Effects of Tide Dikes on the Distribution and Accumulation Risk of Trace Metals in the Coastal Wetlands of Laizhou Bay, China
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Area
2.2. Soil Sampling
2.3. Soil Chemical Analysis
2.4. Sediment Quality Guidelines (SQGs)
2.5. Enrichment Factor (EF)
2.6. Geological Accumulation Index (Igeo)
2.7. Potential Ecological Risk
2.8. Statistical Analysis
3. Results and Discussion
3.1. Distribution of Trace Metals
3.2. Enrichment and Accumulation of Trace Metals
3.3. Soil Physicochemical Properties and Their Correlations with Trace Metals
3.4. Sources and Ecological Risk of Trace Metals
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maanan, M.; Saddik, M.; Maanan, M.; Chaibi, M.; Assobhei, O.; Zourarah, B. Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecol. Indic. 2015, 48, 616–626. [Google Scholar] [CrossRef]
- Lu, Q.Q.; Bai, J.H.; Gao, Z.Q.; Zhao, Q.Q.; Wang, J.J. Spatial and seasonal distribution and risk assessments for metals in a Tamarix Chinensis wetland, China. Wetlands 2016, 36, 125–136. [Google Scholar] [CrossRef]
- Amin, N.; Hussain, A.; Alamzeb, S.; Begum, S. Accumulation of heavy metals in edible parts of vegetables irrigated with waste water and their daily intake to adults and children, District Mardan, Pakistan. Food Chem. 2013, 136, 1515–1523. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Nagpal, A.K.; Kaur, I. Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs. Food Chem. 2018, 255, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.Z.; Zhang, H.; Shan, B.Q.; Li, S.S. Accumulation and risk assessment of sedimentary trace metals in response to industrialization from the tributaries of Fuyang River System. Environ. Earth Sci. 2015, 73, 1975–1982. [Google Scholar] [CrossRef]
- Benson, N.U.; Anake, W.U.; Essien, J.P.; Enyong, P.; Olajire, A.A. Distribution and risk assessment of trace metals in Leptodius exarata, surface water and sediments from Douglas Creek in the Qua Iboe Estuary. J. Taibah Univ. Sci. 2017, 11, 434–449. [Google Scholar] [CrossRef]
- Gómez-álvarez, A.; Valenzuela-García, J.L.; Villalba-Atondob, A.I.; Meza-Figueroa, D.; Almendariz-Tapia, F.J.; Whitaker-Bojórquez, T.O.; Marítnez-Morales, F.; Valenzuela-Corral, M.; Ochoa-Valenzuela, L.E. Distribution of heavy metals and their chemical speciation in sediments from the Abelardo L. Rodríguez Dam, Sonora, México. Chem. Spec. Bioavailab. 2011, 23, 201–212. [Google Scholar] [CrossRef]
- Adimalla, N. Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution. Environ. Geochem. Health 2020, 42, 59–75. [Google Scholar] [CrossRef]
- Wang, L.; Coles, N.A.; Wu, C.F.; Wu, J.P. Spatial variability of heavy metals in the coastal soils under long-term reclamation. Estuar. Coast. Shelf Sci. 2014, 151, 310–317. [Google Scholar] [CrossRef]
- Hu, G.; Bi, S.P.; Xu, G.; Zhang, Y.; Mei, X.; Li, A.C. Distribution and assessment of heavy metals off the Changjiang River mouth and adjacent area during the past century and the relationship of the heavy metals with anthropogenic activity. Mar. Pollut. Bull. 2015, 96, 434–440. [Google Scholar] [CrossRef]
- Bai, J.H.; Cui, B.S.; Wang, Q.G.; Gao, H.F.; Ding, Q.Y. Assessment of heavy metal contamination of roadside soils in Southwest China. Stoch. Environ. Res. Risk Assess. 2009, 23, 341–347. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Hou, L.; Liu, Y.G.; Wang, Y.; Ma, L.Q. Metal contamination in a riparian wetland: Distribution, fractionation and plant uptake. Chemosphere 2008, 200, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Du Laing, G.; Rinklebe, J.; Vandecasteele, B.; Meers, E.; Tack, F.M.G. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Sci. Total Environ. 2009, 407, 3972–3985. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.X.; Ji, J.F.; Yang, Z.F.; Yuan, X.Y.; Mao, C.P.; Frost, R.L.; Ayoko, G.A. Geochemical behavior assessment and apportionment of heavy metal contaminants in the bottom sediments of lower reach of Changjiang River. CATENA 2011, 85, 73–81. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.J.; Zhu, A.M.; Yang, G.; Liu, J.H. Assessing metal toxicity in sediments of Yellow River wetland and its surrounding coastal areas, China. Estuar. Coast. Shelf Sci. 2014, 151, 302–309. [Google Scholar] [CrossRef]
- Guo, W.H.; Liu, X.B.; Liu, Z.G.; Li, G.F. Pollution and potential ecological risk evaluation of heavy metals in the sediments around Dongjiang Harbor, Tianjin. Procedia Environ. Sci. 2013, 2, 729–736. [Google Scholar] [CrossRef]
- Liu, Z.J.; Li, P.Y.; Zhang, X.L.; Li, P.; Zhu, L.H. Regional distribution and ecological risk evaluation of heavy metals in surface sediments from coastal wetlands of the Yellow River Delta. J. Environ. Sci. 2012, 33, 1182–1188. (In Chinese) [Google Scholar]
- Yu, H.; Ni, S.J.; He, Z.W.; Zhang, C.J.; Nan, X.; Kong, B.; Weng, Z.Y. Analysis of the spatial relationship between heavy metals in soil and human activities based on landscape geochemical interpretation. J. Geochem. Explor. 2014, 146, 136–148. [Google Scholar] [CrossRef]
- Chang, T.J.; Cui, X.Q.; Ruan, Z.; Zhao, X.L. Long-term effects of tillage methods on heavy metal accumulation and availability in purple paddy soil. J. Environ. Sci. 2014, 35, 2381–2391. (In Chinese) [Google Scholar]
- Chen, Y.D.; Zhou, J.M.; Xing, L.; Feng, Y.F.; Hang, X.S.; Wang, H.Y. Characteristics of heavy metals and phosphorus in farmland of Hailun City, Heilongjiang province. Soils 2015, 47, 965–972. (In Chinese) [Google Scholar]
- Bai, J.H.; Xiao, R.; Zhang, K.; Gao, H.F. Arsenic and heavy metal pollution in wetland soils from tidal freshwater and salt marshes before and after the flow-sediment regulation regime in the Yellow River Delta, China. J. Hydrol. 2012, 450, 244–253. [Google Scholar] [CrossRef]
- Yao, X.Y.; Xiao, R.; Ma, Z.W.; Xie, Y.; Zhang, M.X.; Yu, F.H. Distribution and contamination assessment of heavy metals in soils from tidal flat, oil exploitation zone and restored wetland in the Yellow River Estuary. Wetlands 2015, 36, 153–165. [Google Scholar] [CrossRef]
- Bai, J.H.; Zhao, Q.Q.; Lu, Q.Q.; Wang, J.J.; Reddy, K.R. Effects of freshwater input on trace element pollution in salt marsh soils of a typical coastal estuary, China. J. Hydrol. 2015, 520, 186–192. [Google Scholar] [CrossRef]
- Xiang, M.T.; Li, Y.; Yang, J.Y.; Lei, K.G.; Li, Y.; Li, F.; Zheng, D.F.; Fang, X.Q.; Cao, Y. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environ. Pollut. 2021, 278, 116911. [Google Scholar] [CrossRef]
- Kamidis, N.; Sylaios, G. Impact of river damming on sediment texture and trace metals distribution along the watershed and the coastal zone of Nestos River (NE Greece). Environ. Earth Sci. 2017, 76, 373. [Google Scholar] [CrossRef]
- Li, Z.Y.; Ji, Y.Q.; Ma, H.Q.; Zhao, P.; Zeng, X.C.; Liu, S.T.; Zhang, Y.J.; Wang, L.; Liu, A.Q.; Gao, H.Y.; et al. Characterization of Inorganic Elements within PM2.5 and PM10 Fractions of Fly Ashes from Coal-Fired Power Plants. Aerosol Air Qual. Res. 2017, 17, 1105–1116. [Google Scholar] [CrossRef]
- Gunnars, A.; Blomqvist, S.; Johansson, P.; Andersson, C. Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium. Geochim. Cosmochim. Acta 2002, 66, 745–758. [Google Scholar] [CrossRef]
- Zhang, A.G.; Wang, L.L.; Zhao, S.L.; Yang, X.L.; Zhao, Q.; Zhang, X.H.; Yuan, X.T. Heavy metals in seawater and sediments from the northern Liaodong Bay of China: Levels, distribution and potential risks. Reg. Stud. Mar. Sci. 2017, 11, 33–42. [Google Scholar] [CrossRef]
- Zhu, A.M.; Liu, J.H.; Qiao, S.Q.; Zhang, H. Distribution and assessment of heavy metals in surface sediments from the Bohai Sea of China. Mar. Pollut. Bull. 2020, 153, 110901. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, R.; Yang, J.; Liu, R.; Tang, W.; Yan, Q. Distribution and pollution assessment of heavy metals in surface sediment in Laizhou Bay. Ecol. Environ. Sci. 2010, 19, 262–269. [Google Scholar]
- Zhang, X.Y.; Sun, T.; Li, F.; Ji, C.L.; Wu, H.F. Risk assessment of trace metals and polycyclic aromatic hydrocarbons in seawater of typical bays in the Bohai Sea. Mar. Pollut. Bull. 2024, 200, 116030. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Xin, M.; Wang, J.; Lu, S.; Lian, M.S.; Lin, C.Y.; Ouyang, W.; He, M.C.; Liu, X.T.; Wang, B.D. Quantitative source identification and environmental assessment of trace elements in the water and sediment of rivers flowing into Laizhou Bay, Bohai Sea. Mar. Pollut. Bull. 2022, 174, 113313. [Google Scholar] [CrossRef]
- Hong, C.F.; Cui, Z.G.; Bai, Y.; Jiang, T.; Hu, Q.J.; Zhou, M.Y.; Li, Y.; Qu, K.M. Spatial and temporal distribution of fluo-rescent dissolved organic matter in Laizhou Bay. Mar. Sci. 2022, 46, 15–31. [Google Scholar]
- Lin, H.; Li, H.; Yang, X.; Xu, Z.; Tong, Y.; Yu, X. Comprehensive investigation and assessment of nutrient and heavy metal contamination in the surface water of coastal Bohai Sea in China. J. Ocean Univ. China 2020, 19, 843–852. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Y.H.; Lu, Y.; Wang, G.M.; Zhang, H. Effects of tide dyke on plants and soil properties of coastal wetlands in Changyi, Shandong. Mar. Sci. 2017, 41, 50–58. (In Chinese) [Google Scholar]
- Bai, J.H.; Xiao, R.; Zhao, Q.Q.; Lu, Q.Q.; Wang, J.J.; Reddy, K.R. Seasonal dynamics of trace elements in tidal salt marsh soils as affected by the flow-sediment regulation regime. PLoS ONE 2014, 9, e107738. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.M.; Xue, J.H.; Deng, Y.Z.; Chen, L.; Liu, J.F. Trace metal contamination in surface sediments of intertidal zone from Qinhuangdao, China, revealed by geochemical and magnetic approaches: Distribution, sources, and health risk assessment. Mar. Pollut. Bull. 2016, 105, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.F.; van Vliet, J.; Verburg, P.H.; Pu, L.J. Land use change and farmer behavior in reclaimed land in the middle Jiangsu coast, China. Ocean Coast. Manag. 2017, 137, 107–117. [Google Scholar] [CrossRef]
- Teuchies, J.; Vandenbruwaene, W.; Carpentier, R.; Bervoets, L.; Temmerman, S.; Wang, C.; Maris, T.; Cox, T.J.S.; Van Braeckel, A.; Meire, O. Estuaries as filters: The role of tidal marshes in trace metal removel. PLoS ONE 2013, 8, e70381. [Google Scholar] [CrossRef]
- Xia, J.B.; Kong, X.H.; Lu, Z.H.; Liu, J.T.; Han, R.D.; Zhu, J.F. Capacity of soil water storage and regulation under different density forests of Tamarix chinensis Lour in coastal wetland. Adv. Water Sci. 2012, 23, 628–634. (In Chinese) [Google Scholar]
- Rong, Q.Q.; Liu, J.T.; Xia, Z.J.; Lu, Z.; Guo, C.H. Leaf N and P Stoichiometry of Tamarix Chinensis L. In Laizhou Bay Wetland, Shandong Province of East China. Chin. J. Ecol. 2012, 31, 3032–3037. (In Chinese) [Google Scholar]
- Xie, L.P.; Wang, M.; Wang, B.D.; Shi, X.Y.; Xin, M.; Wei, Q.S.; He, X.P.; Guo, F. Distribution pattern and influencing factors of vegetation carbon storage of Tamarix Chinese in the coastal wetland of Laizhou Bay, China. J. Appl. Ecol. 2017, 28, 1103–1111. (In Chinese) [Google Scholar]
- Zhou, H.; Hua, E.; Zhang, Z.N. Community structure of macrobenthos in Laizhou Bay and adjacent waters. J. Ocean Univ. China 2010, 40, 80–87. (In Chinese) [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the Chromic Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Liu, J.L.; Feng, Y.; Zhang, Y.; Liang, N.; Wu, H.L.; Liu, F.D. Allometric releases of nitrogen and phosphorus from sediments mediated by bacteria determines water eutrophication in coastal river basins of Bohai Bay. Ecotoxicol. Environ. Saf. 2022, 235, 113426. [Google Scholar] [CrossRef]
- Bai, J.H.; Xiao, R.; Cui, B.S.; Zhang, K.J.; Wang, Q.G.; Liu, X.H.; Gao, H.F.; Huang, L.B. Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China. Environ. Pollut. 2011, 159, 817–824. [Google Scholar] [CrossRef]
- GB18668-2002; National Standard of PR China, Marine Sediment Quality. Standards Press of China: Beijing, China, 2002. (In Chinese)
- Macdonald, D.D.; Carr, R.S.; Calder, F.D.; Long, E.R.; Ingersoll, C.G. Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 1996, 5, 253–278. [Google Scholar] [CrossRef] [PubMed]
- China National Environmental Monitoring Center. Background Values of Chinese Soil Elements; Environmental Science Press of China: Beijing, China, 1990. (In Chinese)
- Selvaraj, K.; Mohan, V.R.; Szefer, P. Evaluation of metal contamination in coastal sediments of the Bay of Bengal, India: Geochemical and statistical approaches. Mar. Pollut. Bull. 2004, 49, 174–185. [Google Scholar] [CrossRef]
- Liu, F.D.; Dong, Y.F.; Zheng, Y.; Li, D.S.; Wang, M.H.; Zhang, S. The Distribution and Enrichment of Trace Metals in the Rainfall-Driven Supratidal Wetlands of Tianjin, China. Clean Soil Air Water 2017, 45, 1700200. [Google Scholar] [CrossRef]
- Jamshidi-Zanjani, A.; Saeedi, M. Metal pollution assessment and multivariate analysis in sediment of Anzali international wetland. Environ. Earth Sci. 2013, 70, 1791–1808. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Liang, E.H.; Li, J.R.; Li, B.; Liu, S.F.; Ma, R.Q.; Yang, S.Q.; Cai, H.T.; Xue, Z.H.; Wang, T. Roles of dissolved organic matter (DOM) in shaping the distribution pattern of heavy metal in the Yangtze River. J. Hazard. Mater. 2023, 460, 132410. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.P.; Shi, X.Q.; Ma, W.W.; Zhang, F.Z.; Yu, T.; Zhao, F.; Zhao, D.D.; Wei, C.H. Strategies to improve the adsorp-tion properties of graphene-based adsorbent towards heavy metal ions and their compound pollutants: A review. J. Hazard. Mater. 2021, 415, 125690. [Google Scholar] [CrossRef]
- Luo, X.S.; Xue, Y.; Wang, Y.L.; Cang, L.; Xu, B.; Ding, J. Source identification and apportionment of heavy metals in urban soil profiles. Chemosphere 2015, 127, 152–157. [Google Scholar] [CrossRef]
- Smal, H.; Ligęza, S.; Wójcikowska-Kapusta, A.; Baran, S.; Urban, D.; Obroślak, R.; Pawłowski, A. Spatial distribution and risk assessment of heavy metals in bottom sediments of two small dam reservoirs (south-east Poland). Arch. Environ. Prot. 2015, 41, 67–80. [Google Scholar] [CrossRef]
- Zhang, G.L.; Bai, J.H.; Zhao, Q.Q.; Lu, Q.Q.; Jia, J.; Wen, X.J. Heavy metals in wetland soils along a wetland-forming chronosequence in the Yellow River Delta of China: Levels, sources and toxic risks. Ecol. Indic. 2016, 69, 331–339. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Yang, L.Y.; Kong, L.H.; Liu, E.F.; Wang, L.F.; Zhu, J.R. Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China. CATENA 2015, 125, 200–205. [Google Scholar] [CrossRef]
- Zhang, X.; She, D.L.; Wang, G.B.; Huang, X. Source identification of soil elements and risk assessment of trace elements under different land uses on the Loess Plateau, China. Environ. Geochem. Health 2021, 744, 2377–2392. [Google Scholar] [CrossRef]
- Zhao, Q.H.; Liu, S.L.; Deng, L.; Dong, S.K.; Wang, C. Longitudinal distribution of heavy metals in sediments of a canyon reservoir in Southwest China due to dam construction. Environ. Monit. Assess. 2013, 185, 6101–6110. [Google Scholar] [CrossRef]
- Ralston, D.K.; Stacey, M.T. Longitudinal dispersion and lateral circulation in the intertidal zone. J. Geophys. Res. Oceans 2005, 110, C07015. [Google Scholar] [CrossRef]
- Chen, Y.R.; Chen, Y.N.; Li, Y.P.; Wu, Y.X.; Zeng, Z.P.; Xu, R.; Wang, S.; Li, H.; Zhang, J.C. Changes of heavy metal fractions during co-composting of agricultural waste and river sediment with inoculation of Phanerochaete chrysosporium. J. Hazard. Mater. 2019, 378, 120757. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, F.D.; Liu, Q.; Liu, Y.H.; Li, D.S. Characteristics of N: P stoichiometry and the adaptation strategies for different coastal wetland communities in the Yellow River Delta. Chin. J. Ecol. 2015, 34, 2983–2989. (In Chinese) [Google Scholar]
- Sun, Y.B.; Zhou, Q.X.; Xie, X.K.; Liu, R. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. J. Hazard. Mater. 2010, 174, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.F.; Wang, Y.; Shen, Z.Y.; Niu, J.F.; Tang, Z.W. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. J. Hazard. Mater. 2009, 166, 1186–1194. [Google Scholar] [CrossRef]
- Raich, J.W.; Russell, A.E.; Crews, T.E.; Farrington, H.; Vitousek, P.M. Both nitrogen and phosphorus limit plant production on young Hawaiian lava flows. Biogeochemistry 1996, 32, 1–14. [Google Scholar] [CrossRef]
- Jiang, Y.; Ding, Z.Y.; Peng, Q.Z.; Liao, J.Y.; Lv, L.T. Spatial distribution and corresponding factors of heavy metals concentrations in the Dongjiang River Basin, Southeast China. Res. J. Environ. Earth Sci. 2012, 4, 448–459. [Google Scholar]
- Cui, J.; Wang, W.Q.; Peng, Y.; Zhou, F.W.; He, D.Y.; Wang, J.J.; Chang, Y.J.; Yang, J.; Zhou, J.; Wang, W.; et al. Effects of simulated Cd deposition on soil Cd availability, microbial response, and crop Cd up-take in the passivation-remediation process of Cd-contaminated purple soil. Sci. Total. Environ. 2019, 683, 782–792. [Google Scholar] [CrossRef]
As | Cr | Cu | Ni | Pb | Zn | |
---|---|---|---|---|---|---|
Standards for marine sediment quality in China | ||||||
Class I | 20 | 80 | 35 | 34 | 60 | 150 |
Class II | 65 | 150 | 100 | 40 | 130 | 350 |
Class III | 93 | 270 | 200 | 40 | 250 | 600 |
SQGs | ||||||
PEL | 41.6 | 160 | 108 | 42.8 | 112 | 271 |
Background values Shandong | 9.3 | 66 | 24 | 25.8 | 25.8 | 63.5 |
Soil Layer | SOM (mg·g−1) | Soil P (mg·g−1) | Soil N (mg·g−1) | Salt (‰) | pH |
---|---|---|---|---|---|
Outside habitat | |||||
0–10 cm | 9.83 ± 2.97 | 0.36 ± 0.05 | 0.43 ± 0.12 | 8.32 ± 0.34 | 8.06 ± 0.50 |
10–20 cm | 9.30 ± 1.92 | 0.37 ± 0.04 | 0.45 ± 0.14 | 7.72 ± 0.35 | 8.29 ± 0.39 |
20–30 cm | 8.18 ± 2.17 | 0.35 ± 0.05 | 0.39 ± 0.09 | 7.62 ± 0.41 | 8.29 ± 0.37 |
Inside habitat | |||||
0–10 cm | 10.32 ± 2.13 | 0.37 ± 0.03 | 0.53 ± 0.11 | 0.73 ± 0.07 | 8.13 ± 0.83 |
10–20 cm | 9.58 ± 2.20 | 0.36 ± 0.04 | 0.47 ± 0.07 | 0.62 ± 0.04 | 8.29 ± 0.75 |
20–30 cm | 7.72 ± 3.13 | 0.40 ± 0.07 | 0.47 ± 0.06 | 0.87 ± 0.06 | 8.44 ± 0.60 |
As | Cr | Cu | Ni | Pb | Zn | SOM | TP | TN | Salt | pH | |
---|---|---|---|---|---|---|---|---|---|---|---|
As | 1 | ||||||||||
Cr | −0.093 | 1 | |||||||||
Cu | −0.216 | 0.088 | 1 | ||||||||
Ni | −0.104 | 0.453 ** | 0.106 | 1 | |||||||
Pb | −0.106 | −0.091 | −0.071 | 0.12 | 1 | ||||||
Zn | −0.078 | 0.395 ** | −0.021 | −0.055 | −0.03 | 1 | |||||
SOM | −0.166 | −0.041 | 0.168 | −0.042 | −0.05 | 0.003 | 1 | ||||
TP | −0.097 | 0.566 ** | 0.156 | 0.07 | −0.04 | 0.203 | 0.055 | 1 | |||
TN | −0.315 * | 0.248 | 0.043 | 0.15 | 0.003 | 0.187 | 0.320 * | 0.161 | 1 | ||
Salt | 0.530 * | −0.384 ** | −0.123 | −0.330 * | −0.01 | −0.268 | −0.084 | −0.098 | −0.432 * | 1 | |
pH | −0.109 | −0.232 | 0.191 | 0.181 | 0.075 | −0.176 | 0.222 | −0.151 | 0.034 | −0.057 | 1 |
Habitat | RI | ||||||
---|---|---|---|---|---|---|---|
As | Cr | Cu | Ni | Pb | Zn | ||
Outside habitat | 22.22 | 0.94 | 2.21 | 2.46 | 3.18 | 0.61 | 31.61 |
Inside habitat | 13.80 | 1.05 | 2.75 | 2.71 | 3.48 | 0.69 | 24.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Ling, X.; Fang, Y.; Xu, Z.; Liu, J.; Liu, F. Effects of Tide Dikes on the Distribution and Accumulation Risk of Trace Metals in the Coastal Wetlands of Laizhou Bay, China. Water 2024, 16, 3230. https://doi.org/10.3390/w16223230
Xia Y, Ling X, Fang Y, Xu Z, Liu J, Liu F. Effects of Tide Dikes on the Distribution and Accumulation Risk of Trace Metals in the Coastal Wetlands of Laizhou Bay, China. Water. 2024; 16(22):3230. https://doi.org/10.3390/w16223230
Chicago/Turabian StyleXia, Yuanfen, Xiaofeng Ling, Yan Fang, Zhen Xu, Jiayuan Liu, and Fude Liu. 2024. "Effects of Tide Dikes on the Distribution and Accumulation Risk of Trace Metals in the Coastal Wetlands of Laizhou Bay, China" Water 16, no. 22: 3230. https://doi.org/10.3390/w16223230
APA StyleXia, Y., Ling, X., Fang, Y., Xu, Z., Liu, J., & Liu, F. (2024). Effects of Tide Dikes on the Distribution and Accumulation Risk of Trace Metals in the Coastal Wetlands of Laizhou Bay, China. Water, 16(22), 3230. https://doi.org/10.3390/w16223230