Interactive Effects of CO2, Temperature, and Nutrient Limitation on the Growth and Physiology of the Marine Coccolithophore Emiliania huxleyi (Prymnesiophyceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culturing Conditions
2.2. Inorganic Carbon System
2.3. Sampling and Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Paasche, E. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 2001, 40, 503–529. [Google Scholar] [CrossRef]
- Caldeira, K.; Wickett, M.E. Oceanography—Anthropogenic carbon and ocean pH. Nature 2003, 425, 365. [Google Scholar] [CrossRef] [PubMed]
- Raven, J.A.; Falkowski, P.G. Oceanic sinks for atmospheric CO2. Plant Cell Environ. 1999, 22, 741–755. [Google Scholar] [CrossRef]
- Ries, J.B.; Cohen, A.L.; McCorkle, D.C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 2009, 37, 1131–1134. [Google Scholar] [CrossRef]
- Beaufort, L.; Probert, I.; de Garidel-Thoron, T.; Bendif, E.M.; Ruiz-Pino, D.; Metzl, N.; Goyet, C.; Buchet, N.; Coupel, P.; Grelaud, M.; et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 2011, 476, 80–83. [Google Scholar] [CrossRef]
- Riebesell, U.; Zondervan, I.; Rost, B.; Tortell, P.D.; Zeebe, R.E.; Morel, F.M.M. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 2000, 407, 364–367. [Google Scholar] [CrossRef]
- Iglesias-Rodriguez, M.D.; Halloran, P.R.; Rickaby, R.E.M.; Hall, I.R.; Colmenero-Hidalgo, E.; Gittins, J.R.; Green, D.R.H.; Tyrrell, T.; Gibbs, S.J.; von Dassow, P.; et al. Phytoplankton calcification in a high-CO2 world. Science 2008, 320, 336–340. [Google Scholar] [CrossRef]
- Müller, M.N.; Trull, T.W.; Hallegraeff, G.M. Differing responses of three Southern Ocean Emiliania huxleyi ecotypes to changing seawater carbonate chemistry. Mar. Ecol. Prog. Ser. 2015, 531, 81–90. [Google Scholar] [CrossRef]
- Riebesell, U.; Bellerby, R.G.J.; Engel, A.; Fabry, V.J.; Hutchins, D.A.; Reusch, T.B.H.; Schulz, K.G.; Morel, F.M.M. Comment on “Phytoplankton Calcification in a High-CO2 World”. Science 2008, 322, 1466. [Google Scholar] [CrossRef]
- Langer, G.; Nehrke, G.; Probert, I.; Ly, J.; Ziveri, P. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 2009, 6, 2637–2646. [Google Scholar]
- Gebühr, C.; Sheward, R.M.; Herrle, J.O.; Bollmann, J. Strain-specific morphological response of the dominant calcifying phytoplankton species Emiliania huxleyi to salinity change. PLoS ONE 2021, 16, e0246745. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.Y.; Roleda, M.Y.; Armstrong, E.; Boyd, P.W.; Hurd, C.L. Environmental controls on the growth, photosynthetic and calcification rates of a Southern Hemisphere strain of the coccolithophore Emiliania huxleyi. Limnol. Oceanogr. 2017, 62, 519–540. [Google Scholar] [CrossRef]
- Goldman, J.C. Physiological processes, nutrient availability, and the concept of relative growth rate in marine phytoplankton ecology. In Primary Productivity in the Sea; Falkowski, P.G., Ed.; Plenum: New York, NY, USA, 1980; pp. 179–194. [Google Scholar]
- Guillard, R.R.L.; Ryther, J.H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can. J. Microbiol. 1962, 8, 229–239. [Google Scholar] [PubMed]
- Guillard, R.R.L. Culture of phytoplankton for feeding marine inveretebrates. In Culture of Marine Invertebrate Animals; Smith, W.L., Chanley, M.H., Eds.; Plenum Press: New York, NY, USA, 1975; pp. 26–60. [Google Scholar]
- Laws, E.A.; McClellan, S.A.; Passow, U. Interactive Effects of CO2, Temperature, Irradiance, and Nutrient Limitation on the Growth and Physiology of the Marine Diatom Thalassiosira pseudonana (Coscinodiscophyceae). J. Phycol. 2020, 56, 1614–1624. [Google Scholar] [CrossRef]
- Sunda, W.G.; Hardison, D.R. Ammonium uptake and growth limitation in marine phytoplankton. Limnol. Oceanogr. 2007, 52, 2496–2506. [Google Scholar] [CrossRef]
- Dickson, A.G.; Sabine, C.L.; Christian, J.R. (Eds.) Guide for Best Practices for Ocean CO2 Measurements; PICES Special Publication 3; North Pacific Marine Science Organization: Sidney, BC, Canada, 2007; 191p. [Google Scholar]
- Breland, J.A.; Byrne, R.H. Spectrophotometric Procedures for Determination of Sea-Water Alkalinity Using Bromocresol Green. Deep-Sea Res. I Oceanogr. Res. Pap. 1993, 40, 629–641. [Google Scholar] [CrossRef]
- Zeebe, R.E.; Wolf-Gladrow, D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes; Halpern, D., Ed.; Elsevier Oceanography Series; Elsevier: Amsterdam, The Netherlands, 2001; Volume 65, 346p. [Google Scholar]
- EU. Guide to Best Practices for Ocean Acidification Research and Data Reporting; European Union: Kiel, Germany, 2011; p. 258. [Google Scholar]
- Robbins, L.L.; Hansen, M.E.; Kleypas, J.A.; Meylan, S.C. CO2calc: A User-Friendly Seawater Carbon Calculator for Windows, Mac OS X, and iOS (iPhone); Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2010. [Google Scholar]
- Li, F.T.; Beardall, J.; Collins, S.; Gao, K.S. Decreased photosynthesis and growth with reduced respiration in the model diatom Phaeodactylum tricornutum grown under elevated CO2 over 1800 generations. Glob. Chang. Biol. 2017, 23, 127–137. [Google Scholar] [CrossRef]
- Holm-Hansen, O.; Riemann, B. Chlorophyll a determination: Improvements in methodology. Oikos 1978, 30, 438–447. [Google Scholar] [CrossRef]
- Bach, L.T.; Riebesell, U.; Schulz, K.G. Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore Emiliania huxleyi. Limnol. Oceanogr. 2011, 56, 2040–2050. [Google Scholar] [CrossRef]
- Feng, Y.; Warner, M.E.; Zhang, Y.; Sun, J.; Fu, F.X.; Rose, J.M.; Hutchins, D.A. Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). Eur. J. Phycol. 2008, 43, 87–98. [Google Scholar] [CrossRef]
- Muscarella, M.E.; Howey, X.M.; Lennon, J.T. Trait-based approach to bacterial growth efficiency. Environ. Microbiol. 2020, 22, 3494–3504. [Google Scholar] [CrossRef] [PubMed]
- Riebesell, U.; Wolfgladrow, D.A.; Smetacek, V. Carbon dioxide limitation of marine phytoplankton growth rates. Nature 1993, 361, 249–251. [Google Scholar] [CrossRef]
- Hopkinson, B.M.; Dupont, C.L.; Allen, A.E.; Morel, F.M.M. Efficiency of the CO2-concentrating mechanism of diatoms. Proc. Natl. Acad. Sci. USA 2011, 108, 3830–3837. [Google Scholar] [CrossRef]
- Goldman, J.A.L.; Bender, M.L.; Morel, F.M.M. The effects of pH and pCO2 on photosynthesis and respiration in the diatom Thalassiosira weissflogii. Photosynth. Res. 2017, 132, 83–93. [Google Scholar] [CrossRef]
- Cassar, N.; Laws, E.A.; Bidigare, R.R.; Popp, B.N. Bicarbonate uptake by Southern Ocean phytoplankton. Glob. Biogeochem. Cycles 2004, 18, GB2003. [Google Scholar] [CrossRef]
- Tortell, P.D.; Payne, C.; Gueguen, C.; Strzepek, R.F.; Boyd, P.W.; Rost, B. Inorganic carbon uptake by Southern Ocean phytoplankton. Limnol. Oceanogr. 2008, 53, 1266–1278. [Google Scholar] [CrossRef]
- Laws, E.A.; McClellan, S.A. Interactive Effects of CO2, Temperature, Irradiance, and Nutrient Limitation on the Growth and Physiology of the Marine Cyanobacterium Synechococcus (Cyanophyceae). J. Phycol. 2022, 58, 703–718. [Google Scholar] [CrossRef]
- Laws, E.A. The importance of respiration losses in controlling the size distribution of marine phytoplankton. Ecology 1975, 56, 419–426. [Google Scholar] [CrossRef]
- Sett, S.; Bach, L.T.; Schulz, K.G.; Koch-Klavsen, S.; Lebrato, M.; Riebesell, U. Temperature Modulates Coccolithophorid Sensitivity of Growth, Photosynthesis and Calcification to Increasing Seawater pCO2. PLoS ONE 2014, 9, e88308. [Google Scholar] [CrossRef]
- Shuter, B. A model of physiological adaptation in unicellular algae. J. Theor. Biol. 1979, 78, 519–552. [Google Scholar] [CrossRef]
- Laws, E.A.; Chalup, M.S. A microalgal growth model. Limnol. Oceanogr. 1990, 35, 597–608. [Google Scholar] [CrossRef]
- Geider, R.J.; MacIntyre, H.L.; Kana, T.M. A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnol. Oceanogr. 1998, 43, 679–694. [Google Scholar] [CrossRef]
- Curl, H.; Small, L.F. Variations in photosynthetic assimilation ratios in natural, marine phytoplankton communities. Limnol. Oceanogr. 1965, 10, R67–R73. [Google Scholar] [CrossRef]
- Thomas, W.H. On Nitrogen Deficiency in Tropical Pacific Oceanic Phytoplankton: Photosynthetic Parameters in Poor and Rich Water. Limnol. Oceanogr. 1970, 15, 380–385. [Google Scholar] [CrossRef]
- Eppley, R.W. Temperature and phytoplankton growth in the sea. Fish. Bull. 1972, 70, 1063–1085. [Google Scholar]
- Laws, E.A.; Bannister, T.T. Nutrient- and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean. Limnol. Oceanogr. 1980, 25, 457–473. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bradley, J.P.; Laws, E.A. Interactive Effects of CO2, Temperature, and Nutrient Limitation on the Growth and Physiology of the Marine Coccolithophore Emiliania huxleyi (Prymnesiophyceae). Water 2024, 16, 3184. https://doi.org/10.3390/w16223184
Bradley JP, Laws EA. Interactive Effects of CO2, Temperature, and Nutrient Limitation on the Growth and Physiology of the Marine Coccolithophore Emiliania huxleyi (Prymnesiophyceae). Water. 2024; 16(22):3184. https://doi.org/10.3390/w16223184
Chicago/Turabian StyleBradley, James P., and Edward A. Laws. 2024. "Interactive Effects of CO2, Temperature, and Nutrient Limitation on the Growth and Physiology of the Marine Coccolithophore Emiliania huxleyi (Prymnesiophyceae)" Water 16, no. 22: 3184. https://doi.org/10.3390/w16223184
APA StyleBradley, J. P., & Laws, E. A. (2024). Interactive Effects of CO2, Temperature, and Nutrient Limitation on the Growth and Physiology of the Marine Coccolithophore Emiliania huxleyi (Prymnesiophyceae). Water, 16(22), 3184. https://doi.org/10.3390/w16223184