Enhanced Assessment of Water Quality and Pollutant Source Apportionment Using APCS-MLR and PMF Models in the Upper Reaches of the Tarim River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Collection and Analysis
2.3. Water Quality Assessment
2.3.1. The Nemero Pollution Index
2.3.2. WQI
2.4. Pollution Source Resolution
2.4.1. APCS-MLR
2.4.2. PMF
2.5. Data Processing and Analysis
3. Results and Discussion
3.1. Concentration and Spatio-Temporal Distribution Characteristics of Water Quality Parameters
3.1.1. Statistical Analysis of Water Quality Parameters
3.1.2. Temporal-Spatial Distribution Characteristics of Water Quality Parameters
3.2. Water Quality Assessment Using WQI
3.3. Source Analysis of Water Environmental Pollutants
3.3.1. Correlation Analysis of Pollutants
3.3.2. Pollutant Source Apportionment by APCS-MLR Model
3.3.3. PMF Source Resolution
3.3.4. Analysis Results of Water Environmental Pollution Sources
3.4. Implications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sangkaew, W.; Kongprajug, A.; Chyerochana, N.; Ahmed, W.; Rattanakul, S.; Denpetkul, T.; Mongkolsuk, S.; Sirikanchana, K. Performance of viral and bacterial genetic markers for sewage pollution tracking in tropical Thailand. Water Res. 2021, 190, 116706. [Google Scholar] [CrossRef] [PubMed]
- Piroozfar, P.; Alipour, S.; Modabberi, S.; Cohen, D. Using multivariate statistical analysis in assessment of surface water quality and identification of heavy metal pollution sources in Sarough watershed, NW of Iran. Environ. Monit. Assess. 2021, 193, 564. [Google Scholar] [CrossRef] [PubMed]
- Nong, X.; Shao, D.; Zhong, H.; Liang, J. Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method. Water Res. 2020, 178, 115781. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, H.; Gao, D.; Yu, H. Source identification of surface water pollution using multivariate statistics combined with physicochemical and socioeconomic parameters. Sci. Total Environ. 2022, 806, 151274. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, X.; Chen, Y.; Zeng, W.; Zhao, Y. Pollution source identification and abatement for water quality sections in Huangshui River basin, China. J. Environ. Manag. 2023, 344, 118326. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, H.; Guo, S.; Fu, K.; Liao, L.; Xu, Y.; Cheng, S. Groundwater pollution source apportionment using principal component analysis in a multiple land-use area in southwestern China. Environ. Sci. Pollut. Res. 2020, 27, 9000–9011. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, D.; Tang, Q.; Xu, H.; Huang, S.; Shang, D.; Liu, R. Water quality assessment and source identification of the Shuangji River (China) using multivariate statistical methods. PLoS ONE 2021, 16, e0245525. [Google Scholar] [CrossRef]
- Hao, C.; Liu, M.; Zhang, W.; He, P.; Lin, D.; Gui, H. Spatial distribution, source identification, and health risk assessment of fluoride in the drinking groundwater in the Sulin coal district, northern Anhui Province, China. Water Supply 2021, 21, 2444–2462. [Google Scholar] [CrossRef]
- Chen, K.; Liu, Q.; Jiang, Q.; Hou, X.; Gao, W. Source apportionment of surface water pollution in North Anhui Plain, Eastern China, using APCS-MLR model combined with GIS approach and socioeconomic parameters. Ecol. Indic. 2022, 143, 109324. [Google Scholar] [CrossRef]
- Gao, J.; Deng, G.; Jiang, H.; Wen, Y.; Zhu, S.; He, C.; Shi, C.; Cao, Y. Water quality pollution assessment and source apportionment of lake wetlands: A case study of Xianghai Lake in the Northeast China Plain. J. Environ. Manag. 2023, 344, 118398. [Google Scholar] [CrossRef]
- Wu, Z.; Ma, T.; Lai, X.; Li, K. Concentration, distribution, and assessment of dissolved heavy metals in rivers of Lake Chaohu Basin, China. J. Environ. Manag. 2021, 300, 113744. [Google Scholar] [CrossRef] [PubMed]
- Howladar, M.F.; Chakma, E.; Jahan Koley, N.; Islam, S.; Numanbakth, M.A.A.; Ahmed, Z.; Chowdhury, T.R.; Akter, S. The water quality and pollution sources assessment of Surma river, Bangladesh using, hydrochemical, multivariate statistical and water quality index methods. Groundw. Sustain. Dev. 2021, 12, 100523. [Google Scholar] [CrossRef]
- Roy, B.N.; Roy, H.; Rahman, K.S.; Mahmud, F.; Bhuiyan, M.K.; Hasan, M.; Bhuiyan, A.-A.K.; Hasan, M.; Mahbub, M.S.; Jahedi, R.M.; et al. Principal component analysis incorporated water quality index modeling for Dhaka-based rivers. City Environ. Interact. 2024, 23, 100150. [Google Scholar]
- Cheng, G.; Wang, M.; Chen, Y.; Gao, W. Source apportionment of water pollutants in the upstream of Yangtze River using APCS–MLR. Environ. Geochem. Health 2020, 42, 3795–3810. [Google Scholar] [CrossRef]
- Cho, Y.; Choi, H.; Lee, M.; Kim, S.; Im, J. Identification and apportionment of potential pollution sources using multivariate statistical techniques and APCS-MLR model to assess surface water quality in Imjin River Watershed, South Korea. Water 2022, 14, 793. [Google Scholar] [CrossRef]
- Varol, M.; Karakaya, G.; Alpaslan, K. Water quality assessment of the Karasu River (Turkey) using various indices, multivariate statistics and APCS-MLR model. Chemosphere 2022, 308, 136415. [Google Scholar] [CrossRef]
- Peng, Y.; Yu, G.I. Assessment of heavy metal pollution on agricultural land in Chengdu city under different anthropogenic pressures based on APCS-MLR modelling. Ecol. Indic. 2024, 165, 112183. [Google Scholar] [CrossRef]
- Jin, Z.; Zhang, L.; Lv, J.; Sun, X. The application of geostatistical analysis and receptor model for the spatial distribution and sources of potentially toxic elements in soils. Environ. Geochem. Health 2021, 43, 407–421. [Google Scholar] [CrossRef]
- Mohammad, H.; Melesse, A.; Reddi, L. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Sci. Total Environ. 2016, 566–567, 1552–1567. [Google Scholar]
- Wang, X.; Luo, Y.; Sun, L.; Shafeeque, M. Different climate factors contributing for runoff increases in the high glacierized tributaries of Tarim River Basin, China. J. Hydrol. Reg. Stud. 2021, 36, 100845. [Google Scholar] [CrossRef]
- Wu, Q.; Liang, Y.; Gao, F.; Du, M.; Wu, B.; Liu, J. Analysis of chemical characteristics, distribution and cause of formation of brackish water in Alar City, Xinjiang. Environ. Chem. 2021, 3, 737–745. [Google Scholar]
- Ma, L.; Li, Y.; Zeng, T.; Feng, S.; Abuduwaili, J. Assessing surface water quality for sustainable irrigation in Tarim Basin: A study in the summer irrigation period. Appl. Water Sci. 2024, 14, 171. [Google Scholar] [CrossRef]
- Liu, W.; Ma, L.; Abuduwaili, J. Water quality for agricultural irrigation and aquatic arsenic health risk in the Altay and Tianshan Mountains, Central Asia. Agronomy 2021, 11, 2270. [Google Scholar] [CrossRef]
- Bai, J.; Li, J.; Bao, A.; Chang, C. Spatial-temporal variations of ecological vulnerability in the Tarim River Basin, Northwest China. J. Arid Land 2021, 13, 814–834. [Google Scholar] [CrossRef]
- HJ 493-2009; Water Quality—Technical Regulation of the Preservation and Handling of Samples. The State Environmental Protection Administration (SEPA): Beijing, China, 2009.
- State Environmental Protection Administration of China. Water and Wastewater Monitoring Analysis Method, 4th ed.; China Environmental Science Press: Beijing, China, 2002; pp. 38–47. [Google Scholar]
- Pesce, S.F.; Wunderlin, D.A. Use of water quality indices to verify the impact of Córdoba City (Argentina) on Suquía River. Water Res. 2000, 34, 2915–2926. [Google Scholar] [CrossRef]
- GB 3838-2002; Environmental Quality Standards for Surface Water. The State Environmental Protection Administration (SEPA): Beijing, China, 2002.
- Kwon, H.G.; Jo, C.D. Water quality assessment of the Nam River, Korea, using multivariate statistical analysis and WQI. Int. J. Environ. Sci. Technol. 2023, 20, 2487–2502. [Google Scholar] [CrossRef]
- Liu, W.; Guo, Z.; Wang, D.; Zhang, M.; Zhang, Y. Spatial-temporal variation of water environment quality and pollution source analysis in Hengshui Lake. Huan Jing Ke Xue 2021, 42, 1361–1371. [Google Scholar]
- Nath, A.V.; Sekar, S.; Roy, P.D.; Kamaraj, J.; Shukla, S.; Khan, R. Drinking and irrigation quality and pollution assessments of the groundwater resources from Alappuzha in Kerala (India) through an integrated approach using WQI and GIS. J. Geochem. Explor. 2024, 258, 107391. [Google Scholar] [CrossRef]
- Sanad, H.; Mouhir, L.; Zouahri, A.; Moussadek, R.; Hamza, A.A.; Yachou, H.; Ghanimi, A.; Majda, O.L.; Dakak, H. Assessment of groundwater quality using the pollution index of Groundwater (PIG), Nitrate Pollution Index (NPI), Water Quality Index (WQI), Multivariate Statistical Analysis (MSA), and GIS approaches: A case study of the mnasra Region, Gharb Plain, Morocco. Water 2024, 16, 1263. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, S.K.; Vijayan, N.; Mandal, T.K. Investigating the seasonal variability in source contribution to PM2.5 and PM10 using different receptor models during 2013–2016 in Delhi, India. Environ. Sci. Pollut. Res. 2021, 28, 4660–4675. [Google Scholar] [CrossRef]
- Proshad, R.; Kormoker, T.; Mamun, A.A.; Islam, M.S.; Khadka, S.; Idris, A.M. Receptor model-based source apportionment and ecological risk of metals in sediments of an urban river in Bangladesh. J. Hazard. Mater. 2022, 423, 127030. [Google Scholar] [CrossRef] [PubMed]
- Hua, C.; Zhuo, H.; Kang, A.; Fang, Z.; Zhu, M.; Dong, M.; Wang, J.; Ren, L. Contamination, risk assessment and source apportionment of the heavy metals in the soils of apple orchard in Qixia City, Shandong Province, China. Stoch. Environ. Res. Risk Assess. 2022, 36, 2581–2595. [Google Scholar] [CrossRef]
- Lei, M.; Zhou, J.; Zhou, Y.; Sun, Y.; Ji, Y.; Zeng, Y. Spatial distribution, source apportionment and health risk assessment of inorganic pollutants of surface water and groundwater in the southern margin of Junggar Basin, Xinjiang, China. J. Environ. Manag. 2022, 319, 115757. [Google Scholar] [CrossRef] [PubMed]
- Kannel, P.R.; Lee, S.; Lee, Y.S.; Kanel, S.R.; Khan, S.P. Application of water quality indices anddissolved oxygen as indicators for river water classification and urban impact assessment. Environ. Monit. Assess. 2007, 132, 93–110. [Google Scholar] [CrossRef]
- Li, X.; Li, P.; Wang, D.; Wang, Y. Assessment of temporal and spatial variations in water quality using multivariate statistical methods: A case study of the Xin’anjiang River, China. Front. Environ. Sci. Eng. 2014, 8, 895–904. [Google Scholar] [CrossRef]
- Lin, S.; Shen, S.; Zhou, A.; Xu, Y. Approach based on TOPSIS and Monte Carlo simulation methods to evaluate lake eutrophication levels. Water Res. 2020, 187, 116437. [Google Scholar] [CrossRef]
- Varol, M.; Goekot, B.; Bekleyen, A.; Sen, B. Water quality assessment and apportionment of pollution sources of Tigris River (Turkey) using multivariate statistical techniques—A case study. River Res. Appl. 2012, 28, 1428–1438. [Google Scholar] [CrossRef]
- Dodds, W.K.; Jones, J.R.; Welch, E.B. Suggested classification of stream trophic state: Distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Res. 1998, 32, 1455–1462. [Google Scholar] [CrossRef]
- Mallin, M.A.; Cahoon, L.B. The hidden impacts of phosphorus pollution to streams and rivers. BioScience 2020, 70, 315–329. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Y.; Yang, L. Identification and hazard analysis of heavy metal sources in agricultural soils in ancient mining areas: A quantitative method based on the receptor model and risk assessment. J. Hazard. Mater. 2023, 445, 1–11. [Google Scholar] [CrossRef]
- Niu, S.; Gao, L.; Wang, X. Characterization of contamination levels of heavy metals in agricultural soils using geochemical baseline concentrations. J. Soils Sediments 2019, 19, 1697–1707. [Google Scholar] [CrossRef]
- Chen, S.; Cheng, Y.; Fan, Z.; Niu, Y.; Xie, C.; Lei, H. Spatial-Temporal Characteristics of Water Quality in the Upper Reaches of the Tarim River in Alar. J. Hydroecol. 2014, 35, 15–21. [Google Scholar]
- Xiao, J.; Gao, D.; Zhang, H.; Shi, H.; Chen, Q.; Li, H.; Ren, X.; Chen, Q. Water quality assessment and pollution source apportionment using multivariate statistical techniques: A case study of the Laixi River Basin, China. Environ. Monit. Assess. 2023, 195, 287. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Zhang, H.; Sun, X.; Wang, Z.; Tian, W.; Huang, H. Analyzing the significant environmental factors on the spatial and temporal distribution of water quality utilizing multivariate statistical techniques: A case study in the Balihe Lake, China. Environ. Sci. Pollut. Res. 2018, 25, 29418–29432. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Jiang, Y.; Liu, Q.; Hou, Z.; Liao, J.; Fu, L.; Peng, Q. Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: A multi-scale analysis. Sci. Total Environ. 2016, 551–552, 205–216. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Zhu, X.; Li, W.; Zhang, Y.; Xu, H.; Zhang, H.; Chen, Y. Analysis on the ecological benefits of the stream water conveyance to the dried-up river of the lower reaches of Tarim River, China. Sci. China Ser. D Earth Sci. 2004, 47, 1053–1064. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Z. Plausible impact of global climate change on water resources in the Tarim River Basin. Sci. China Ser. D Earth Sci. 2005, 48, 65–73. [Google Scholar] [CrossRef]
- Gao, J. The Study on Comprehensive Benefit of Water Pollution Control in Tarim River Basin of Aksu Area in XinJiang Province. Master’s Thesis, Tarim University, Alaer, China, 2020. [Google Scholar]
- Wang, Y.; Zi, F.; Lu, S.; Li, M.; Zhou, J.; Yang, X.; Wang, W.; Niu, R. Analysis of surface-groundwater changes in the Tarim River Basin of Xinjiang from 1989 to 2019. Sci. Geogr. Sin. 2023, 43, 899–909. [Google Scholar]
- Wang, X.; Zhang, M.; Liu, L.; Wang, Z.; Lin, K. Using EEM-PARAFAC to identify and trace the pollution sources of surface water with receptor models in Taihu Lake Basin, China. J. Environ. Manag. 2022, 321, 115925. [Google Scholar] [CrossRef]
- Qu, X.; Chen, Y.; Liu, H.; Xia, W.; Lu, Y.; Gang, D.; Lin, L. A holistic assessment of water quality condition and spatiotemporal patterns in impounded lakes along the eastern route of China’s South-to-North water diversion project. Water Res. 2020, 185, 116275. [Google Scholar] [CrossRef]
- Milojković, J.V.; Popović-Djordjević, J.B.; Pezo, L.L.; Brčeski, I.D.; Kostić, A.Ž.; Milošević, V.D.; Stojanović, M.D. Applying multi-criteria analysis for preliminary assessment of the properties of alginate immobilized Myriophyllum spicatum in lake water samples. Water Res. 2018, 141, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ren, X.; Chen, S.; Xie, G.; Hu, Y.; Gao, D.; Tian, X.; Xiao, J.; Wang, H. Deep optimization of water quality index and positive matrix factorization models for water quality evaluation and pollution source apportionment using a random forest model. Environ. Pollut. 2024, 347, 123771. [Google Scholar] [CrossRef] [PubMed]
- Andrabi, S.; Bakhtiyar, Y.; Yousuf, T.; Akhtar, M.; Nissar, S. Water quality assessment in relation to fish assemblage using multivariate analysis in Manasbal Lake, Kashmir. Water Sci. 2024, 38, 92–108. [Google Scholar] [CrossRef]
- Li, X.Y.; Han, S.; Shao, G.Y.; Huang, Z.F.; Liu, Y.C.; Zhao, H.L.; Wang, C.C. Multiple analyses on time-temporal change of water quality in major rivers of Tongzhou, Beijing. Environ. Chem. 2022, 41, 2896–2907. [Google Scholar]
- Zhou, Y.; Wang, X.; Li, W.; Zhou, S.; Jiang, L. Water Quality Evaluation and Pollution Source Apportionment of Surface Water in a Major City in Southeast China Using Multi-Statistical Analyses and Machine Learning Models. Int. J. Environ. Res. Public Health 2023, 20, 881. [Google Scholar] [CrossRef]
- Wu, G.; Li, J.; Luo, W. Spatial distribution, source apportionment, and assessment of marine water quality parameters in the Bohai Sea, China. Mar. Pollut. Bull. 2023, 195, 115526. [Google Scholar] [CrossRef]
- Yao, S.; Chen, C.; He, M.; Cui, Z.; Mo, K.; Pang, R.; Chen, Q. Land use as an important indicator for water quality prediction in a region under rapid urbanization. Ecol. Indic. 2023, 146, 109768. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, M.; Cai, B.; Song, X.; Tang, R.; Huang, X.; Huang, H.; Huang, J.; Fan, Z. Risk assessment and driving factors of trace metal(loid)s in soils of China. Environ. Pollut. 2022, 309, 119772. [Google Scholar] [CrossRef]
- Mamun, M.; An, K.G. Application of multivariate statistical techniques and water quality index for the assessment of water quality and apportionment of pollution sources in the Yeongsan River, South Korea. Int. J. Environ. Res. Public Health 2021, 18, 8268. [Google Scholar] [CrossRef]
- Saha, A.; Ramya, V.L.; Jesna, P.K.; Mol, S.S.; Panikkar, P.; Vijaykumar, M.E.; Sarkar, U.K.; Das, B.K. Evaluation of spatio-temporal changes in surface water quality and their suitability for designated uses, Mettur Reservoir, India. Nat. Resour. Res. 2021, 30, 1367–1394. [Google Scholar] [CrossRef]
- Varol, M. Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: A case study. Environ. Pollut. 2020, 266, 115417. [Google Scholar] [CrossRef] [PubMed]
- Beutel, M.W.; Alexander, J.H. Nutrient fluxes from profundal sediment of ultra-oligotrophic lake tahoe, california/nevada: Implications for water quality and management in a changing climate. Water Resour. Res. 2018, 54, 1549–1559. [Google Scholar] [CrossRef]
- Sun, W.; Xia, C.; Xu, M.; Guo, J.; Sun, G. Application of modified water quality indices as indicators to assess the spatial and temporal trends of water quality in the Dongjiang River. Ecol. Indic. 2016, 66, 306–312. [Google Scholar] [CrossRef]
- Ali, R.J.; Eva, R.S.; Amirhossein, S.T.; Alireza, R.B. Positive matrix factorization receptor model and dynamics in fingerprinting of potentially toxic metals in coastal ecosystem sediments at a large scale (Persian Gulf, Iran). Water Res. 2021, 188, 116509. [Google Scholar]
- Huang, F.; Wang, X.; Lou, L.; Zhou, Z.; Wu, J. Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. Water Res. 2010, 44, 1562–1572. [Google Scholar] [CrossRef]
- Liu, S.; Lou, S.; Kuang, C.; Huang, W.; Chen, W.; Zhang, J.; Zhong, G. Water quality assessment by pollution-index method in the coastal waters of Hebei Province in western Bohai Sea, China. Mar. Pollut. Bull. 2011, 62, 2220–2229. [Google Scholar] [CrossRef]
- Marimon, M.P.C.; Roisenberg, A.; Viero, A.P.; Oliveira Camargo, F.A.; Suhogusoff, A.V. Evaluation of the potential impact of fluorine-rich fertilizers on the Guarani Aquifer System, Rio Grande do Sul, Southern Brazil. Environ. Earth Sci. 2013, 69, 77–84. [Google Scholar] [CrossRef]
- Daniele, L.; Corbella, M.; Vallejos, A.; DíazPuga, M.; PulidoBosch, A. Geochemical simulations to assess the fluorine origin in Sierra de Gador groundwater (SE Spain). Geofluids 2013, 13, 194–203. [Google Scholar] [CrossRef]
- Ma, J.; Shen, Z.J.; Zhang, P.P.; Liu, P.; Liu, J.Z.; Sun, J.; Wang, L.L. Pollution characteristics and source apportionment of heavy metals in farmland soils around the gangue heap of coal mine based on APCS-MLR and PMF receptor model. Huan Jing Ke Xue 2023, 44, 2192–2203. [Google Scholar]
- Salim, I.; Sajjad, R.U.; MaCristina, P.M.; Memon, S.A.; Lee, B.Y.; Sukhbaatar, C.; Lee, C.H. Comparison of two receptor models PCA-MLR and PMF for source identification and apportionment of pollution carried by runoff from catchment and sub-watershed areas with mixed land cover in South Korea. Sci. Total Environ. 2019, 663, 764–775. [Google Scholar] [CrossRef]
- Wu, N.; Liu, S.; Zhang, G. Impacts of water-sediment regulation and rainstorm events on nutrient transports in the lower Huanghe River. Haiyang Xuebao 2017, 39, 114–128. [Google Scholar]
- Rashid, A.; Ayub, M.; Gao, X.; Khattak, S.A.; Ali, L.; Li, C.; Ahmad, A.; Khan, S.; Rinklebe, J.; Ahmad, P. Hydrogeochemical characteristics, stable isotopes, positive matrix factorization, source apportionment, and health risk of high fluoride groundwater in semiarid region. J. Hazard. Mater. 2024, 469, 134023. [Google Scholar] [CrossRef] [PubMed]
- Mamun, M.; An, K. The application of chemical and biological multi-metric models to a small urban stream for ecological health assessments. Ecol. Inf. 2019, 50, 1–12. [Google Scholar] [CrossRef]
- Zhang, L.; Xin, Z.; Feng, L.; Hu, C.; Zhou, H.; Wang, Y.; Song, C.; Zhang, C. Turbidity dynamics of large lakes and reservoirs in northeastern China in response to natural factors and human activities. J. Clean. Prod. 2022, 368, 133148. [Google Scholar] [CrossRef]
- Xu, J.; Mo, Y.; Tang, H.; Wang, K.; Ji, Q.; Zhang, P.; Wang, Y.; Jin, G.; Li, L. Distribution, transfer process and influence factors of phosphorus at sediment-water interface in the Huaihe River. J. Hydrol. 2022, 612, 128079. [Google Scholar] [CrossRef]
- Peng, C.; He, J.; Wang, M.; Zhang, Z.; Wang, L. Identifying and assessing human activity impacts on groundwater quality through hydrogeochemical anomalies and COD contamination: A case study of the Liujiang River Basin, Hebei Province, P.R. China. Environ. Sci. Pollut. Res. Int. 2018, 25, 3539–3556. [Google Scholar] [CrossRef]
- Shahid, M.; Niazi, N.K.; Dumat, C.; Naidu, R.; Khalid, S.; Rahman, M.M.; Bibi, I. A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan. Environ. Pollut. 2018, 242, 307–319. [Google Scholar] [CrossRef]
- Li, F.; Huang, J.; Zeng, G.; Yuan, X.; Li, X.; Liang, J.; Wang, X.; Tang, X.; Bai, B. Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J. Geochem. Explor. 2013, 132, 75–83. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, S.; Li, H.; Fu, K.; Xu, Y. Groundwater pollution source identification and apportionment using PMF and PCA-APCA-MLR receptor models in a typical mixed land-use area in Southwestern China. Sci. Total Environ. 2020, 741, 140383. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Q.; Fu, G.; He, Y.; Luo, X.; Zheng, Z. Spatiotemporal patterns and source attribution of nitrogen load in a river basin with complex pollution sources. Water Res. 2016, 94, 187–199. [Google Scholar] [CrossRef]
- Liu, W.; Zeng, D.; She, L.; Su, W.; He, D.; Wu, G.; Ma, X.; Jiang, S.; Jiang, C.; Ying, G. Comparisons of pollution characteristics, emission situations, and mass loads for heavy metals in the manures of different livestock and poultry in China. Sci. Total Environ. 2020, 734, 139023. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Lata, R.; Thakur, N.; Bajala, V.; Kuniyal, J.C.; Kumar, K. Application of multivariate statistical analysis and water quality index for quality characterization of Parbati River, Northwestern Himalaya, India. Discov. Water 2021, 1, 5. [Google Scholar] [CrossRef]
- Ma, L.; Abuduwaili, J.; Li, Y.; Uulu, S.; Mu, S. Hydrochemical characteristics and water quality assessment for the upper reaches of Syr Darya River in Aral Sea Basin, Central Asia. Water 2019, 11, 1893. [Google Scholar] [CrossRef]
- Leng, P.; Zhang, Q.; Li, F.; Kulmatov, R.; Wang, G.; Qiao, Y.; Wang, J.; Peng, Y.; Tian, C.; Zhu, N.; et al. Agricultural impacts drive longitudinal variations of riverine water quality of the Aral Sea basin (Amu Darya and Syr Darya Rivers), Central Asia. Environ. Pollut. 2021, 284, 117405. [Google Scholar] [CrossRef]
Index | Pi | Ci | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | ||
DO (mg·L−1) | 4 | ≥7.5 | >7 | >6.5 | >6 | >5 | >4 | >3.5 | >3 | >2 | ≥1 | <1 |
CODMn (mg·L−1) | 3 | <5.0 | <10 | <20 | <30 | <40 | <50 | <60 | <80 | <100 | ≤150 | >150 |
BOD5 (mg·L−1) | 3 | <0.5 | <2 | <3 | <4 | <5 | <6 | <8 | <10 | <12 | ≤15 | >15 |
TN (mg·L−1) | 3 | <0.1 | <0.2 | <0.35 | <0.5 | <0.75 | <1 | <1.25 | <1.5 | <1.75 | ≤2 | >2 |
TP (mg·L−1) | 4 | <0.5 | <2 | <3 | <4 | <5 | <6 | <8 | <10 | <12 | ≤15 | >15 |
NH3-N (mg·L−1) | 3 | <0.01 | <0.05 | <0.1 | <0.2 | <0.3 | <0.4 | <0.5 | <0.75 | <1 | ≤1.25 | >1.25 |
NO₃-N (mg·L−1) | 2 | <0.5 | <2 | <4 | <6 | <8 | <10 | <15 | <20 | <50 | ≤100 | >100 |
NO2-N (mg·L−1) | 2 | <0.005 | <0.01 | <0.03 | <0.05 | <0.1 | <0.15 | <0.2 | <0.25 | <0.5 | ≤1 | >1 |
pH | 1 | 7 | >7 ≤8 | >8 ≤8.5 | >8.5 ≤9 | ≥6.5 <7 | ≥6, <6.5 >9, ≤9.5 | ≥5, <6 >9.5, ≤10 | ≥4, <5 >10, ≤11 | ≥3, <4 >11, ≤12 | ≥2, <3 >12, ≤13 | ≥1, <2 >13, ≤14 |
TU (NTU) | 2 | <5 | <10 | <15 | <20 | <25 | <30 | <40 | <60 | <80 | ≤100 | >100 |
EC (μS/cm) | 1 | <750 | <1000 | <1250 | <1500 | <2000 | <2500 | <3000 | <5000 | <8000 | ≤12,000 | >12,000 |
SS (mg·L−1) | 3 | <20 | <40 | <60 | <80 | <100 | <120 | <160 | <240 | <320 | ≤400 | >400 |
Index | Pi | Environmental quality standards for surface water [28] | ||||||||||
Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | ||||||||
Ii,1 = 20 | Ii,2 = 40 | Ii,3 = 60 | Ii,4 = 80 | Ii,5 = 100 | ||||||||
As (μg·L−1) | 4 | 50 | 50 | 50 | 100 | 100 | ||||||
Pb (μg·L−1) | 4 | 10 | 10 | 50 | 50 | 100 | ||||||
Cd (μg·L−1) | 3 | 1 | 5 | 5 | 5 | 10 | ||||||
Cr (μg·L−1) | 3 | 10 | 50 | 50 | 50 | 100 | ||||||
Cu (μg·L−1) | 2 | 10 | 1000 | 1000 | 1000 | 1000 | ||||||
Zn (μg·L−1) | 2 | 50 | 1000 | 1000 | 2000 | 2000 | ||||||
Fe (μg·L−1) | 1 | 300 | ||||||||||
Mn (μg·L−1) | 1 | 100 | ||||||||||
Ni (μg·L−1) | 1 | 20 | ||||||||||
TH (μg·L−1) | 2 | 150 | 300 | 450 | 550 | 550 | ||||||
F− (μg·L−1) | 2 | 1 | 1 | 1 | 1.5 | 1.5 |
Parameters | Range | Average ± SD | Coefficient of Variation/% | Standard | Rate of Excess/% |
---|---|---|---|---|---|
DO (mg·L−1) | 5.04–11.62 | 8.68 ± 1.15 | 13.28 | 6 | 3.33 |
CODMn (mg·L−1) | 3.14–17.30 | 8.72 ± 3.35 | 38.43 | 15 | 10.00 |
BOD5 (mg·L−1) | 2.06–8.20 | 3.74 ± 1.21 | 32.48 | 3 | 66.67 |
TN (mg·L−1) | 0.29–1.48 | 0.64 ± 0.29 | 45.43 | 0.5 | 60.00 |
TP (mg·L−1) | 0.097–0.34 | 0.18 ± 0.06 | 34.22 | 0.1 | 93.33 |
NH3-N (mg·L−1) | 0.17–1.35 | 0.51 ± 0.22 | 43.90 | 0.5 | 53.33 |
F− (mg·L−1) | 0.35–1.07 | 0.58 ± 0.26 | 45.35 | 1 | 6.67 |
NO3-N (mg·L−1) | 0.47–3.13 | 1.01 ± 0.79 | 78.39 | 10 | 0 |
NO2-N (mg·L−1) | 0.005–0.29 | 0.07 ± 0.06 | 88.33 | - | - |
pH | 6.88–8.60 | 7.97 ± 0.42 | 5.26 | 6–9 | - |
SS (mg·L−1) | 241.31–850.47 | 473.85 ± 172.61 | 36.43 | - | - |
TH (mg·L−1) | 152.31–493.50 | 303.04 ± 64.63 | 21.33 | 300 | 46.67 |
TU (mg·L−1) | 157.36–1657.24 | 661.47 ± 284.11 | 42.95 | - | - |
EC (mg·L−1) | 0.29–1.29 | 0.71 ± 2.67 | 37.43 | - | - |
As (μg·L−1) | 1.04–9.42 | 3.63 ± 2.25 | 62.00 | 50 | 0 |
Pb (μg·L−1) | 1.04–9.87 | 3.88 ± 2.54 | 65.43 | 10 | 0 |
Cd (μg·L−1) | 0.07–0.92 | 0.34 ± 0.25 | 75.15 | 5 | 0 |
Cr (μg·L−1) | 0.40–2.70 | 1.40 ± 0.58 | 41.73 | 50 | 0 |
Cu (μg·L−1) | 1.19–7.78 | 3.69 ± 1.59 | 43.12 | 1000 | 0 |
Zn (μg·L−1) | 3.01–27.06 | 11.89 ± 6.24 | 52.50 | 1000 | 0 |
Fe (μg·L−1) | 6.00–49.70 | 18.41 ± 8.58 | 46.58 | 300 | 0 |
Mn (μg·L−1) | 1.20–14.53 | 5.19 ± 3.13 | 60.40 | 100 | 0 |
Ni (μg·L−1) | 0.11–7.91 | 4.45 ± 1.78 | 39.91 | 20 | 0 |
Parameters | DO | CODMn | BOD5 | TN | TP | NH3-N | F− | NO₃-N | NO2-N | pH | SS | TH |
p values | 0.412 | 0.081 | 0.105 | 0.003 | 0.412 | 0.000 | 0.022 | 0.247 | 0.060 | 0.000 | 0.071 | 0.024 |
Parameters | TU | EC | As | Pb | Cd | Cr | Cu | Zn | Fe | Mn | Ni | |
p values | 0.010 | 0.059 | 0.006 | 0.312 | 0.01 | 0.01 | 0.009 | 0.61 | 0.41 | 0.634 | 0.863 |
DO | CODMn | BOD5 | TN | TP | NH3-N | F− | NO₃-N | NO2-N | pH | SS | TH | |
WQI | 0.435 ** | −0.147 * | −0.155 | −0.608 ** | −0.017 | −0.582 ** | −0.405 * | −0.023 | −0.317 | 0.448 ** | 0.157 | −0.132 |
TU | EC | As | Pb | Cd | Cr | Cu | Zn | Fe | Mn | Ni | ||
WQI | −0.240 | −0.366 ** | 0.199 | −0.473 ** | −0.460 * | −0.367 * | −0.316 * | −0.262 | −0.036 | 0.171 | −0.253 |
Project | PCA | ||||||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | ||
pollutant | DO | −0.475 | 0.303 | −0.264 | 0.498 | 0.334 | −0.102 |
CODMn | 0.222 | 0.830 | −0.13 | 0.133 | 0.113 | −0.241 | |
BOD5 | −0.127 | 0.834 | −0.231 | −0.094 | 0.072 | −0.079 | |
TN | 0.801 | −0.008 | 0.302 | −0.106 | 0.016 | 0.067 | |
TP | −0.055 | −0.278 | 0.106 | 0.105 | 0.723 | −0.332 | |
NH3-N | 0.146 | −0.095 | 0.885 | 0.093 | 0.014 | −0.093 | |
F− | 0.798 | 0.011 | 0.034 | 0.183 | 0.024 | 0.018 | |
NO3-N | −0.168 | 0.134 | 0.181 | 0.252 | 0.707 | −0.092 | |
NO2-N | −0.400 | 0.094 | 0.523 | 0.270 | 0.041 | 0.089 | |
pH | −0.216 | 0.172 | −0.844 | −0.104 | −0.213 | 0.082 | |
SS | −0.111 | −0.057 | −0.186 | −0.748 | −0.088 | −0.107 | |
TH | −0.164 | 0.305 | −0.144 | −0.796 | −0.165 | 0.079 | |
EC | 0.289 | 0.271 | 0.054 | 0.039 | 0.697 | 0.235 | |
As | −0.270 | −0.11 | −0.461 | −0.106 | −0.112 | 0.527 | |
Pb | −0.039 | 0.758 | 0.191 | −0.167 | −0.059 | 0.424 | |
Cd | 0.062 | −0.063 | 0.100 | 0.091 | 0.034 | −0.079 | |
Cr | 0.656 | 0.115 | 0.072 | 0.459 | 0.028 | 0.163 | |
Cu | 0.309 | 0.109 | −0.082 | −0.132 | 0.400 | 0.538 | |
Fe | 0.203 | −0.055 | −0.061 | 0.179 | −0.115 | 0.818 | |
Eigenvalue | 3.78 | 2.70 | 2.52 | 1.70 | 1.59 | 1.28 | |
Variance contribution rate % | 19.91 | 14.22 | 13.25 | 8.96 | 8.38 | 6.72 | |
Cumulative contribution rate % | 19.91 | 34.13 | 47.38 | 56.33 | 64.71 | 71.43 |
Water Quality Indicators | S1 a | S2 b | S3 c | S4 d | S5 e | S6 f | Estimated Mean Concentration | Observed Mean Concentration | Estimated/Observed | R2 |
---|---|---|---|---|---|---|---|---|---|---|
DO | 1.06 | 0.35 | 1.21 | 4.91 | 0.37 | 0.38 | 8.27 | 8.68 | 0.95 | 0.888 |
CODMn | 0.98 | 3.88 | 0.11 | 0.61 | 0.38 | 0.59 | 6.55 | 8.72 | 0.75 | 0.867 |
BOD5 | 0.23 | 2.85 | 0.22 | 0.27 | 0.38 | 0.03 | 3.98 | 3.74 | 1.07 | 0.929 |
TN | 0.57 | 0.13 | 0.02 | 0.09 | 0.13 | 0.02 | 0.96 | 0.64 | 1.49 | 0.888 |
TP | 0.00 | 0.01 | 0.01 | 0.13 | 0.01 | 0.00 | 0.17 | 0.18 | 0.92 | 0.858 |
NH3-N | 0.10 | 0.02 | 0.08 | 0.03 | 0.03 | 0.44 | 0.70 | 0.50 | 1.39 | 0.919 |
F− | 0.37 | 0.02 | 0.02 | 0.12 | 0.01 | 0.01 | 0.56 | 0.58 | 0.97 | 0.810 |
NO3-N | 0.01 | 0.01 | 0.10 | 0.95 | 0.01 | 0.03 | 1.11 | 1.00 | 1.11 | 0.726 |
NO2-N | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.04 | 0.09 | 0.07 | 1.30 | 0.804 |
pH | 0.71 | 0.68 | 2.68 | 1.57 | 0.60 | 0.08 | 6.31 | 7.97 | 0.79 | 0.884 |
SS | 20.96 | 6.48 | 257.71 | 96.86 | 41.54 | 9.37 | 432.92 | 473.85 | 0.91 | 0.784 |
TH | 22.57 | 12.07 | 175.58 | 49.94 | 17.14 | 12.61 | 289.92 | 303.04 | 0.96 | 0.91 |
EC | 147.65 | 7.26 | 316.58 | 180.18 | 210.08 | 77.77 | 939.52 | 714.12 | 1.32 | 0.790 |
As | 0.15 | 0.03 | 1.12 | 0.22 | 2.73 | 0.27 | 4.51 | 3.63 | 1.24 | 0.768 |
Pb | 0.18 | 2.16 | 0.20 | 0.41 | 0.28 | 0.15 | 3.38 | 3.88 | 0.87 | 0.903 |
Cd | 0.04 | 0.05 | 0.03 | 0.01 | 0.04 | 0.25 | 0.42 | 0.34 | 1.24 | 0.801 |
Cr | 1.15 | 0.08 | 0.07 | 0.13 | 0.14 | 0.09 | 1.66 | 1.40 | 1.19 | 0.809 |
Cu | 0.81 | 0.31 | 0.29 | 0.17 | 1.82 | 0.23 | 3.62 | 3.69 | 0.98 | 0.858 |
Fe | 3.05 | 0.26 | 2.36 | 0.85 | 7.17 | 1.00 | 14.69 | 18.41 | 0.80 | 0.827 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Wang, S.; Li, F.; Liu, S.; You, Y.; Liu, C. Enhanced Assessment of Water Quality and Pollutant Source Apportionment Using APCS-MLR and PMF Models in the Upper Reaches of the Tarim River. Water 2024, 16, 3061. https://doi.org/10.3390/w16213061
Zhang S, Wang S, Li F, Liu S, You Y, Liu C. Enhanced Assessment of Water Quality and Pollutant Source Apportionment Using APCS-MLR and PMF Models in the Upper Reaches of the Tarim River. Water. 2024; 16(21):3061. https://doi.org/10.3390/w16213061
Chicago/Turabian StyleZhang, Shengnan, Shan Wang, Fayong Li, Songjiang Liu, Yongjun You, and Chong Liu. 2024. "Enhanced Assessment of Water Quality and Pollutant Source Apportionment Using APCS-MLR and PMF Models in the Upper Reaches of the Tarim River" Water 16, no. 21: 3061. https://doi.org/10.3390/w16213061
APA StyleZhang, S., Wang, S., Li, F., Liu, S., You, Y., & Liu, C. (2024). Enhanced Assessment of Water Quality and Pollutant Source Apportionment Using APCS-MLR and PMF Models in the Upper Reaches of the Tarim River. Water, 16(21), 3061. https://doi.org/10.3390/w16213061