How Wetting and Drainage Cycles and Wetting Angle Affect Capillary Air Trapping and Hydraulic Conductivity: A Pore Network Modeling of Experiments on Sand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Background
2.1.1. Network Generation
2.1.2. Physics Considered in the Simulation Model
2.2. Experiments Carried Out on Sand Columns
2.3. Description of Numerical Simulations
2.3.1. Small Networks Generation
2.3.2. Simulations in Small Networks
2.3.3. Large Network Generation
2.3.4. Simulations in a Large Network
3. Results and Discussion
3.1. Generated Networks
3.2. Results of the Simulation in a Small Network
3.3. Results of the Forward Simulation in a Large Network
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Algorithms
Appendix A.1. Algorithm of Drainage
Appendix A.1.1. Algorithm of Imbibition
Appendix A.1.2. Algorithm of Entrapment
Appendix A.1.3. Algorithm Determining the Flow
References
- Faybishenko, B. Hydraulic Behavior of Quasi-Saturated Soils in The Presence of Entrapped Air—Laboratory Experiments. Water Resour. Res. 1995, 31, 2421–2435. [Google Scholar] [CrossRef]
- Marinas, M.; Roy, J.W.; Smith, J.E. Changes in Entrapped Gas Content and Hydraulic Conductivity with Pressure. Ground Water 2013, 51, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Dohnal, M.; Jelinkova, V.; Snehota, M.; Dusek, J.; Brezina, J. Tree-Dimensional Numerical Analysis of Water Flow Affected by Entrapped Air: Application of Noninvasive Imaging Techniques. Vadose Zone J. 2013, 12, 1–12. [Google Scholar] [CrossRef]
- Sacha, J.; Jelinkova, V.; Snehota, M.; Vontobel, P.; Hovind, J.; Cislerova, M. Water and Air Redistribution within a Dual Permeability Porous System Investigated Using Neutron Imaging. In Proceedings of the 10th World Conference on Neutron Radiography (WCNR-10), Grindelwald, Switzerland, 5–10 October 2014; Volume 69, pp. 530–536. [Google Scholar]
- Snehota, M.; Jelinkova, V.; Sobotkova, M.; Sacha, J.; Vontobel, P.; Hovind, J. Water and Entrapped Air Redistribution in Heterogeneous Sand Sample: Quantitative Neutron Imaging of the Process. Water Resour. Res. 2015, 51, 1359–1371. [Google Scholar] [CrossRef]
- Faust, C.R.; Guswa, J.H.; Mercer, J.W. Simulation of 3-Dimensional Flow of Immiscible Fluids within and below the Unsaturated Zone. Water Resour. Res. 1989, 25, 2449–2464. [Google Scholar] [CrossRef]
- Scanziani, A.; Singh, K.; Menke, H.P.; Bijeljic, B.; Blunt, M.J. Dynamics of Enhanced Gas Trapping Applied to CO2 Storage in the Presence of Oil Using Synchrotron X-Ray Micro Tomography. Appl. Energy 2020, 259, 114136. [Google Scholar] [CrossRef]
- Wang, Z.; Pereira, J.-M.; Sauret, E.; Gan, Y. Wettability Impacts Residual Trapping of Immiscible Fluids During Cyclic Injection. J. Fluid Mech. 2023, 961, A19. [Google Scholar] [CrossRef]
- Fucik, R.; Klinkovsky, J.; Solovsky, J.; Oberhuber, T.; Mikyska, J. Multidimensional Mixed-Hybrid Finite Element Method for, Compositional Two-Phase Flow in Heterogeneous Porous Media and Its Parallel Implementation on GPU. Comput. Phys. Commun. 2019, 238, 165–180. [Google Scholar] [CrossRef]
- Wanfang, Z.; Wheater, H.S.; Johnston, P.M. State of the Art of Modelling Two-Phase Flow in Fractured Rock. Environ. Geol. 1997, 31, 157–166. [Google Scholar] [CrossRef]
- Hilfer, R. Capillary Pressure, Hysteresis and Residual Saturation in Porous Media. Phys. A-Stat. Mech. Its Appl. 2006, 359, 119–128. [Google Scholar] [CrossRef]
- Lenhard, R.J.; Parker, J.C.; Kaluarachchi, J.J. Comparing Simulated and Experimental Hysteretic 2-Phase Transient Fluid-Flow Phenomena. Water Resour. Res. 1991, 27, 2113–2124. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Wu, H.Y. Pore-Scale Modeling of Immiscible Two-Phase Flow in Complex Porous Media. Appl. Therm. Eng. 2016, 93, 1394–1402. [Google Scholar] [CrossRef]
- Raeini, A.Q.; Bijeljic, B.; Blunt, M.J. Modelling Capillary Trapping Using Finite-Volume Simulation of Two-Phase Flow Directly on Micro-CT Images. Adv. Water Resour. 2015, 83, 102–110. [Google Scholar] [CrossRef]
- Sukop, M.C.; Huang, H.; Lin, C.L.; Deo, M.D.; Oh, K.; Miller, J.D. Distribution of Multiphase Fluids in Porous Media: Comparison between Lattice Boltzmann Modeling and Micro-x-Ray Tomography. Phys. Rev. E 2008, 77, 026710. [Google Scholar] [CrossRef] [PubMed]
- Joekar-Niasar, V.; Hassanizadeh, S.M. Analysis of Fundamentals of Two-Phase Flow in Porous Media Using Dynamic Pore-Network Models: A Review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1895–1976. [Google Scholar] [CrossRef]
- Mahmud, W.M.; Nguyen, V.H. Effects of Snap-off in Imbibition in Porous Media with Different Spatial Correlations. Transp. Porous Media 2006, 64, 279–300. [Google Scholar] [CrossRef]
- Porter, M.L.; Schaap, M.G.; Wildenschild, D. Lattice-Boltzmann Simulations of the Capillary Pressure-Saturation-Interfacial Area Relationship for Porous Media. Adv. Water Resour. 2009, 32, 1632–1640. [Google Scholar] [CrossRef]
- Blunt, M.J.; Bijeljic, B.; Dong, H.; Gharbi, O.; Iglauer, S.; Mostaghimi, P.; Paluszny, A.; Pentland, C. Pore-Scale Imaging and Modelling. Adv. Water Resour. 2013, 51, 197–216. [Google Scholar] [CrossRef]
- Kohne, J.M.; Schluter, S.; Vogel, H.J. Predicting Solute Transport in Structured Soil Using Pore Network Models. Vadose Zone J. 2011, 10, 1082–1096. [Google Scholar] [CrossRef]
- Oostrom, M.; Mehmani, Y.; Romero-Gomez, P.; Tang, Y.; Liu, H.; Yoon, H.; Zhang, C. Pore-Scale and Continuum Simulations of Solute Transport Micromodel Benchmark Experiments. Comput. Geosci. 2016, 20, 857–879. [Google Scholar] [CrossRef]
- Hunt, A.G. Basic Transport Properties in Natural Porous Media—Continuum Percolation Theory and Fractal Model. Complexity 2005, 10, 22–37. [Google Scholar] [CrossRef]
- Masson, Y.; Pride, S.R. A Fast Algorithm for Invasion Percolation. Transp. Porous Media 2014, 102, 301–312. [Google Scholar] [CrossRef]
- Geistlinger, H.; Mohammadian, S. Capillary Trapping Mechanism in Strongly Water Wet Systems: Comparison between Experiment and Percolation Theory. Adv. Water Resour. 2015, 79, 35–50. [Google Scholar] [CrossRef]
- Ghanbarian, B.; Daigle, H.; Hunt, A.G.; Ewing, R.P.; Sahimi, M. Gas and Solute Diffusion in Partially Saturated Porous Media: Percolation Theory and Effective Medium Approximation Compared with Lattice Boltzmann Simulations. J. Geophys. Res.-Solid Earth 2015, 120, 182–190. [Google Scholar] [CrossRef]
- Ghanbarian, B.; Hunt, A.G.; Sahimi, M.; Ewing, R.P.; Skinner, T.E. Percolation Theory Generates a Physically Based Description of Tortuosity in Saturated and Unsaturated Porous Media. Soil Sci. Soc. Am. J. 2013, 77, 1920–1929. [Google Scholar] [CrossRef]
- Kohanpur, A.H.; Chen, Y.; Valocchi, A.J. Using Direct Numerical Simulation of Pore-Level Events to Improve Pore-Network Models for Prediction of Residual Trapping of CO2. Front. Water 2022, 3, 710160. [Google Scholar] [CrossRef]
- Rebai, M.; Prat, M. Scale Effect and Two-Phase Flow in a Thin Hydrophobic Porous Layer. Application to Water Transport in Gas Diffusion Layers of Proton Exchange Membrane Fuel Cells. J. Power Sources 2009, 192, 534–543. [Google Scholar] [CrossRef]
- Liu, X.L.; Peng, C.; Bai, H.X.; Zhang, Q.F.; Ye, G.H.; Zhou, X.G.; Yuan, W.K. A Pore Network Model for Calculating Pressure Drop in Packed Beds of Arbitrary-Shaped Particles. AIChE J. 2020, 66, e16258. [Google Scholar] [CrossRef]
- Sahimi, M. Flow Phenomena in Rocks: From Continuum Models to Fractals, Percolation, Cellular Automata, and Simulated Annealing. Rev. Mod. Phys. 1993, 65, 1393–1534. [Google Scholar] [CrossRef]
- Vogel, H.J.; Roth, K. Quantitative Morphology and Network Representation of Soil Pore Structure. Adv. Water Resour. 2001, 24, 233–242. [Google Scholar] [CrossRef]
- Blunt, M.; King, M.J.; Scher, H. Simulation and Theory of Two-Phase Flow in Porous Media. Phys. Rev. A 1992, 46, 7680–7699. [Google Scholar] [CrossRef] [PubMed]
- Fatt, I. The Network Model of Porous Media.1. Capillary Pressure Characteristics. Trans. Am. Inst. Min. Metall. Eng. 1956, 207, 144–159. [Google Scholar]
- Lenormand, R.; Zarcone, C.; Sarr, A. Mechanisms of the Displacement of One Fluid by Another in a Network of Capillary Ducts. J. Fluid Mech. 1983, 135, 337–353. [Google Scholar] [CrossRef]
- Fischer, U.; Celia, M.A. Prediction of Relative and Absolute Permeabilities for Gas and Water from Soil Water Retention Curves Using a Pore-Scale Network Model. Water Resour. Res. 1999, 35, 1089–1100. [Google Scholar] [CrossRef]
- Meyer, D.W. Random Generation of Irregular Natural Flow or Pore Networks. Adv. Water Resour. 2021, 152, 103936. [Google Scholar] [CrossRef]
- Raoof, A.; Hassanizadeh, S.M. A New Method for Generating Pore-Network Models of Porous Media. Transp. Porous Media 2010, 81, 391–407. [Google Scholar] [CrossRef]
- Dong, H.; Blunt, M.J. Pore-Network Extraction from Micro-Computerized-Tomography Images. Phys. Rev. E 2009, 80, 036307. [Google Scholar] [CrossRef] [PubMed]
- Silin, D.; Tomutsa, L.; Benson, S.M.; Patzek, T.W. Microtomography and Pore-Scale Modeling of Two-Phase Fluid Distribution. Transp. Porous Media 2011, 86, 525–545. [Google Scholar] [CrossRef]
- Xiong, Q.R.; Baychev, T.G.; Jivkov, A.P. Review of Pore Network Modelling of Porous Media: Experimental Characterisations, Network Constructions and Applications to Reactive Transport. J. Contam. Hydrol. 2016, 192, 101–117. [Google Scholar] [CrossRef]
- Al-Raoush, R.I.; Willson, C.S. Extraction of Physically Realistic Pore Network Properties from Three-Dimensional Synchrotron X-Ray Microtomography Images of Unconsolidated Porous Media Systems. J. Hydrol. 2005, 300, 44–64. [Google Scholar] [CrossRef]
- Piovesan, A.; Van De Looverbosch, T.; Verboven, P.; Achille, C.; Cabrera, C.P.; Boller, E.; Nicolai, B. 4D Synchrotron Microtomography and Pore-Network Modelling for Direct in Situ Capillary Flow Visualization in 3D Printed Microfluidic Channels. Lab Chip 2020, 20, 2403–2411. [Google Scholar] [CrossRef] [PubMed]
- Hefny, M.; Qin, C.Z.; Saar, M.O.; Ebigbo, A. Synchrotron-Based Pore-Network Modeling of Two-Phase Flow in Nubian Sandstone and Implications for Capillary Trapping of Carbon Dioxide. Int. J. Greenh. Gas Control 2020, 103, 103164. [Google Scholar] [CrossRef]
- Gostick, J.; Aghighi, M.; Hinebaugh, J.; Tranter, T.; Hoeh, M.A.; Day, H.; Spellacy, B.; Sharqawy, M.H.; Bazylak, A.; Burns, A.; et al. OpenPNM: A Pore Network Modeling Package. Comput. Sci. Eng. 2016, 18, 60–74. [Google Scholar] [CrossRef]
- Chevalier, S.; Hinebaugh, J.; Bazylak, A. Establishing Accuracy of Watershed-Derived Pore Network Extraction for Characterizing In-Plane Effective Diffusivity in Thin Porous Layers. J. Electrochem. Soc. 2019, 166, F3246–F3254. [Google Scholar] [CrossRef]
- Aghighi, M.; Hoeh, M.A.; Lehnert, W.; Merle, G.; Gostick, J. Simulation of a Full Fuel Cell Membrane Electrode Assembly Using Pore Network Modeling. J. Electrochem. Soc. 2016, 163, F384–F392. [Google Scholar] [CrossRef]
- Tranter, T.G.; Gostick, J.T.; Burns, A.D.; Gale, W.F. Pore Network Modeling of Compressed Fuel Cell Components with OpenPNM. Fuel Cells 2016, 16, 504–515. [Google Scholar] [CrossRef]
- Ma, S.X.; Mason, G.; Morrow, N.R. Effect of Contact Angle on Drainage and Imbibition in Regular Polygonal Tubes. Colloids Surf. A-Physicochem. Eng. Asp. 1996, 117, 273–291. [Google Scholar] [CrossRef]
- Ruspini, L.C.; Farokhpoor, R.; Oren, P.E. Pore-Scale Modeling of Capillary Trapping in Water-Wet Porous Media: A New Cooperative Pore-Body Filling Model. Adv. Water Resour. 2017, 108, 1–14. [Google Scholar] [CrossRef]
- Joekar-Niasar, V.; Hassanizadeh, S.M.; Leijnse, A. Insights into the Relationships among Capillary Pressure, Saturation, Interfacial Area and Relative Permeability Using Pore-Network Modeling. Transp. Porous Media 2008, 74, 201–219. [Google Scholar] [CrossRef]
- Bryant, S.; Blunt, M. Prediction of Relative Permeability in Simple Porous-Media. Phys. Rev. A 1992, 46, 2004–2011. [Google Scholar] [CrossRef]
- Hughes, R.G.; Blunt, M.J. Pore Scale Modeling of Rate Effects in Imbibition. Transp. Porous Media 2000, 40, 295–322. [Google Scholar] [CrossRef]
- Zhou, D.G.; Blunt, M.; Orr, F.M. Hydrocarbon Drainage along Corners of Noncircular Capillaries. J. Colloid Interface Sci. 1997, 187, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Klute, A. Water Retention: Laboratory Methods. In Methods of Soil Analysis—Part 1—Physical and Mineralogical Methods; Soil Science Society of America: Madison, WI, USA, 1986; pp. 635–662. [Google Scholar]
- Princ, T.; Fideles, H.M.R.; Koestel, J.; Snehota, M. The Impact of Capillary Trapping of Air on Satiated Hydraulic Conductivity of Sands Interpreted by X-Ray Microtomography. Water 2020, 12, 445. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Spiteri, E.J.; Juanes, R.; Blunt, M.J.; Orr, F.M. A New Model of Trapping and Relative Permeability Hysteresis for All Wettability Characteristics. SPE J. 2008, 13, 277–288. [Google Scholar] [CrossRef]
- Pentland, C.H.; Itsekiri, E.; Al Mansoori, S.K.; Iglauer, S.; Bijeljic, B.; Blunt, M.J. Measurement of Nonwetting-Phase Trapping in Sandpacks. SPE J. 2010, 15, 274–281. [Google Scholar] [CrossRef]
- Kazemi, F.; Azin, R.; Osfouri, S. Evaluation of Phase Trapping Models in Gas-Condensate Systems in an Unconsolidated Sand Pack. J. Pet. Sci. Eng. 2020, 195, 107848. [Google Scholar] [CrossRef]
- Chatzis, I.; Morrow, N.R.; Lim, H.T. Magnitude and Detailed Structure of Residual Oil Saturation. Soc. Pet. Eng. J. 1983, 23, 311–326. [Google Scholar] [CrossRef]
- Herring, A.L.; Sheppard, A.; Andersson, L.; Wildenschild, D. Impact of Wettability Alteration on 3D Nonwetting Phase Trapping and Transport. Int. J. Greenh. Gas Control 2016, 46, 175–186. [Google Scholar] [CrossRef]
Sub-Network | Rmin | Rmax | Spacing | Height | Width | ||
---|---|---|---|---|---|---|---|
θ = | 0 | π/4 | 0 | π/4 | 0/π/4 | 0/π/4 | 0/π/4 |
(μm) | (μm) | (μm) | (pores) | (pores) | |||
Simulation in a small network | |||||||
- | 6.4 | 14.6 | 86.6 | 86.1 | 180 | 60 | 30 |
Simulation in a large network | |||||||
1 | 6.4 | 14.6 | 86.6 | 86.1 | 180 | 75 | 50 |
2 | 6.8 | 15.4 | 91.4 | 90.9 | 190 | 4 | 47 |
3 | 7.1 | 16.2 | 96.3 | 95.7 | 200 | 4 | 45 |
4 | 7.5 | 17.0 | 101.1 | 100.5 | 210 | 4 | 42 |
5 | 7.8 | 17.8 | 105.8 | 105.2 | 220 | 4 | 40 |
6 | 11.4 | 26.0 | 154.0 | 153.1 | 320 | 25 | 28 |
7 | 14.9 | 34.1 | 202.1 | 200.9 | 420 | 19 | 21 |
8 | 18.5 | 42.2 | 250.1 | 248.7 | 520 | 15 | 17 |
9 | 22.0 | 50.3 | 298.3 | 296.6 | 620 | 15 | 14 |
θ | K(ωg,r) | ωg,init | ωg,r | AR | SD(AR) | |
---|---|---|---|---|---|---|
cm∙s−1 | cm3∙cm−3 | cm3∙cm−3 | - | - | ||
0 | mean | 0.035 | 0.24 | 0.12 | 1.88 | 1.59 |
SD | 1.5 × 10−4 | 1.0 × 10−3 | 1.5 × 10−3 | 2.9 × 10−3 | 6.0 × 10−3 | |
π/4 | mean | 0.035 | 0.34 | 0.18 | 1.55 | 0.82 |
SD | 3.8 × 10−4 | 1.1 × 10−3 | 1.3 × 10−3 | 7.3 × 10−4 | 1.1 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Princ, T.; Koestel, J.; Snehota, M. How Wetting and Drainage Cycles and Wetting Angle Affect Capillary Air Trapping and Hydraulic Conductivity: A Pore Network Modeling of Experiments on Sand. Water 2024, 16, 3103. https://doi.org/10.3390/w16213103
Princ T, Koestel J, Snehota M. How Wetting and Drainage Cycles and Wetting Angle Affect Capillary Air Trapping and Hydraulic Conductivity: A Pore Network Modeling of Experiments on Sand. Water. 2024; 16(21):3103. https://doi.org/10.3390/w16213103
Chicago/Turabian StylePrinc, Tomas, John Koestel, and Michal Snehota. 2024. "How Wetting and Drainage Cycles and Wetting Angle Affect Capillary Air Trapping and Hydraulic Conductivity: A Pore Network Modeling of Experiments on Sand" Water 16, no. 21: 3103. https://doi.org/10.3390/w16213103
APA StylePrinc, T., Koestel, J., & Snehota, M. (2024). How Wetting and Drainage Cycles and Wetting Angle Affect Capillary Air Trapping and Hydraulic Conductivity: A Pore Network Modeling of Experiments on Sand. Water, 16(21), 3103. https://doi.org/10.3390/w16213103