The Effect of the Construction of a Tillage Layer on the Infiltration of Snowmelt Water into Freeze–Thaw Soil in Cold Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Materials and Equipment
2.3. Experimental Design Setup
2.4. Indicator Calculation
2.4.1. Three-Phase Distance Structure Index
2.4.2. Snowmelt Infiltration Volume
2.4.3. Soil Saturated Hydraulic Conductivity and Cumulative Infiltration
2.4.4. Freeze–Thaw Soil Penetration Index
2.5. Data Analysis
3. Results and Discussion
3.1. Evolution of Soil Structure
3.2. Soil Melting Process
3.3. Snow Melting Process
3.4. Soil Frost Depth and Snowmelt Inter-Feeding Mechanisms
3.5. Mechanistic Analysis
3.5.1. Soil Permeability
3.5.2. Saturated Hydraulic Conductivity of Frozen and Unfrozen Soils
3.5.3. Soil Penetration Coefficient
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, Y.; Li, X.; Gu, L.; Zheng, Z.; Zheng, X.; Jiang, T. Significant decreasing trends in snow cover and duration in Northeast China during the past 40 years from 1980 to 2020. J. Hydrol. 2023, 626, 130318. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, R.; Liu, G.; Liu, Z.; Wang, X. Trends and variability in snowmelt in China under climate change. Hydrol. Earth Syst. Sci. 2022, 26, 305–329. [Google Scholar] [CrossRef]
- Li, Y.; Fu, Q.; Li, T.; Li, D.; Hou, R.; Li, Q.; Yi, J.; Li, M.; Meng, F. Snow melting water infiltration mechanism of farmland freezing-thawing soil and determination of meltwater infiltration parameter in seasonal frozen soil areas. Agric. Water Manag. 2021, 258, 107165. [Google Scholar] [CrossRef]
- Carroll, R.W.H.; Deems, J.S.; Niswonger, R.; Schumer, R.; Williams, K.H. The importance of interflow to groundwater recharge in a snowmelt-dominated headwater basin. Geophys. Res. Lett. 2019, 46, 5899–5908. [Google Scholar] [CrossRef]
- Al-Houri, Z.M.; Barber, M.E.; Yonge, D.R.; Ullman, J.L.; Beutel, M.W. Impacts of frozen soils on the performance of infiltration treatment facilities. Cold Reg. Sci. Technol. 2009, 59, 51–57. [Google Scholar] [CrossRef]
- Gaddam, V.K.; Kulkarni, A.V.; Gupta, A.K. Assessment of snow-glacier melt and rainfall contribution to stream runoff in Baspa Basin, Indian Himalaya. Environ. Monit. Assess. 2018, 190, 154. [Google Scholar] [CrossRef]
- Henn, B.; Musselman, K.N.; Lestak, L.; Ralph, F.M.; Molotch, N.P. Extreme runoff generation from atmospheric river driven snowmelt during the 2017 Oroville Dam spillways incident. Geophys. Res. Lett. 2020, 47, e2020GL088189. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, M.; Zhou, P.; Wang, L.; Liu, X.; Wan, Z.; Zhang, X. Gully regulates snowmelt runoff, sediment and nutrient loss processes in Mollisols region of Northeast China. Sci. Total Environ. 2024, 940, 173614. [Google Scholar] [CrossRef]
- Wang, L.; Wang, T.; Yao, S.; Sun, H.; Zhang, B. Soil compaction development facilitated the decadal improvement of the root system architecture and rhizosheath soil traits of soybean in the North China Plain. Soil Tillage Res. 2024, 237, 105983. [Google Scholar] [CrossRef]
- Aygün, O.; Kinnard, C.; Campeau, S. Responses of soil erosion to warming and wetting in a cold Canadian agricultural catchment. Catena 2021, 201, 105184. [Google Scholar] [CrossRef]
- Zheng, Y.; Shi, X.; Zhang, F.; Liu, T.; Zeng, C.; Xiao, X.; Wang, L.; Wang, G. Field experimental study on the effect of thawed depth of frozen alpine meadow soil on rill erosion by snowmelt waterflow. Int. Soil Water Conserv. Res. 2024, 12, 54–63. [Google Scholar] [CrossRef]
- Starkloff, T.; Stolte, J.; Hessel, R.; Ritsema, C.; Jetten, V. Integrated, spatial distributed modelling of surface runoff and soil erosion during winter and spring. Catena 2018, 166, 147–157. [Google Scholar] [CrossRef]
- Cui, X.; Ouyang, W.; Liu, L.; Guo, Z.; Zhu, W. Nitrate losses from forest during snowmelt: An underestimated source in mid-high latitude watershed. Water Res. 2024, 249, 121005. [Google Scholar] [CrossRef] [PubMed]
- Li, W.B.; Wang, D.Y.; Li, H.; Liu, S. Urbanization-induced site condition changes of peri-urban cultivated land in the black soil region of northeast China. Ecol. Indic. 2017, 80, 215–223. [Google Scholar] [CrossRef]
- Yakutina, O.P.; Nechaeva, T.V.; Smirnova, N.V. Consequences of snowmelt erosion: Soil fertility, productivity and quality of wheat on Greyzemic Phaeozem in the south of West Siberia. Agric. Ecosyst. Environ. 2015, 200, 88–93. [Google Scholar] [CrossRef]
- Huang, X.; Lu, Q.; Yang, F. The effects of farmers’ adoption behavior of soil and water conservation measures on agricultural output. Int. J. Clim. Chang. Strateg. Manag. 2020, 12, 599–615. [Google Scholar] [CrossRef]
- Nzeyimana, I.; Hartemink, A.E.; Ritsema, C.; Stroosnijder, L.; Lwanga, E.H.; Geissen, V. Mulching as a strategy to improve soil properties and reduce soil erodibility in coffee farming systems of Rwanda. Catena 2017, 149, 43–51. [Google Scholar] [CrossRef]
- Priya, E.; Sarkar, S.; Maji, P.K. A Review on Slow-Release Fertilizer: Nutrient Release Mechanism and Agricultural Sustainability. J. Environ. Chem. Eng. 2024, 12, 113211. [Google Scholar]
- Zhu, B.; Zhou, Z.; Li, Z. Soil erosion and controls in the slope-gully system of the Loess Plateau of China: A review. Front. Environ. Sci. 2021, 9, 657030. [Google Scholar] [CrossRef]
- Li, Y.; Awasthi, M.K.; Sindhu, R.; Binod, P.; Zhang, Z.; Taherzadeh, M.J. Biochar preparation and evaluation of its effect in composting mechanism: A review. Bioresour. Technol. 2023, 384, 129329. [Google Scholar] [CrossRef]
- Yao, R.; Gao, Q.; Liu, Y.; Li, H.; Yang, J.; Bai, Y.; Zhu, H.; Wang, X.; Xie, W.; Zhang, X. Deep vertical rotary tillage mitigates salinization hazards and shifts microbial community structure in salt-affected anthropogenic-alluvial soil. Soil Tillage Res. 2023, 227, 105627. [Google Scholar] [CrossRef]
- Hou, R.; Zhu, B.; Wang, L.; Gao, S.; Wang, R.; Hou, D. Mechanism of clay mineral modified biochar simultaneously immobilizes heavy metals and reduces soil carbon emissions. J. Environ. Manag. 2024, 361, 121252. [Google Scholar] [CrossRef] [PubMed]
- Fairbairn, L.; Rezanezhad, F.; Gharasoo, M.; Parsons, C.T.; Macrae, M.L.; Slowinski, S.; Cappellen, P.V. Relationship between soil CO2 fluxes and soil moisture: Anaerobic sources explain fluxes at high water content. Geoderma 2023, 434, 116493. [Google Scholar] [CrossRef]
- Elliott, E. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci. Soc. Am. J. 1986, 50, 627–633. [Google Scholar] [CrossRef]
- Wooding, R.A. Steady infiltration from a shallow circular pond. Water Resour. Res. 1968, 4, 1259–1273. [Google Scholar] [CrossRef]
- Gardner, W.R. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci. 1958, 85, 228–232. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, X.; Liang, A.; Li, Y.; Song, Q.; Li, X.; Li, D.; Hou, N. Insight into the soil aggregate-mediated restoration mechanism of degraded black soil via biochar addition: Emphasizing the driving role of core microbial communities and nutrient cycling. Environ. Res. 2023, 228, 115895. [Google Scholar] [CrossRef]
- Qiu, M.; Liu, L.; Ling, Q.; Yu, S.; Wang, S.; Hu, B.; Wang, X.; Liu, L.; Fu, D. Biochar for the removal of contaminants from soil and water: A review. Biochar 2022, 4, 19. [Google Scholar] [CrossRef]
- Guo, R.; Zhang, N.; Wang, L.; Lin, T.; Zheng, Z.; Cui, J.; Tian, L. Subsoiling depth affects the morphological and physiological traits of roots in film-mulched and drip-irrigated cotton. Soil Tillage Res. 2023, 234, 105826. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Zhang, C.; Ma, D.; Zhou, G.; Ning, Q.; Zhang, J. Combining rotary and deep tillage increases crop yields by improving the soil physical structure and accumulating organic carbon of subsoil. Soil Tillage Res. 2024, 244, 106252. [Google Scholar] [CrossRef]
- Zhang, L.; Mao, L.; Yan, X.; Liu, C.; Song, X.; Sun, X. Long-term cotton stubble return and subsoiling increases cotton yield through improving root growth and properties of coastal saline soil. Ind. Crops Prod. 2022, 177, 114472. [Google Scholar] [CrossRef]
- Chen, Z.; Xiao, X.; Chen, B.; Zhu, L. Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures. Environ. Sci. Technol. 2015, 49, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Romanyuk, N.; Ednach, V.; Nukeshev, S.; Troyanovskaya, I.; Voinash, S.; Kalimullin, M.; Sokolova, V. Improvement of the design of the plow-subsoiler-fertilizer to increase soil fertility. J. Terramechanics 2023, 106, 89–93. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Zhao, H.; Hu, W.; Zhang, H.; Zhou, X.; Luo, G. The effectiveness of reed-biochar in mitigating phosphorus losses and enhancing microbially-driven phosphorus dynamics in paddy soil. J. Environ. Manag. 2022, 314, 115087. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, Z.; Obalum, S.E.; Liang, C.; Han, K.; Han, H. Effects of Subsoiling Depth on Soil Aggregate Stability and Carbon Storage in a Clay-Loam Soil. J. Soil Sci. Plant Nutr. 2023, 23, 3302–3312. [Google Scholar] [CrossRef]
- Xue, P.; Hou, R.; Fu, Q.; Li, T.; Li, M.; Liu, D.; Li, Q. Mechanisms of the effects of the biochar application rate and time on farmland water, heat and gas environments during soil thawing in seasonally frozen soil areas: A two-year field trial. J. Environ. Chem. Eng. 2023, 11, 110928. [Google Scholar] [CrossRef]
- Feng, W.; Yang, F.; Cen, R.; Liu, J.; Qu, Z.; Miao, Q.; Chen, H. Effects of straw biochar application on soil temperature, available nitrogen and growth of corn. J. Environ. Manag. 2021, 277, 111331. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, Y.; Zhao, T.; Cui, L.; Mao, W.; Ye, W.; Wu, J.; Yang, J. Chemical characteristics of salt migration in frozen soils during the freezing-thawing period. J. Hydrol. 2022, 606, 127403. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, Y.; Fu, J.; Yang, L.; Chi, Y.; Yang, K.; Wang, Y. Effects of tillage methods on soil physical properties and maize growth in a saline–alkali soil. Crop Sci. 2021, 61, 3702–3718. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Li, X.; Wang, J. Mechanisms of biochar effects on thermal properties of red soil in south China. Geoderma 2018, 323, 41–51. [Google Scholar] [CrossRef]
- Ding, Y.; Gao, X.; Qu, Z.; Jia, Y.; Hu, M.; Li, C. Effects of biochar application and irrigation methods on soil temperature in farmland. Water 2019, 11, 499. [Google Scholar] [CrossRef]
- Jia, B.; Chen, W.; Chen, H.; Li, X.; Bi, J. Effects of snowmelt and rainfall infiltration on the water and salt migration of earthen sites during freeze-thaw process. Int. J. Archit. Herit. 2023, 17, 573–584. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, H.; Wu, J.; Gao, C.; Zhang, C.; Tang, D.W.S. Long-term combined subsoiling and straw mulching conserves water and improves agricultural soil properties. Land Degrad. Dev. 2024, 35, 1050–1060. [Google Scholar] [CrossRef]
- Alkharabsheh, H.M.; Seleiman, M.F.; Battaglia, M.L.; Shami, A.; Jalal, R.S.; Alhammad, B.A.; Almutairi, K.F.; Al-Saif, A.M. Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy 2021, 11, 993. [Google Scholar] [CrossRef]
- Hou, R.; Qi, Z.; Li, T.; Fu, Q.; Meng, F.; Liu, D.; Li, Q.; Zhao, H.; Yu, P. Mechanism of snowmelt infiltration coupled with salt transport in soil amended with carbon-based materials in seasonally frozen areas. Geoderma 2022, 420, 115882. [Google Scholar] [CrossRef]
- Li, J.; Dai, J.J.; Liu, G.Q.; Zhang, H.; Gao, Z.; Fu, J.; He, Y.; Huang, Y. Biochar from microwave pyrolysis of biomass: A review. Biomass Bioenergy 2016, 94, 228–244. [Google Scholar] [CrossRef]
- Guo, X.; Wang, H.; Yu, Q.; Ahmad, N.; Li, J.; Wang, R.; Wang, X. Subsoiling and plowing rotation increase soil C and N storage and crop yield on a semiarid Loess Plateau. Soil Tillage Res. 2022, 221, 105413. [Google Scholar] [CrossRef]
- Yan, Q.; Wu, L.; Dong, F.; Yan, S.; Li, F.; Jia, Y.; Zhang, J.; Zhang, R.; Huang, X. Subsoil tillage enhances wheat productivity, soil organic carbon and available nutrient status in dryland fields. J. Integr. Agric. 2024, 23, 251–266. [Google Scholar] [CrossRef]
- Itam, D.H.; Horsfall, I.T.; Ekiyor, T.H. Application of Biochar in Soil Remediation: A Decade of Scientometrics and Systematic Review from 2014–2024. Results Eng. 2024, 23, 102757. [Google Scholar] [CrossRef]
- Guo, J.; Wang, L.; Qu, G.; Liu, X.; Lian, Y.; Hou, D. Soil health improvement in a karst area with geogenic Cd enrichment using biochar and clay-based amendments. J. Soils Sediments 2024, 24, 230–243. [Google Scholar] [CrossRef]
- Wu, G.L.; Yang, Z.; Cui, Z.; Liu, Y.; Fang, N.; Shi, Z. Mixed artificial grasslands with more roots improved mine soil infiltration capacity. J. Hydrol. 2016, 535, 54–60. [Google Scholar] [CrossRef]
- Ferreira, T.R.; Archilha, N.L.; Cássaro, F.A.M.; Pires, L.F. How can pore characteristics of soil aggregates from contrasting tillage systems affect their intrinsic permeability and hydraulic conductivity? Soil Tillage Res. 2023, 230, 105704. [Google Scholar] [CrossRef]
- Wang, Z.H.; Sedighi, M.; Lea-Langton, A.R.; Babaei, M. Hydraulic behaviour of sand-biochar mixtures in water and wastewater treatment applications. J. Hydrol. 2022, 612, 128220. [Google Scholar] [CrossRef]
- Silva, O.; Grifoll, J. Non-passive transport of volatile organic compounds in the unsaturated zone. Adv. Water Resour. 2007, 30, 794–807. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, L.; Ling, X.; Li, G.; Tu, Z.; Shi, W. Experimental study on the dynamic behavior of expansive soil in slopes under freeze-thaw cycles. Cold Reg. Sci. Technol. 2019, 163, 27–33. [Google Scholar] [CrossRef]
- Fei, Y.H.; She, D.L.; Gao, L.; Xin, P. Micro-CT assessment on the soil structure and hydraulic characteristics of saline/sodic soils subjected to short-term amendment. Soil Tillage Res. 2019, 193, 59–70. [Google Scholar] [CrossRef]
- Lei, O.; Zhang, R.D. Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. J. Soils Sediments 2013, 13, 1561–1572. [Google Scholar] [CrossRef]
- Zhou, H.; Fang, H.; Zhang, Q.; Wang, Q.; Chen, C.; Mooney, S.J.; Peng, X.; Du, Z. Biochar enhances soil hydraulic function but not soil aggregation in a sandy loam. Eur. J. Soil Sci. 2019, 70, 291–300. [Google Scholar] [CrossRef]
- Xu, W.; Li, K.; Chen, L.; Kong, W.; Liu, C. The impacts of freeze–thaw cycles on saturated hydraulic conductivity and microstructure of saline–alkali soils. Sci. Rep. 2021, 11, 18655. [Google Scholar] [CrossRef]
- Premalatha, R.P.; Poorna Bindu, J.; Nivetha, E.; Malarvizhi, P.; Manorama, K.; Parameswari, E.; Davamani, V. A review on biochar’s effect on soil properties and crop growth. Front. Energy Res. 2023, 11, 1092637. [Google Scholar] [CrossRef]
- Tuyishimire, E.; Cui, J.; Tang, X.; Sun, Z.; Cheng, J. Interactive Effects of Honeysuckle Planting and Biochar Amendment on Soil Structure and Hydraulic Properties of Hillslope Farmland. Agriculture 2022, 12, 414. [Google Scholar] [CrossRef]
- Hamilton, G.J.; Bakker, D.; Akbar, G.; Hassan, I.; Hussain, Z.; McHugh, A.; Raine, S. Deep blade loosening increases root growth, organic carbon, aeration, drainage, lateral infiltration and productivity. Geoderma 2019, 345, 72–92. [Google Scholar] [CrossRef]
- O’neill, H.B.; Burn, C.R.; Allard, M.; Arenson, L.U.; Bunn, M.I.; Connon, R.F.; Kokelj, S.A.; Kokelj, S.V.; LeBlanc, A.-M.; Morse, P.D.; et al. Permafrost thaw and northern development. Nat. Clim. Chang. 2020, 10, 722–723. [Google Scholar] [CrossRef]
- Castellini, M.; Giglio, L.; Niedda, M.; Palumbo, A.D.; Ventrella, D. Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil Tillage Res. 2015, 154, 1–13. [Google Scholar] [CrossRef]
Treatment | Soil Mechanical Composition | Dry Bulk Density/g·cm−3 | Saturated Water Content/% | Natural Water Content/% | Field Capacity/% | ||
---|---|---|---|---|---|---|---|
<0.005 mm | 0.005–0.2 mm | >0.02 mm | |||||
CK | 36.76 ± 0.58 a | 35.12 ± 0.51 b | 28.12 ± 0.32 b | 1.49 ± 0.02 a | 42.36 ± 0.52 c | 22.16 ± 0.24 c | 30.79 ± 0.34 c |
SB | 35.92 ± 0.42 ab | 36.77 ± 0.34 b | 27.31 ± 0.28 c | 1.41 ± 0.03 b | 45.12 ± 0.41 b | 23.17 ± 0.28 b | 31.15 ± 0.36 c |
BC | 30.36 ± 0.37 b | 40.37 ± 0.44 a | 29.27 ± 0.46 a | 1.43 ± 0.01 b | 43.79 ± 0.35 c | 24.73 ± 0.21 b | 33.12 ± 0.25 b |
SB + BC | 28.34 ± 0.41 c | 41.98 ± 0.61 a | 29.68 ± 0.32 a | 1.36 ± 0.02 c | 47.14 ± 0.33 a | 25.35 ± 0.29 a | 35.61 ± 0.41 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Liu, S.; Zhu, B.; Wang, R.; Liu, C.; Hou, R. The Effect of the Construction of a Tillage Layer on the Infiltration of Snowmelt Water into Freeze–Thaw Soil in Cold Regions. Water 2024, 16, 3224. https://doi.org/10.3390/w16223224
Zhou Z, Liu S, Zhu B, Wang R, Liu C, Hou R. The Effect of the Construction of a Tillage Layer on the Infiltration of Snowmelt Water into Freeze–Thaw Soil in Cold Regions. Water. 2024; 16(22):3224. https://doi.org/10.3390/w16223224
Chicago/Turabian StyleZhou, Ziqiao, Sisi Liu, Bingyu Zhu, Rui Wang, Chao Liu, and Renjie Hou. 2024. "The Effect of the Construction of a Tillage Layer on the Infiltration of Snowmelt Water into Freeze–Thaw Soil in Cold Regions" Water 16, no. 22: 3224. https://doi.org/10.3390/w16223224
APA StyleZhou, Z., Liu, S., Zhu, B., Wang, R., Liu, C., & Hou, R. (2024). The Effect of the Construction of a Tillage Layer on the Infiltration of Snowmelt Water into Freeze–Thaw Soil in Cold Regions. Water, 16(22), 3224. https://doi.org/10.3390/w16223224