytic degradation and adsorption of organic pollutants: A review. Nano-Struct. Nano-Objects 2024, 40, 101366. [Google Scholar] [CrossRef]
- Jin, J.C.; Yang, M.; Zhang, Y.L.; Dutta, A.; Xie, C.G.; Kumar, A. Integration of mixed ligand into a multivariate metal-organic framework for enhanced UV-light photocatalytic degradation of Rhodamine B. J. Taiwan Inst. Chem. Eng. 2021, 129, 410–417. [Google Scholar] [CrossRef]
- Thambiliyagodage, C. Activity enhanced TiO2 nanomaterials for photodegradation of dyes—A review. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100592. [Google Scholar] [CrossRef]
- Duran, F.; Diaz-Uribe, C.; Vallejo, W.; Muñoz-Acevedo, A.; Schott, E.; Zarate, X. Adsorption and Photocatalytic Degradation of Methylene Blue on TiO2 Thin Films Impregnated with Anderson-Evans Al-Polyoxometalates: Experimental and DFT Study. ACS Omega 2023, 8, 27284–27292. [Google Scholar] [CrossRef] [PubMed]
- Che Ramli, Z.A.; Asim, N.; Isahak, W.N.R.W.; Emdadi, Z.; Ahmad-Ludin, N.; Yarmo, M.A.; Sopian, K. Photocatalytic degradation of methylene blue under UV light irradiation on prepared carbonaceous TiO2. Sci. World J. 2014, 2014, 415136. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, G.; Murali, K.R. Photocatalytic activity of SnO2 nanoparticles. J. Appl. Electrochem. 2022, 52, 849–859. [Google Scholar] [CrossRef]
- Dharmana, G.; Nadikatla, S.K.; Gurugubelli, T.R.; Viswanadham, B. Enhanced Photo-Catalytic Degradation of MB Dye over Hydrothermal Grown-Up of ZnO/SnO2 Catalyst. J. Chem. 2024, 2024, 9135923. [Google Scholar] [CrossRef]
- Roy, S.; Darabdhara, J.; Ahmaruzzaman, M. Recent advances of Copper-BTC metal-organic frameworks for efficient degradation of organic dye-polluted wastewater: Synthesis, mechanistic insights and future outlook. J. Hazard. Mater. Lett. 2024, 5, 100094. [Google Scholar] [CrossRef]
- Motora, K.G.; Wu, C.M.; Lin, S.-T. Novel Ag3PO4@ZIF-8 p-n heterojunction for effective photodegradation of organic pollutants. J. Water Process Eng. 2023, 52, 103586. [Google Scholar] [CrossRef]
- Roy, S.; Darabdhara, J.; Ahmaruzzaman, M. ZnO-based Cu metal–organic framework (MOF) nanocomposite for boosting and tuning the photocatalytic degradation performance. Environ. Sci. Pollut. Res. 2023, 30, 95673–95691. [Google Scholar] [CrossRef]
- Xue, Y.; Zheng, S.; Xue, H.; Pang, H. Metal-organic framework composites and their electrochemical applications. J. Mater. Chem. A 2019, 7, 7301–7327. [Google Scholar] [CrossRef]
- Chen, J.Q.; Sharifzadeh, Z.; Bigdeli, F.; Gholizadeh, S.; Li, Z.; Hu, M.L.; Morsali, A. MOF composites as high potential materials for hazardous organic contaminants removal in aqueous environments. J. Environ. Chem. Eng. 2023, 11, 109469. [Google Scholar] [CrossRef]
- Naeem, A.; Saeed, T.; Sayed, M.; Ahmad, B.; Mahmood, T.; Farooq, M.; Perveen, F. Chitosan decorated zirconium metal-organic framework for collaborative adsorption and photocatalytic degradation of methylene blue and methyl orange. Process Saf. Environ. Prot. 2023, 176, 115–130. [Google Scholar] [CrossRef]
- Niu, H.Y.; Cao, L.Q.; Yang, X.L.; Liu, K.N.; Liu, L.; Wang, J.D. In situ growth of the ZIF-8 on the polymer monolith via CO2-in-water HIPEs stabilized using metal oxide nanoparticles and its photocatalytic activity. Polym. Adv. Technol. 2021, 32, 3194–3204. [Google Scholar] [CrossRef]
- Guo, A.; Wang, X.; Liu, H.; Li, X.; Yang, L.; Yang, W. Efficient photocatalytic degradation of water contaminants via Ag decorated porphyrin-based organic framework materials. Surf. Interfaces 2023, 38, 102843. [Google Scholar] [CrossRef]
- Chen, X.H.; Zhang, Y.S.; Li, W.B.; Guan, X.W.; Ye, J.W.; Chen, L.; Wang, H.P.; Bai, J.; Mo, Z.W.; Chen, X.M. A porphyrin-based metal-organic framework with highly efficient adsorption and photocatalytic degradation performances for organic dyes. Inorg. Chem. Front. 2022, 9, 2328–2335. [Google Scholar] [CrossRef]
- Lafta, M.A.; Ammar, S.H. Synthesis and photocatalytic activity of polyoxometalates immobilized onto g-C3N4/ZIF-67 heterostructures. Mater. Sci. Semicond. Process. 2023, 153, 107131. [Google Scholar] [CrossRef]
- Zhou, W.-J.; Ma, L.-X.; Li, L.-Y.; Zha, M.; Li, B.-L.; Wu, B.; Hu, C.H. Synthesis of a 3D Cu(II) MOF and its heterostructual g-C3N4 composite showing improved visible-light-driven photodegradation of organic dyes. J. Solid State Chem. 2022, 315, 123520. [Google Scholar] [CrossRef]
- Rahmani, M.; Abbasi, A.; Hosseini, M.S. Fabrication of visible light responsive nitrogen-doped carbon quantum dots/MIL-101(Cr) composites for enhanced photodegradation of Rhodamine B. J. Photochem. Photobiol. A Chem. 2023, 445, 115019. [Google Scholar] [CrossRef]
- El-Fawal, E.M.; Morshedy, A.S. Fabrication of Mn@Zr-MOF composite for highly efficient photocatalytic oxidative desulfurization of liquid fuels and degradation of dyes: Application of response surface methodology. Inorg. Chem. Commun. 2024, 170, 113272. [Google Scholar] [CrossRef]
- Ghasemzadeh, R.; Akhbari, K. Heterostructured Ag@MOF-801/MIL-88A(Fe) Nanocomposite as a Biocompatible Photocatalyst for Degradation of Reactive Black 5 under Visible Light. Inorg. Chem. 2023, 62, 17818–17829. [Google Scholar] [CrossRef]
- Hekmat, A.; Ghasemi, S.; Vossoughi, M. Unveiling the synergistic effect of ionic liquid and metal-organic framework on the efficiency of BiVO4: BiVO4-MIL-100(Fe) as a visible light-induced photocatalyst for Basic Red 46 degradation. J. Environ. Chem. Eng. 2023, 11, 110658. [Google Scholar] [CrossRef]
- Sharma, A.; Kumari, M.; Tahir, M.; Jain, S.; Sharma, S.; Kumar, N. An energy saving and water- based synthesis of Bi2O3@Fe-succinate MOF: A visible light mediated approach towards water decontamination. J. Mol. Liq. 2023, 386, 122429. [Google Scholar] [CrossRef]
- Roy, S.; Darabdhara, J.; Ahmaruzzaman, M. MoS2 Nanosheets@Metal organic framework nanocomposite for enhanced visible light degradation and reduction of hazardous organic contaminants. J. Clean. Prod. 2023, 430, 139517. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Shen, M.T.; Qi, M.J.; Zhao, Y.Y.; Xu, Z.; Li, P.; Ru, J.; Gao, W.; Zhang, X.M. Constructed CdS/Mn-MOF heterostructure for promoting photocatalytic degradation of Rhodamine B. Dyes Pigm. 2023, 219, 111607. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Adegboyega, S.A.; Adebisi Giwa, A.-R. Remediation potentials of composite metal-organic frameworks (MOFs) for dyes as water contaminants: A comprehensive review of recent literatures. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100568. [Google Scholar] [CrossRef]
- Guo, H.; Guo, D.; Zheng, Z.; Weng, W.; Chen, J. Visible-light photocatalytic activity of Ag@MIL-125(Ti) microspheres. Appl. Organomet. Chem. 2015, 29, 618–623. [Google Scholar] [CrossRef]
- Abdi, J. Synthesis of Ag-doped ZIF-8 photocatalyst with excellent performance for dye degradation and antibacterial activity. Colloids Surf. A Physicochem. Eng. Asp. 2020, 645, 125330. [Google Scholar] [CrossRef]
- Chandra, R.; Nath, M. Facile Synthesis of Metal–Organic Framework (ZIF-11) and AgNPs Encapsulated-ZIF-11 Composite as an Effective Heterogeneous Catalyst for Photodegradation of Methylene Blue. Appl. Organomet. Chem. 2020, 34, e5951. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Tang, Y.; Huang, X.; Pang, H. Recent advances and challenges of metal–organic framework/ graphene-based composites. Compos. B Eng. 2022, 230, 109532. [Google Scholar] [CrossRef]
- Quang, H.T.; Le Pham, H.A.; Van Cuong, N.; Dang, H.P.; Anh, N.T.H. Rapid Synthesis of Bismuth MOF@Carbon Nanotube Composite by microwave-assisted Solvothermal for Photodegrading RhB. Top. Catal. 2024, 67, 1155–1168. [Google Scholar] [CrossRef]
- Lan, D.; Zhu, H.; Zhang, J.; Xie, C.; Wang, F.; Zheng, Y.; Guo, Z.; Xu, M.; Wu, T. Heterojunction of UiO-66 and porous g-C3N4 for boosted photocatalytic removal of organic dye. Appl. Surf. Sci. 2024, 655, 159623. [Google Scholar] [CrossRef]
- Zhang, X.; Song, Z.; Yu, X.; Dong, X.; Peng, Y.; Wei, K.; Cao, L.; He, X.; Zhang, Z.; Fan, J. Construction of heterogeneous structures of MIL-101(Fe)/Ce/g-C3N4 nanocomposites for enhanced photocatalytic activity under visible light. J. Solid State Chem. 2023, 323, 124013. [Google Scholar] [CrossRef]
- Durmus, Z.; Köferstein, R.; Lindenberg, T.; Lehmann, F.; Hinderberger, D.; Maijenburg, A.W. Preparation and characterization of Ce-MOF/g-C3N4 composites and evaluation of their photocatalytic performance. Ceram. Int. 2023, 49, 24428–24441. [Google Scholar] [CrossRef]
- Mukherjee, D.; Das, P.; Kundu, S.; Mohan Kundu, L.; Mandal, B. Graphene quantum dots decorated MIL-100(Fe) composites for dye degradation. J. Photochem. Photobiol. A Chem. 2023, 442, 114776. [Google Scholar] [CrossRef]
- Yang, H.L.; Bai, L.F.; Geng, Z.R.; Chen, H.; Xu, L.T.; Xie, Y.C.; Wang, D.J.; Gu, H.W.; Wang, X.M. Carbon quantum dots: Preparation, optical properties, and biomedical applications. Mater. Today Adv. 2023, 18, 100376. [Google Scholar] [CrossRef]
- Cheng, L.; Tang, Y.; Xie, M.; Sun, Y.; Liu, H. 2D ultrathin NiMOF decorated by Ti3C2 MXene for highly improved photocatalytic performance. J. Alloys Compd. 2021, 864, 158913. [Google Scholar] [CrossRef]
- Shahzaib, A.; Shaily; Kamran, L.A.; Nishat, N. The Biomolecule-MOF Nexus: Recent advancements in biometal-organic frameworks (Bio-MOFs) and their multifaceted applications. Mater. Today Chem. 2023, 34, 101781. [Google Scholar] [CrossRef]
- Zhu, W.; Xia, Z.; Shi, B.; Lü, C. Two-Dimensional Cu-Porphyrin Metal-Organic Framework Nanosheet-Supported Flaky TiO2 as an Efficient Visible-Light-Driven Photocatalyst for Dye Degradation and Cr(VI) Reduction. Langmuir 2023, 39, 15665–15675. [Google Scholar] [CrossRef]
- Hassanzadeh Goji, N.; Ramezani, M.; Saljooghi, A.S.; Alibolandi, M. Porphyrin-based metal–organic frameworks: Focus on diagnostic and therapeutic applications. J. Nanostruct. Chem. 2024, 14, 167–208. [Google Scholar] [CrossRef]
- Ramasubbu, V.; Ram Kumar, P.; Chellapandi, T.; Madhumitha, G.; Mothi, E.M.; Shajan, X.S. Zn(II) porphyrin sensitized (TiO2@Cd-MOF) nanocomposite aerogel as novel photocatalyst for the effective degradation of methyl orange (MO) dye. Opt. Mater. 2022, 132, 112558. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, Z.; Guan, J. 2D MOFs and their derivatives for electrocatalytic applications: Recent advances and new challenges. Coord. Chem. Rev. 2022, 472, 214777. [Google Scholar] [CrossRef]
- Wang, Z.; Jing, C.; Zhai, W.; Li, Y.; Liu, W.; Zhang, F.; Li, S.; Wang, H.; Yu, D. MIL-101(Fe)/polysulfone hollow microspheres from pickering emulsion template for effective photocatalytic degradation of methylene blue. Colloids Surf. A Physicochem. Eng. Asp. 2023, 667, 131394. [Google Scholar] [CrossRef]
- Brahmi, C.; Benltifa, M.; Vaulot, C.; Michelin, L.; Dumur, F.; Gkaniatsou, E.; Sicard, C.; Airoudj, A.; Morlet-Savary, F.; Bousselmi, L.; et al. New Hybrid Fe-based MOFs/Polymer Composites for the Photodegradation of Organic Dyes. Chem. Select. 2021, 6, 8120–8132. [Google Scholar] [CrossRef]
- Brahmi, C.; Benltifa, M.; Vaulot, C.; Michelin, L.; Dumur, F.; Millange, F.; Frigoli, M.; Airoudj, A.; Morlet-Savary, F.; Bousselmi, L.; et al. New hybrid MOF/polymer composites for the photodegradation of organic dyes. Eur. Polym. J. 2021, 154, 110560. [Google Scholar] [CrossRef]
- Patial, S.; Sonu; Thakur, S.; Van Le, Q.; Ahamad, T.; Singh, P.; Nguyen, V.H.; Khan, A.A.P.; Hussain, C.M.; Raizada, P. Facile synthesis of Co, Fe-bimetallic MIL-88A/microcrystalline cellulose composites for efficient adsorptive and photo-Fenton degradation of RhB dye. J. Taiwan Inst. Chem. Eng. 2023, 153, 105189. [Google Scholar] [CrossRef]
- Wang, W.; Wen, C.; Zheng, D.; Li, C.; Bian, J.; Wang, X. Simultaneous degradation of RhB and reduction of Cr(VI) by MIL-53(Fe)/Polyaniline (PANI) with the mediation of organic acid. Chin. J. Chem. Eng. 2022, 42, 55–63. [Google Scholar] [CrossRef]
- Qiao, Y.; Sun, C.; Jian, J.; Zhou, T.; Xue, X.; Shi, J.; Che, G.; Liao, G. Efficient removal of organic pollution via photocatalytic degradation over a TiO2@HKUST-1 yolk-shell nanoreactor. J. Mol. Liq. 2023, 385, 122383. [Google Scholar] [CrossRef]
- Mohammed, R.O.; Amooey, A.A.; Ammar, S.H.; Salman, M.D. Enhanced photocatalytic degradation activity of ZIF-8 doped with Ag2WO4 photocatalyst. J. Taiwan Inst. Chem. Eng. 2023, 151, 105141. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, W.; Yi, G.; Su, X.; Pan, Q.; Oderinde, O.; Xiao, G.; Chen, L.; Zhang, C.; Zhang, Y. Excellent performance of AgVO3@ZIF(Zn, Co) interfacial heterojunction for photodegradation of organic pollutants: Experimental and computational studies. J. Ind. Eng. Chem. 2024, 135, 377–387. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Tang, M.; Wang, C.; Gao, D.; Zhou, Y. Developing a Z-scheme Ag2CO3/ZIF-8 heterojunction for the surface decoration of cotton fabric toward repeatable photocatalytic dye degradation. Appl. Surf. Sci. 2023, 610, 155605. [Google Scholar] [CrossRef]
- Liu, J.; Zhan, H.; Wang, P.; Chen, M.; Zhu, X.B.; Han, J.; Fu, B. Assembling BiOBr nanoplates on MIL-125(Ti)–NH2 via group linkage towards effective dye-contaminated water purification. J. Solid. State. Chem. 2024, 329, 124408. [Google Scholar] [CrossRef]
- Ren, Y.; Li, Y.; Pan, G.; Wang, N.; Xing, Y.; Zhang, Z. Recent progress in CdS-based S-scheme photocatalysts. J. Mater. Sci. Technol. 2024, 171, 162–184. [Google Scholar] [CrossRef]
Dye | Abbreviation | Charge | Class |
---|---|---|---|
Crystal Violet | CV | Cationic | Triphenylmethane |
Methylene Blue | MB | Cationic | Thiazine |
Rhodamine B | RhB | Cationic | Rhodamine |
Azure B | AB | Cationic | Thiazine |
Basic Blue 41 | BB41 | Cationic | Azo |
Basic Red 46 | BR46 | Cationic | Azo |
Methyl Orange | MO | Anionic | Azo |
Congo Red | CR | Anionic | Azo |
Reactive Black 5 | RB5 | Anionic | Azo |
Acid Black 1 | AB 1 | Anionic | Azo |
Rose Bengal | RB | Anionic | Xanthene |
Catalyst | Light Source | Dye | Dye Conc. (mg L−1) | Catalyst Dosage (mg mL−1) | Reaction Time (min) | Degradation (%) | Ref. |
---|---|---|---|---|---|---|---|
TiO2 | UV | MB | 10 | - | 300 | 19.6 | [61] |
TiO2 | UV | MB | 0.05 mM | 1 | 90 | 40 | [62] |
SnO2 | UV-vis | MB | - | 0.3 | 90 | 93 | [63] |
SnO2 | UV-vis | RhB | - | 0.3 | 90 | 86 | |
ZnO | Vis | MB | 10 | 0.1 | 120 | 38.5 | [64] |
SnO2 | Vis | MB | 10 | 0.1 | 120 | 32.7 | [64] |
ZnO@SnO2 | Vis | MB | 10 | 0.1 | 120 | 82.4 | [64] |
JUC-138 | UV | Azure B | - | - | 240 | 90 | [44] |
UIO-66-2OH | Vis | MB | - | - | 100 | 100 | [45] |
ZIF-8 | UV | MB | 10 | 0.2 | 120 | 82.3 | [46] |
MIL-53(Fe) | Vis | RhB | 10 | 4 | 50 | 100 | [48] |
MIL-100(Fe) | UV | MO | 5 | 0.33 | 420 | 64 | [52] |
Cd-TCAA | Vis | MB | 28 μM | 0.1 | 175 | 81 | [53] |
HPU-4 | Vis | MB | 12.75 | 0.3 | 60 | 20 | [54] |
MIL-88A | Vis | MB | - | - | 80 | 12 | [55] |
UiO-66 | Vis | RhB | 15 | 0.3 | 30 | 42 | [56] |
UiO-66-NH2 | Vis | RhB | 15 | 0.3 | 30 | 60 | [56] |
NH2-MIL-125(Ti) | Vis | MO | 10 | 0.4 | 90 | 37 | [57] |
Cu-doped NH2-MIL-125(Ti) | Vis | MO | 10 | 0.4 | 90 | 98.2 | [57] |
UiO-66-NO2 (1) | UV | RhB | 10 | 1 | 50 | 25 | [59] |
UiO-66-NH2 (2) | UV | RhB | 10 | 1 | 50 | 57 | [59] |
UiO-66-NO2/UiO-66-NH2 (3) | UV | RhB | 10 | 1 | 50 | 95.5 | [59] |
Catalyst | Light Source | Dye | Dye Conc. (mg L−1) | Catalyst Dosage (mg mL−1) | Reaction Time (min) | Degradation (%) | Ref. |
---|---|---|---|---|---|---|---|
Ni-MOF | solar | MB | 10 | 0.2 | 70 | 68 | [40] |
Mo@Ni-MOF | solar | MB | 10 | 0.2 | 70 | 84 | [40] |
Ag@MOF-525 | Vis | RhB | 20 | 1 | 60 | 91 | [72] |
Ag@MIL-125(Ti) | Vis | RhB | - | 1 | 40 | 100 | [84] |
Ag@ZIF-8 | Vis | MO | 15 | 0.8 | 30 | 100 | [85] |
Vis | RhB | 15 | 0.8 | 30 | 93 | ||
AgNPs@ZIF-11 | UV-vis | MB | 1.6 | - | 40 | 100 | [86] |
Ag/UiO-66-NH2 | UV-vis | RhB | 2 × 10–5 mol L−1 | 0.33 | 40 | 96 | [42] |
Catalyst | Light Source | Dye | Dye Conc. (mg L−1) | Catalyst Dosage (mg mL−1) | Reaction Time (min) | Degradation (%) | Ref. |
---|---|---|---|---|---|---|---|
ZIF-8/TiO2NFs-10 | UV | RhB | 10 | 0.2 | 240 | 95.4 | [25] |
BiVO4-MIL-100(Fe) | Vis | Basic Red 46 | 10 | 0.5 | 120 | 90 | [79] |
Bi2O3@Fe-SA | Vis | RhB | 10 | 0.1 | 120 | 80 | [80] |
MoS2-HKUST-1 | Vis | RhB | 50 | 0.25 | 30 | 96.4 | [81] |
CdS/Mn-MOF (50) | Vis | RhB | 10 | 0.15 | 60 | 98.7 | [82] |
BaTiO3@ZIF-8-25 | Solar | MB | 10 | - | 180 | 93 | [24] |
CR | 25 | 75 | 100 | ||||
ZnO@HKUST-1 | Sunlight | RB | 20 | 0.32 | 45 | 97.4 | [67] |
TiO2@HKUST-1 | Vis | RhB | 0.002 mmol L−1 | 0.3 | 60 | 95.2 | [105] |
Ag3PO4@ZIF-8-5% | Vis | CV | 20 | 0.4 0.4 | 120 | 90.7 | [66] |
CR | 20 | 120 | 94.7 | ||||
Ag2WO4@ZIF-8 | Vis | MB | 30 | 0.1 | 120 | 98.3 | [106] |
AgVO3@BZIF-3 | Vis | MB | 20 | 1 | 180 | 98.2 | [107] |
ZIF-8/Ag2CO3/CF-10 | Sunlight | RhB | 10 | - | 30 | 91 | [108] |
BiOBr/MIL-125-(NH2) | Vis | MO | 20 | 1 | 180 | 91 | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoudi, F.; Bachas, L.G. Application of Metal–Organic Framework-Based Composite Materials for Photodegradation of Dye Pollutants in Wastewater. Water 2024, 16, 3051. https://doi.org/10.3390/w16213051
Mahmoudi F, Bachas LG. Application of Metal–Organic Framework-Based Composite Materials for Photodegradation of Dye Pollutants in Wastewater. Water. 2024; 16(21):3051. https://doi.org/10.3390/w16213051
Chicago/Turabian StyleMahmoudi, Farzaneh, and Leonidas G. Bachas. 2024. "Application of Metal–Organic Framework-Based Composite Materials for Photodegradation of Dye Pollutants in Wastewater" Water 16, no. 21: 3051. https://doi.org/10.3390/w16213051
APA StyleMahmoudi, F., & Bachas, L. G. (2024). Application of Metal–Organic Framework-Based Composite Materials for Photodegradation of Dye Pollutants in Wastewater. Water, 16(21), 3051. https://doi.org/10.3390/w16213051