Influence of Sub-CMC Rhamnolipid Flushing on the Mobilization and Solubilization of Residual Dodecane in Saturated Porous Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup and Procedures
2.3. Analytical Methods
3. Results and Discussion
3.1. Miscible Displacement of Dodecane
3.2. Residual Dodecane (NAPL) Solubilization
3.3. Interfacial Partitioning Tracer Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharma, P.; Kostarelos, K.; Lenschow, S.; Christensen, A.; de Blanc, P.C. Surfactant flooding makes a comeback: Results of a full-scale, field implementation to recover mobilized NAPL. J. Contam. Hydrol. 2020, 230, 103602. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.Y.; Dong, J.; Zhao, H.F. Field demonstration of in-situ microemulsion flushing for enhanced remediation of multiple chlorinated solvents contaminated aquifer. J. Hazard. Mater. 2024, 463, 132772. [Google Scholar] [CrossRef]
- Trellu, C.; Mousset, E.; Pechaud, Y.; Huguenot, D.; van Hullebusch, E.D.; Esposito, G.; Oturan, M.A. Removal of hydrophobic organic pollutants from soil washing/flushing solutions: A critical review. J. Hazard. Mater. 2016, 306, 149–174. [Google Scholar] [CrossRef]
- Fedrizzi, F.; Ramos, D.T.; Lazzarin, H.S.C.; Fernandes, M.; Larose, C.; Vogel, T.M.; Corseuil, H.X. A Modified Approach for in Situ Chemical Oxidation Coupled to Biodegradation Enhances Light Nonaqueous Phase Liquid Source Zone Remediation. Environ. Sci. Technol. 2017, 51, 463–472. [Google Scholar] [CrossRef]
- Li, Y.; Liao, X.; Huling, S.G.; Xue, T.; Liu, Q.; Cao, H.; Lin, Q. The combined effects of surfactant solubilization and chemical oxidation on the removal of polycyclic aromatic hydrocarbon from soil. Sci. Total Environ. 2019, 647, 1106–1112. [Google Scholar] [CrossRef]
- Yun, G.; Park, S.; Kim, Y.; Han, K. Development of Slow-Releasing Tablets Combined with Persulfate and Ferrous Iron for In Situ Chemical Oxidation in Trichloroethylene-Contaminated Aquifers. Water 2023, 15, 4103. [Google Scholar] [CrossRef]
- Hiester, U.; Bieber, L. Dominating Processes of the In Situ Thermal Remediation (ISTR) of low permeable soils. Grundwasser 2017, 22, 185–195. [Google Scholar] [CrossRef]
- Stroo, H.F.; Leeson, A.; Marqusee, J.A.; Johnson, P.C.; Ward, C.H.; Kavanaugh, M.C.; Sale, T.C.; Newell, C.J.; Pennell, K.D.; Lebron, C.A.; et al. Chlorinated Ethene Source Remediation: Lessons Learned. Environ. Sci. Technol. 2012, 46, 6438–6447. [Google Scholar] [CrossRef]
- Ramdass, A.C.; Rampersad, S.N. Naturally-occurring microbial consortia for the potential bioremediation of hydrocarbon-polluted sites in Trinidad. Bioremediat. J. 2023, 27, 443–452. [Google Scholar] [CrossRef]
- Martel, R.; Lefebvre, R.; Gelinas, P.J. Aquifer washing by micellar solutions: 2. DNAPL recovery mechanisms for an optimized alcohol-surfactant-solvent solution. J. Contam. Hydrol. 1998, 30, 1–31. [Google Scholar] [CrossRef]
- Schwille, F. Migration of Organic Fluids Immiscible with Water in the Unsaturated Zone; Springer: Berlin/Heidelberg, Germany, 1984; pp. 27–48. [Google Scholar]
- Mineo, S. Groundwater and soil contamination by LNAPL: State of the art and future challenges. Sci. Total Environ. 2023, 874, 162394. [Google Scholar] [CrossRef] [PubMed]
- Javanbakht, G.; Goual, L. Impact of Surfactant Structure on NAPL Mobilization and Solubilization in Porous Media. Ind. Eng. Chem. Res. 2016, 55, 11736–11746. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, J.; Chen, F.; Li, J.; Wang, W.; Li, S.; Hu, L. Mechanisms, Applications, and Risk Analysis of Surfactant-Enhanced Remediation of Hydrophobic Organic Contaminated Soil. Water 2024, 16, 2093. [Google Scholar] [CrossRef]
- Liang, X.; Dong, J.; Zhang, W.; Mo, Y.; Li, Y.; Bai, J. Solubilization mechanism and mass-transfer model of anionic-nonionic gemini surfactants for chlorinated hydrocarbons. Sep. Purif. Technol. 2024, 330, 125534. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Z.; Chen, Y.-F. Pore-scale investigation of surfactant-enhanced DNAPL mobilization and solubilization. Chemosphere 2023, 341, 140071. [Google Scholar] [CrossRef]
- Pennell, K.D.; Abriola, L.M.; Weber, W.J. Surfactant-Enhanced Solubilization of Residual Dodecane in Soil Columns.1. Experimental Investigation. Environ. Sci. Technol. 1993, 27, 2332–2340. [Google Scholar] [CrossRef]
- Taylor, T.P.; Pennell, K.D.; Abriola, L.M.; Dane, J.H. Surfactant enhanced recovery of tetrachloroethylene from a porous medium containing low permeability lenses—1. Experimental studies. J. Contam. Hydrol. 2001, 48, 325–350. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, W.; Chuan, X.; Guo, X.; Shen, X.; Zhang, H.; Wu, F.; Hu, J.; Wu, Z.; Wang, X. Remediation of heavily PAHs-contaminated soil with high mineral content from a coking plant using surfactant-enhanced soil washing. Sci. Total Environ. 2024, 909, 168499. [Google Scholar] [CrossRef]
- Yao, Y.; Fu, Y.; Zhang, C.; Zhang, H.; Qin, C. The effectivity and applicability of a novel sugar-based anionic and nonionic Gemini surfactant synthetized for the perchloroethylene-contaminated groundwater remediation. J. Hazard. Mater. 2024, 478, 135458. [Google Scholar] [CrossRef]
- Liu, G.; Zhong, H.; Yang, X.; Liu, Y.; Shao, B.; Liu, Z. Advances in applications of rhamnolipids biosurfactant in environmental remediation: A review. Biotechnol. Bioeng. 2018, 115, 796–814. [Google Scholar] [CrossRef]
- Di Trapani, D.; De Marines, F.; Lucchina, P.G.; Viviani, G. Surfactant-enhanced mobilization of hydrocarbons from soil: Comparison between anionic and nonionic surfactants in terms of remediation efficiency and residual phytotoxicity. Process Saf. Environ. Prot. 2023, 180, 1–9. [Google Scholar] [CrossRef]
- Wu, M.; Cheng, Z.; Qin, G.X.; Lei, M.; Wu, J.F.; Wu, J.C.; Hu, B.X.; Lin, J. The change of representative elementary volume of DNAPL influenced by surface active agents during long-term remediation period in heterogeneous porous media. Sci. Total Environ. 2018, 625, 1175–1190. [Google Scholar] [CrossRef]
- Jacome, L.A.P.; Van Geel, P.J. Comparative study of the impacts of soil wettability during entrapped LNAPL removal by surfactant flooding in two different sand media. J. Soils Sediments 2015, 15, 24–31. [Google Scholar] [CrossRef]
- Pennell, K.D.; Jin, M.Q.; Abriola, L.M.; Pope, G.A. Surfactant enhanced remediation of soil columns contaminated by residual tetrachloroethylene. J. Contam. Hydrol. 1994, 16, 35–53. [Google Scholar] [CrossRef]
- Ramsburg, C.A.; Pennell, K.D.; Abriola, L.M.; Daniels, G.; Drummond, C.D.; Gamache, M.; Hsu, H.L.; Petrovskis, E.A.; Rathfelder, K.M.; Ryder, J.L.; et al. Pilot-scale demonstration of surfactant-enhanced PCE solubilization at the Bachman Road site. 2. System operation and evaluation. Environ. Sci. Technol. 2005, 39, 1791–1801. [Google Scholar] [CrossRef]
- Gardner, K.H.; Arias, M.S. Clay swelling and formation permeability reductions induced by a nonionic surfactant. Environ. Sci. Technol. 2000, 34, 160–166. [Google Scholar] [CrossRef]
- Zhong, H.; Yang, X.; Tan, F.; Brusseau, M.L.; Yang, L.; Liu, Z.; Zeng, G.; Yuan, X. Aggregate-based sub-CMC solubilization of n-alkanes by monorhamnolipid biosurfactant. New J. Chem. 2016, 40, 2028–2035. [Google Scholar] [CrossRef] [PubMed]
- Bai, G.Y.; Brusseau, M.L.; Miller, R.M. Biosurfactant-enhanced removal of residual hydrocarbon from soil. J. Contam. Hydrol. 1997, 25, 157–170. [Google Scholar] [CrossRef]
- Berkowitz, B.; Hansen, D.P. A numerical study of the distribution of water in partially saturated porous rock. Transp. Porous Media 2001, 45, 303–319. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Popovicova, J.; Silva, J.A.K. Characterizing gas-water interfacial and bulk water partitioning for gas phase transport of organic contaminants in unsaturated porous media. Environ. Sci. Technol. 1997, 31, 1645–1649. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Narter, M.; Schnaar, S.; Marble, J. Measurement and Estimation of Organic-Liquid/Water Interfacial Areas for Several Natural Porous Media. Environ. Sci. Technol. 2009, 43, 3619–3625. [Google Scholar] [CrossRef] [PubMed]
- Saripalli, K.P.; Kim, H.; Rao, P.S.C.; Annable, M.D. Measurement of specific fluid—Fluid interfacial areas of immiscible fluids in porous media. Environ. Sci. Technol. 1997, 31, 932–936. [Google Scholar] [CrossRef]
- Kim, H.; Rao, P.S.C.; Annable, M.D. Consistency of the interfacial tracer technique: Experimental evaluation. J. Contam. Hydrol. 1999, 40, 79–94. [Google Scholar] [CrossRef]
- Noordman, W.H.; De Boer, G.J.; Wietzes, P.; Volkering, F.; Janssen, D.B. Assessment of the use of partitioning and interfacial tracers to determine the content and mass removal rates of nonaqueous phase liquids. Environ. Sci. Technol. 2000, 34, 4301–4306. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Narter, M.; Janousek, H. Interfacial Partitioning Tracer Test Measurements of Organic-Liquid/Water Interfacial Areas: Application to Soils and the Influence of Surface Roughness. Environ. Sci. Technol. 2010, 44, 7596–7600. [Google Scholar] [CrossRef]
- Dobson, R.; Schroth, M.H.; Oostrom, M.; Zeyer, J. Determination of NAPL-water interfacial areas in well-characterized porous media. Environ. Sci. Technol. 2006, 40, 815–822. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Taghap, H. NAPL-water interfacial area as a function of fluid saturation measured with the interfacial partitioning tracer test method. Chemosphere 2020, 260, 127562. [Google Scholar] [CrossRef]
- Zhong, H.; Jiang, Y.; Zeng, G.; Liu, Z.; Liu, L.; Liu, Y.; Yang, X.; Lai, M.; He, Y. Effect of low-concentration rhamnolipid on adsorption of Pseudomonas aeruginosa ATCC 9027 on hydrophilic and hydrophobic surfaces. J. Hazard. Mater. 2015, 285, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Pennell, K.D.; Pope, G.A.; Abriola, L.M. Influence of viscous and buoyancy forces on the mobilization of residual tetrachloroethylene during surfactant flushing. Environ. Sci. Technol. 1996, 30, 1328–1335. [Google Scholar] [CrossRef]
- Sheng, J.J. Preferred calculation formula and buoyancy effect on capillary number. Asia-Pac. J. Chem. Eng. 2015, 10, 400–410. [Google Scholar] [CrossRef]
- Morrow, N.R.; Songkran, B. Effect of Viscous and Buoyancy Forces on Nonwetting Phase Trapping in Porous Media. In Surface Phenomena in Enhanced Oil Recovery; Springer: Boston, MA, USA, 1981. [Google Scholar]
- Ghosh, J.; Tick, G.R. A pore scale investigation of crude oil distribution and removal from homogeneous porous media during surfactant-induced remediation. J. Contam. Hydrol. 2013, 155, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Saripalli, K.P.; Rao PS, C.; Annable, M.D. Determination of specific NAPL–water interfacial areas of residual NAPLs in porous media using the interfacial tracers technique. J. Contam. Hydrol. 1998, 30, 375–391. [Google Scholar] [CrossRef]
- Chukwudeme, E.A.; Fjelde, I.; Abeysinghe, K.; Lohne, A. Effect of Interfacial Tension on Water/Oil Relative Permeability on the Basis of History Matching to Coreflood Data. Spe Reserv. Eval. Eng. 2014, 17, 37–48. [Google Scholar] [CrossRef]
- Ghosh, J.; Tick, G.R.; Akyol, N.H.; Zhang, Y. A pore-scale investigation of heavy crude oil trapping and removal during surfactant-enhanced remediation. J. Contam. Hydrol. 2019, 223, 103471. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Liu, G.; Jiang, Y.; Brusseau, M.L.; Liu, Z.; Liu, Y.; Zeng, G. Effect of low-concentration rhamnolipid on transport of Pseudomonas aeruginosa ATCC 9027 in an ideal porous medium with hydrophilic or hydrophobic surfaces. Colloid Surf. B 2016, 139, 244–248. [Google Scholar] [CrossRef]
- Zhong, H.; Zhang, H.; Liu, Z.F.; Yang, X.; Brusseau, M.L.; Zeng, G.M. Sub-CMC solubilization of dodecane by rhamnolipid in saturated porous media. Sci. Rep. 2016, 6, 33266. [Google Scholar] [CrossRef]
- Torkzaban, S.; Bradford, S.A.; van Genuchten, M.T.; Walker, S.L. Colloid transport in unsaturated porous media: The role of water content and ionic strength on particle straining. J. Contam. Hydrol. 2008, 96, 113–127. [Google Scholar] [CrossRef]
- Yang, X.; Tan, F.; Zhong, H.; Liu, G.S.; Ahmad, Z.; Liang, Q.H. Sub-CMC solubilization of n-alkanes by rhamnolipid biosurfactant: The Influence of rhamnolipid molecular structure. Colloid Surface B 2020, 192, 111049. [Google Scholar] [CrossRef]
- Annable, M.D.; Jawitz, J.W.; Rao, P.S.C.; Dai, D.P.; Kim, H.; Wood, A.L. Field evaluation of interfacial and partitioning tracers for characterization of effective NAPL-water contact areas. Ground Water 1998, 36, 495–502. [Google Scholar] [CrossRef]
- Li, M.; Zhai, Y.; Wan, L. Measurement of NAPL-water interfacial areas and mass transfer rates in two-dimensional flow cell. Water Sci. Technol. 2016, 74, 2145–2151. [Google Scholar] [CrossRef]
Column | Interfacial Tension (mN/m) | Dodecane RS a (%) | R b | Anw (cm2/cm3) | NC c | NB d | NT e |
---|---|---|---|---|---|---|---|
PBS saturated column | 1.656 | ||||||
column with residual saturation dodecane | 40.9 ± 0.10 | 8. 3 | 2.096 | 2.04 | 1.08 × 10−5 | 1.54 × 10−5 | 2.62 × 10−5 |
column is flushed with 50 μM monoRL for 3 PV | 9.1 ± 0.06 | 5.7 | 2.088 | 2.13 | 4.87 × 10−5 | 6.93 × 10−5 | 1.18 × 10−4 |
column is flushed with 150 μM monoRL for 3 PV | 3.3 ± 0.06 | 2.0 | 2.206 | 3.03 | 1.34 × 10−4 | 1.91 × 10−4 | 3.25 × 10−4 |
column is flushed with 500 μM monoRL for 3 PV | 1.1 ± 0.10 | 1.8 | 2.293 | 3.54 | 4.03 × 10−4 | 5.73 × 10−4 | 9.76 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Zhong, H.; Liu, G.; Huo, L.; Wang, Z. Influence of Sub-CMC Rhamnolipid Flushing on the Mobilization and Solubilization of Residual Dodecane in Saturated Porous Media. Water 2024, 16, 3152. https://doi.org/10.3390/w16213152
Yang X, Zhong H, Liu G, Huo L, Wang Z. Influence of Sub-CMC Rhamnolipid Flushing on the Mobilization and Solubilization of Residual Dodecane in Saturated Porous Media. Water. 2024; 16(21):3152. https://doi.org/10.3390/w16213152
Chicago/Turabian StyleYang, Xin, Hua Zhong, Guansheng Liu, Lili Huo, and Zonghua Wang. 2024. "Influence of Sub-CMC Rhamnolipid Flushing on the Mobilization and Solubilization of Residual Dodecane in Saturated Porous Media" Water 16, no. 21: 3152. https://doi.org/10.3390/w16213152
APA StyleYang, X., Zhong, H., Liu, G., Huo, L., & Wang, Z. (2024). Influence of Sub-CMC Rhamnolipid Flushing on the Mobilization and Solubilization of Residual Dodecane in Saturated Porous Media. Water, 16(21), 3152. https://doi.org/10.3390/w16213152