Hydrogeochemical Characteristics and Formation Mechanisms of High-Arsenic Groundwater in the North China Plain: Insights from Hydrogeochemical Analysis and Unsupervised Machine Learning
Abstract
:1. Introduction
2. Study Area
Overview of the Study Area
3. Methods and Materials
3.1. Sample Collection and Analysis
3.2. Data Processing and Analysis
3.2.1. Traditional Hydrogeochemical Techniques
3.2.2. Unsupervised Machine Learning
4. Results and Discussion
4.1. Spatial Distribution of High-Arsenic Groundwater
4.2. Hydrochemical Characteristics
4.3. Mechanism of High-Arsenic Groundwater Formation
4.4. Redox Reactions
4.5. Verification and Analysis of Factors Influencing as Formation in Shallow Groundwater
5. Conclusions
- The groundwater in the study area is predominantly weakly alkaline with low mineralization. Anions are primarily dominated by HCO3−, whereas cations are mainly Ca2+ and Mg2+. The primary hydrochemical types are HCO3-Ca·Na and SO4·Cl-Na·Ca;
- The Gibbs diagram indicates that the dominant mechanisms influencing groundwater chemistry are rock weathering and evaporation, with a significant influence from carbonate dissolution. Correlation analysis of the groundwater chemical parameters revealed strong positive relationships among Fe2+, NH4+, and As. Subsequent redox analysis confirmed that Fe2+ and NH4+ are key factors contributing to the formation of high-arsenic groundwater in the region;
- This study comprehensively investigated the mechanisms behind the formation of high-arsenic groundwater using multiple analytical methods, including principal component analysis (PCA), non-negative matrix factorization (NMF), machine learning models (gradient boosting trees and random forest), and cluster analysis. The PCA results indicated that the first principal component (PC1) accounted for 35.46% of the total variance, primarily associated with TDS, Ca2+, and Mg2+ ions. Samples with high TDS levels exhibited strong correlations with elevated arsenic concentrations, underscoring the pivotal role of mineral dissolution in arsenic release. The second principal component (PC2), which explained 12.52% of the variance, underscored the substantial influence of pH on arsenic speciation. The third principal component (PC3), capturing 10.95% of the variance, highlighted the significant roles of Fe2+ and Mg2+ in the fixation and release of arsenic;
- NMF analysis identified three influential factors that further clarified the interactions between hydrochemical parameters and arsenic behavior. Factor 1 (pH factor) demonstrated the profound impact of pH on the dissolution and mobility of arsenic. Factor 2 (salinity factor) emphasized the effects of Na+ and Cl− on arsenic solubility, particularly in environments with high mineralization where increased salinity promotes mineral dissolution and subsequent arsenic release. Factor 3 (metal content factor) was closely linked to the concentrations of Fe2+ and Mg2+;
- The gradient boosting tree model reported an R2 value of 0.9111, reflecting a robust predictive capability. Feature importance analysis revealed that Feature_16 (likely representing TDS or a crucial metal ion) held the highest importance, with a score of 95.06%, indicating that mineralization is a key factor in arsenic migration. The random forest model, achieving an R2 value of 0.8716, similarly highlighted the strong connections between mineralization (TDS) and metal ion concentrations with arsenic enrichment.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, P.J.S. Groundwater fluoride contamination in Coimbatore district: A geochemical characterization, multivariate analysis, and human health risk perspective. Environ. Earth Sci. 2021, 80, 232. [Google Scholar] [CrossRef]
- Berg, M.; Tran, H.C.; Nguyen, T.C.; Pham, H.V.; Schertenleib, R.; Giger, W. Arsenic contamination of groundwater and drinking water in Vietnam: A human health threat. Environ. Sci. Technol. 2001, 35, 2621–2626. [Google Scholar] [CrossRef] [PubMed]
- Halim, M.A.; Majumder, R.K.; Nessa, S.A.; Hiroshiro, Y.; Uddin, M.J.; Shimada, J.; Jinno, K. Hydrogeochemistry and arsenic contamination of groundwater in the Ganges Delta Plain, Bangladesh. J. Hazard. Mater. 2009, 164, 1335–1345. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Wang, Y. Geochemical characteristics of shallow groundwater in Datong basin, northwestern China. J. Geochem. Explor. 2005, 87, 109–120. [Google Scholar] [CrossRef]
- Deng, Y.M. Geochemical Processes in the High Arsenic Groundwater System in the Western Hetao Basin. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2008. [Google Scholar]
- Zhang, D.; Guo, H.M.; Ni, P.; Wu, Y. Influence of redox conditions on the migration of arsenic release from groundwater-an example of high arsenic groundwater in Tongyu County. Quat. Res. 2014, 34, 1072–1081. [Google Scholar]
- Yuan, H.Q.; Li, Q.; Tao, H.F.M.; Aihemaiti; Yang, W.X.; Su, Y.P. Groundwater arsenic enrichment factors of Kuitun river basin, Xinjiang. Environ. Chem. 2020, 39, 524–530. [Google Scholar]
- Bian, J.M.; Tang, J.; Feng, L.; Zha, E.S. Hydrogeochemical characteristics in the arsenic poisoning area in western Jilin Province. Hydrogeol. Eng. Geol. 2009, 36, 80–83. [Google Scholar]
- Zhao, J.; Li, Y.; Bian, J.; Zhang, L.; Yang, Z. Threshold analysis and health risk assessment of arsenic in groundwater in western Jilin Province. J. Jilin Univ. (Earth Sci. Edit.) 2013, 43, 251–258. [Google Scholar]
- Zhang, D.; Guo, H.; Xiu, W.; Ni, P.; Zheng, H.; Wei, C. In-situ mobilization and transformation of iron oxides-adsorbed arsenate in natural groundwater. J. Hazard. Mater. 2017, 321, 228–237. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, X.; Su, C.; Wang, M.; Ren, F.; Huq, M.E. Unraveling the impact of dissolved organic matter on arsenic mobilization in alluvial aquifer of the lower Yellow River basin, Northern China. Appl. Geochem. 2023, 158, 105781. [Google Scholar] [CrossRef]
- Rivett, M.O.; Buss, S.R.; Morgan, P.; Smith, J.W.N.; Bemment, C.D. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Res. 2008, 42, 4215–4232. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, M.; Zhang, Y.; Wu, X.; Zhang, C. Analysis of the hydrogeochemical characteristics and origins of groundwater in the changbai mountain region via inverse hydrogeochemical modeling and unsupervised machine learning. Water 2024, 16, 1853. [Google Scholar] [CrossRef]
- Cao, W.; Gao, Z.; Guo, H.; Pan, D.; Qiao, W.; Wang, S.; Ren, Y.; Li, Z. Increases in groundwater arsenic concentrations and risk under decadal groundwater withdrawal in the lower reaches of the Yellow River basin, Henan Province, China. Environ. Pollut. 2022, 296, 118741. [Google Scholar] [CrossRef] [PubMed]
- Knappett, P.S.K.; Li, Y.; Loza, I.; Hernandez, H.; Avilés, M.; Haaf, D.; Majumder, S.; Huang, Y.; Lynch, B.; Piña, V. Rising arsenic concentrations from dewatering a geothermally influenced aquifer in central Mexico. Water Res. 2020, 185, 116257. [Google Scholar] [CrossRef]
- Liao, Z.; Lin, X.; Shi, Q.; Gnansounou, R.; Du, X. Study on the groundwater exploitation test in the Yellow River lower reaches: A case study on the north suburb waterworks of Zhengzhou China. Sci. China Ser. E 2004, 47, 14–24. [Google Scholar] [CrossRef]
- Liu, J.; Cao, G.; Zheng, C. Sustainability of groundwater resources in the North China Plain. In Sustaining Groundwater Resources; Jones, J., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 69–87. [Google Scholar]
- Mozumder, M.R.H.; Bostick, B.C.; Selim, M.; Islam, M.A.; Shoenfelt, E.M.; Ellis, T.; Mailloux, B.J.; Choudhury, I.; Ahmed, K.M.; van Geen, A. Similar retardation of arsenic in gray Holocene and orange Pleistocene sediments: Evidence from field-based column experiments in Bangladesh. Water Res. 2020, 183, 116081. [Google Scholar] [CrossRef]
- Nath, B.; Chakraborty, S.; Burnol, A.; Stüben, D.; Chatterjee, D.; Charlet, L. Mobility of arsenic in the sub-surface environment: An integrated hydrogeochemical study and sorption model of the sandy aquifer materials. J. Hydrol. 2009, 364, 236–248. [Google Scholar] [CrossRef]
- Apollaro, C.; Caracausi, A.; Paternoster, M.; Randazzo, P.; Aiuppa, A.; De Rosa, R.; Fuoco, I.; Mongelli, G.; Muto, F.; Vanni, E.; et al. Fluid geochemistry in a low-enthalpy geothermal field along a sector of southern Apennines chain (Italy). J. Geochem. Explor. 2020, 219, 106618. [Google Scholar] [CrossRef]
- Apollaro, C.; Buccianti, A.; Vespasiano, G.; Vardè, M.; Fuoco, I.; Barca, D.; Bloise, A.; Miriello, D.; Cofone, F.; Servidio, A.; et al. Comparative geochemical study between the tap waters and the bottled mineral waters in Calabria (Southern Italy) by compositional data analysis (CoDA) developments. Appl. Geochem. 2019, 107, 19–33. [Google Scholar] [CrossRef]
- Neidhardt, H.; Rudischer, S.; Eiche, E.; Schneider, M.; Stopelli, E.; Duyen, V.T.; Trang, P.T.K.; Viet, P.H.; Neumann, T.; Berg, M. Phosphate immobilisation dynamics and interaction with arsenic sorption at redox transition zones in floodplain aquifers: Insights from the Red River Delta, Vietnam. J. Hazard. Mater. 2021, 411, 125128. [Google Scholar] [CrossRef]
- Cao, J.S.; Zhang, W.J. Research on shallow groundwater recharge and control in Taihang Mountain area of north China. Adv. Mater. Res. 2010, 113, 1572–1576. [Google Scholar] [CrossRef]
- Chen, J.; Gu, B.; LeBoeuf, E.J.; Pan, H.; Dai, S. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere 2002, 48, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Rütting, T.; Huygens, D.; Müller, C.; Van Cleemput, O.; Godoy, R.; Boeckx, P. Functional role of DNRA and nitrite reduction in a pristine south Chilean Nothofagus forest. Biogeochemistry 2008, 90, 243–258. [Google Scholar] [CrossRef]
- Saxena, V.K.; Mondal, N.C.; Singh, V.S. Reducing arsenic concentration in groundwater. Curr. Sci. 2005, 88, 707–708. [Google Scholar]
- Skierszkan, E.K.; Dockrey, J.W.; Mayer, K.U.; Beckie, R.D. Release of geogenic uranium and arsenic results in water-quality impacts in a subarctic permafrost region of granitic and metamorphic geology. J. Geochem. Explor. 2020, 217, 106607. [Google Scholar] [CrossRef]
- Tisserand, D.; Pili, E.; Hellmann, R.; Boullier, A.-M.; Charlet, L. Geogenic arsenic in groundwaters in the western Alps. J. Hydrol. 2014, 518, 317–325. [Google Scholar] [CrossRef]
- Xie, X.; Wang, Y.; Li, J.; Yu, Q.; Wu, Y.; Su, C.; Duan, M. Effect of irrigation on Fe (III)–SO42− redox cycling and arsenic mobilization in shallow groundwater from the Datong basin, China: Evidence from hydrochemical monitoring and modeling. J. Hydrol. 2015, 523, 128–138. [Google Scholar] [CrossRef]
- Xiu, W.; Lloyd, J.; Guo, H.; Dai, W.; Nixon, S.; Bassil, N.M.; Ren, C.; Zhang, C.; Ke, T.; Polya, D. Linking microbial community composition to hydrogeochemistry in the western Hetao Basin: Potential importance of ammonium as an electron donor during arsenic mobilization. Environ. Int. 2020, 136, 105489. [Google Scholar] [CrossRef]
- Yang, B.; Zhou, L.; Xue, N.; Li, F.; Li, Y.; Vogt, R.D.; Cong, X.; Yan, Y.; Liu, B. Source apportionment of polycyclic aromatic hydrocarbons in soils of Huanghuai Plain, China: Comparison of three receptor models. Sci. Total Environ. 2013, 443, 31–39. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, L.; Wang, X.; Chen, Z.; Yang, W. Efficient adsorption of arsenic in groundwater by hydrated iron oxide and ferromanganese oxide chitosan gel beads. Sep. Purif. Technol. 2023, 315, 123692. [Google Scholar] [CrossRef]
- Duan, L.; Song, J.; Zhang, Y.; Yin, M.; Yuan, H.; Li, X. Unraveling seasonal shifts in microbial and geochemical mediated arsenic mobilization at the estuarine sediment-water interface under redox changes. Sci. Total Environ. 2023, 912, 168939. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, M.V.; Ying, S.C.; Benner, S.G.; Duan, Y.; Wang, Y.; Fendorf, S. Aquifer arsenic cycling induced by seasonal hydrologic changes within the Yangtze River Basin. Environ. Sci. Technol. 2016, 50, 3521–3529. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Luo, Y.L.; Deng, W.W. The 3D-EEM characteristics of DOM in high arsenic groundwater of Kuitun, Xinjiang. China Environ. Sci. 2020, 40, 4974–4981. [Google Scholar]
- Shakoor, M.B.; Bibi, I.; Niazi, N.K.; Shahid, M.; Nawaz, M.F.; Farooqi, A.; Naidu, R.; Rahman, M.M.; Murtaza, G.; Lüttge, A. The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere 2018, 199, 737–746. [Google Scholar] [CrossRef]
- Rasool, A.; Xiao, T.; Farooqi, A.; Shafeeque, M.; Masood, S.; Ali, S.; Fahad, S.; Nasim, W. Arsenic and heavy metal contaminations in the tube well water of Punjab, Pakistan and risk assessment: A case study. Ecol. Eng. 2016, 95, 90–100. [Google Scholar] [CrossRef]
- Lawson, M.; Polya, D.A.; Boyce, A.J.; Bryant, C.; Ballentine, C.J. Tracing organic matter composition and distribution and its role on arsenic release in shallow Cambodian groundwaters. Geochim. Cosmochim. Ac. 2016, 178, 160–177. [Google Scholar] [CrossRef]
- Liao, V.H.C.; Chu, Y.J.; Su, Y.C.; Hsiao, S.Y.; Wei, C.C.; Liu, C.W.; Liao, C.M.; Shen, W.C.; Chang, F.J. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. J. Contam. Hydrol. 2011, 123, 20–29. [Google Scholar] [CrossRef]
- Li, P.; Jiang, Z.; Wang, Y.; Deng, Y.; Van Nostrand, J.D.; Yuan, T.; Liu, H.; Wei, D.; Zhou, J. Analysis of the functional gene structure and metabolic potential of microbial community in high arsenic groundwater. Water Res. 2017, 123, 268–276. [Google Scholar] [CrossRef]
- Li, Y.; Guo, H.; Hao, C. Arsenic release from shallow aquifers of the Hetao basin, Inner Mongolia: Evidence from bacterial community in aquifer sediments and groundwater. Ecotoxicology 2014, 23, 1900–1914. [Google Scholar] [CrossRef]
- Seddique, A.A.; Masuda, H.; Mitamura, M.; Shinoda, K.; Yamanaka, T.; Itai, T.; Maruoka, T.; Uesugi, K.; Ahmed, K.M.; Biswas, D.K. Arsenic release from biotite into a Holocene groundwater aquifer in Bangladesh. Appl. Geochem. 2008, 23, 2236–2248. [Google Scholar] [CrossRef]
- Senn, D.B.; Hemond, H.F. Nitrate controls on iron and arsenic in an urban lake. Science 2002, 296, 2373–2376. [Google Scholar] [CrossRef] [PubMed]
- Shah, B.A. Groundwater arsenic contamination from parts of the Ghaghara Basin, India: Influence of fluvial geomorphology and Quaternary morphostratigraphy. Appl. Water Sci. 2017, 7, 2587–2595. [Google Scholar] [CrossRef]
- Sheikhy Narany, T.; Ramli, M.F.; Aris, A.Z.; Sulaiman, W.N.A.; Juahir, H.; Fakharian, K. Identification of the hydrogeochemical processes in groundwater using classic integrated geochemical methods and geostatistical techniques, in amol-babol plain, iran. Sci. World J. 2014, 2014, 419058. [Google Scholar] [CrossRef]
- Singh, H.; Pandey, R.; Singh, S.K.; Shukla, D.N. Assessment of heavy metal contamination in the sediment of the River Ghaghara, a major tributary of the River Ganga in Northern India. Appl. Water Sci. 2017, 7, 4133–4149. [Google Scholar] [CrossRef]
- Singh, C.K.; Kumar, A.; Bindal, S. Arsenic contamination in Rapti River basin, Terai region of India. J. Geochem. Explor. 2018, 192, 120–131. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef]
- Smedley, P.L.; Zhang, M.; Zhang, G.; Luo, Z. Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Appl. Geochem. 2003, 18, 1453–1477. [Google Scholar] [CrossRef]
- Stuckey, J.W.; Schaefer, M.V.; Kocar, B.D.; Benner, S.G.; Fendorf, S. Arsenic release metabolically limited to permanently water-saturated soil in Mekong Delta. Nat. Geosci. 2016, 9, 70–76. [Google Scholar] [CrossRef]
- Tufano, K.J.; Fendorf, S. Confounding impacts of iron reduction on arsenic retention. Environ. Sci. Technol. 2008, 42, 4777–4783. [Google Scholar] [CrossRef]
- Qu, H.; Ding, K.; Ao, M.; Ye, Z.; Liu, T.; Hu, Z.; Cao, Y.; Morel, J.; Baker, A.; Tang, Y.; et al. New insights into the controversy of reactive mineral-controlled arsenopyrite dissolution and arsenic release. Water Res. 2024, 262, 122051. [Google Scholar] [CrossRef]
- Tseng, W.P.; Chu, H.M.; How, S.W.; Fong, J.M.; Lin, C.S.; Yeh, S.H.U. Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J. Natl. Cancer I 1968, 40, 453–463. [Google Scholar]
- Van Geen, A.; Radloff, K.; Aziz, Z.; Cheng, Z.; Huq, M.R.; Ahmed, K.M.; Weinman, B.; Goodbred, S.; Jung, H.B.; Zheng, Y. Comparison of arsenic concentrations in simultaneously-collected groundwater and aquifer particles from Bangladesh, India, Vietnam, and Nepal. Appl. Geochem. 2008, 23, 3244–3251. [Google Scholar] [CrossRef] [PubMed]
As | PH | Ca2+ | Mg2+ | K+ | Na+ | Cl− | SO42− | HCO3− | NO3− | NO2− | NH4+ | Fe2+ | F− | TDS | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As < 10 | Max | 9.8 | 8.49 | 351.98 | 450.97 | 666.45 | 1193.9 | 2120.6 | 3435.9 | 946.697 | 239.35 | 0.49 | 2.7 | 7.6 | 3.29 | 7825 |
Min | 0.01 | 6.85 | 7.76 | 6.17 | 0.01 | 7.29 | 6.35 | 5.57 | 265.74 | 0.05 | 0 | 0.02 | 0.03 | 0.12 | 271.29 | |
Mean | 2.86 | 7.43 | 98.02 | 73.38 | 11.27 | 168.11 | 137.89 | 274.99 | 541.75 | 11.15 | 0.03 | 0.28 | 0.95 | 0.81 | 1098.37 | |
As ≥ 10 | Max | 190 | 7.9 | 160.48 | 151.84 | 10.13 | 375.79 | 674.65 | 320.55 | 280.02 | 17.57 | 0.21 | 2.82 | 9.25 | 1.82 | 413.94 |
Min | 10 | 6.93 | 24.85 | 22.17 | 0.53 | 42.85 | 14.11 | 21.76 | 771.6 | 0.045 | 0 | 0 | 0.07 | 0.34 | 1990.4 | |
Mean | 35.13 | 7.48 | 86.41 | 56.14 | 2.73 | 112.53 | 99.6 | 116.57 | 527.89 | 0.95 | 0.02 | 0.5 | 2.2 | 0.62 | 767.47 |
Partition Type | Counting | Proportion |
---|---|---|
Modern Yellow River Impact Zone | 31 | 50.8% |
Neihuang Ancient River Channel | 19 | 31.1% |
Wuzhi River Interbank Zone | 9 | 14.8% |
Puyang ancient river interzone | 2 | 3.3% |
Methodology | ||||
---|---|---|---|---|
PCA | Statistical Index | PC1 | PC2 | PC3 |
Max | 0.41 | 0.58 | 0.57 | |
Min | −0.13 | −0.30 | −0.42 | |
Mean | 0.18 | 0.03 | 0.01 | |
Contribution rate | 35% | 12% | 10% |
Cluster 1 Mean | Cluster 2 Mean | Cluster 3 Mean | |
---|---|---|---|
PC1 | 4.893218453 | 27.21070411 | −0.435959501 |
PC2 | 0.163452669 | −1.665889574 | −0.003922947 |
PC3 | −1.141352754 | 4.820688752 | 0.055541138 |
PC4 | 1.423497914 | −5.429592234 | −0.071679233 |
PC5 | 0.37764131 | −0.392501558 | −0.023346113 |
PC6 | 0.201097174 | 3.27863246 | −0.026843749 |
PC7 | −1.17724032 | 7.16416938 | 0.048230065 |
PC8 | 0.106600213 | 1.312202174 | −0.012470271 |
PC9 | −0.05767884 | 0.533911558 | 0.001607231 |
PC10 | 0.311394195 | −0.215691252 | −0.01969676 |
PC11 | −0.05150223 | −0.000866872 | 0.003408688 |
PC12 | 0.522860824 | −1.438479223 | −0.028625182 |
PC13 | −0.006931872 | 0.179685313 | −0.000284196 |
PC14 | 0.176629866 | −0.31228099 | −0.01038759 |
PC15 | −0.012850346 | 0.02618517 | 0.000741406 |
PC16 | 0.023103539 | 0.019183984 | −0.001606779 |
Number | Random Forest Model Importance | Gradient Boosting Tree Model Importance |
---|---|---|
Feature 1 | 9.59 × 10−6 | 0 |
Feature 2 | 1.09 × 10−5 | 1.74 × 10−9 |
Feature 3 | 2.39 × 10−2 | 2.45 × 10−2 |
Feature 4 | 9.18 × 10−6 | 2.70 × 10−9 |
Feature 5 | 1.20 × 10−5 | 5.55 × 10−5 |
Feature 6 | 4.36 × 10−6 | 3.57 × 10−4 |
Feature 7 | 6.93 × 10−6 | 0 |
Feature 8 | 1.58 × 10−5 | 0 |
Feature 9 | 2.54 × 10−6 | 2.06 × 10−9 |
Feature 10 | 1.83 × 10−8 | 0 |
Feature 11 | 2.87 × 10−2 | 2.44 × 10−2 |
Feature 12 | 3.09 × 10−6 | 1.73 × 10−5 |
Feature 13 | 2.31 × 10−5 | 1.78 × 10−5 |
Feature 14 | 3.43 × 10−4 | 2.85 × 10−5 |
Feature 15 | 1.83 × 10−5 | 2.30 × 10−5 |
Feature 16 | 9.46 × 10−1 | 9.51 × 10−1 |
Feature 17 | 0 | 0 |
Feature 18 | 0 | 0 |
Feature 19 | 0 | 0 |
Feature 20 | 0 | 0 |
Feature 21 | 0 | 0 |
Feature 22 | 0 | 0 |
Feature 23 | 0 | 0 |
Feature 24 | 0 | 0 |
Feature 25 | 0 | 0 |
Feature 26 | 0 | 0 |
Feature 27 | 0 | 0 |
Feature 28 | 4.68 × 10−5 | 2.05 × 10−6 |
Feature 29 | 9.41 × 10−6 | 0 |
Feature 30 | 2.15 × 10−5 | 0 |
Feature 31 | 0 | 0 |
Feature 32 | 3.36 × 10−7 | 0 |
Feature 33 | 1.70 × 10−7 | 6.33 × 10−8 |
Feature 34 | 1.35 × 10−7 | 1.89 × 10−8 |
Feature 35 | 3.86 × 10−8 | 4.48 × 10−8 |
Feature 36 | 4.77 × 10−6 | 0 |
Feature 37 | 4.69 × 10−6 | 0 |
Feature 38 | 2.32 × 10−6 | 0 |
Feature 39 | 6.74 × 10−7 | 0 |
Feature 40 | 9.75 × 10−4 | 3.62 × 10−5 |
Feature 41 | 3.10 × 10−7 | 0 |
Feature 42 | 7.61 × 10−6 | 9.65 × 10−9 |
Feature 43 | 2.86 × 10−6 | 3.04 × 10−8 |
Feature 44 | 5.27 × 10−8 | 0 |
Feature 45 | 5.88 × 10−7 | 0 |
Feature 46 | 2.97 × 10−7 | 0 |
Feature 47 | 0 | 0 |
Feature 48 | 9.00 × 10−7 | 0 |
Feature 49 | 1.22 × 10−6 | 0 |
Feature 50 | 1.54 × 10−7 | 0 |
Feature 51 | 1.79 × 10−6 | 0 |
Feature 52 | 6.15 × 10−7 | 0 |
Feature 53 | 3.00 × 10−6 | 4.12 × 10−8 |
Feature 54 | 9.89 × 10−7 | 0 |
Feature 55 | 1.68 × 10−5 | 1.14 × 10−7 |
Feature 56 | 7.56 × 10−6 | 8.41 × 10−7 |
Feature 57 | 2.27 × 10−6 | 7.55 × 10−7 |
Feature 58 | 6.11 × 10−6 | 0 |
Feature 59 | 2.28 × 10−5 | 5.70 × 10−8 |
Feature 60 | 1.91 × 10−6 | 7.48 × 10−8 |
Feature 61 | 1.68 × 10−6 | 0 |
Feature 62 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Liu, W.; Liu, Y.; Zhu, G.; Han, Q. Hydrogeochemical Characteristics and Formation Mechanisms of High-Arsenic Groundwater in the North China Plain: Insights from Hydrogeochemical Analysis and Unsupervised Machine Learning. Water 2024, 16, 3215. https://doi.org/10.3390/w16223215
Wu X, Liu W, Liu Y, Zhu G, Han Q. Hydrogeochemical Characteristics and Formation Mechanisms of High-Arsenic Groundwater in the North China Plain: Insights from Hydrogeochemical Analysis and Unsupervised Machine Learning. Water. 2024; 16(22):3215. https://doi.org/10.3390/w16223215
Chicago/Turabian StyleWu, Xiaofang, Weijiang Liu, Yi Liu, Ganghui Zhu, and Qiaochu Han. 2024. "Hydrogeochemical Characteristics and Formation Mechanisms of High-Arsenic Groundwater in the North China Plain: Insights from Hydrogeochemical Analysis and Unsupervised Machine Learning" Water 16, no. 22: 3215. https://doi.org/10.3390/w16223215
APA StyleWu, X., Liu, W., Liu, Y., Zhu, G., & Han, Q. (2024). Hydrogeochemical Characteristics and Formation Mechanisms of High-Arsenic Groundwater in the North China Plain: Insights from Hydrogeochemical Analysis and Unsupervised Machine Learning. Water, 16(22), 3215. https://doi.org/10.3390/w16223215