Evaluation of Microplastic Toxicity in Drinking Water Using Different Test Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Objects of the Study
- Aqueous extracts from plastic bottle (PET) with particle sizes of 0.175 mm; 0.3 mm; 1.0 mm; 2.0 mm; and 3.0 mm;
- Aqueous extracts from plastic container (PC) with particle sizes of 0.175 mm; 0.3 mm; 1.0 mm; 2.0 mm; and 3.0 mm;
- Water extracts from water pipe (PP) with particle sizes of 0.175 mm; 0.3 mm; 1.0 mm; 2.0 mm; and 3.0 mm;
- Water extracts from water pipe (PE) with particle sizes of 0.175 mm; 0.3 mm; 1.0 mm; 2.0 mm; and 3.0 mm.
- Phytotoxicity;
- Genotoxic properties on a plant test subject;
- Local cutaneous irritant action at single applications to the back skin of experimental animals;
- Phenol and formaldehyde migration;
- Acute toxicity using frozen bovine semen.
2.2. Research Methods
- Assessment of phytotoxicity and frozen bovine semen: obtaining extracts—22–25 °C, seed germination—23–24 °C;
- Assessment of skin irritant properties: preparation of aqueous extracts—(18–24 °C);
- Acute toxicity studies on bovine semen—preparation of aqueous extracts at 40 °C;
- study of phenol and formaldehyde migration—preparation of extracts at a temperature of −22–25 °C.
2.2.1. Method for Analyzing Phytotoxic Properties
2.2.2. Method of Mutagenic Activity Analysis
Methods of Preparation of Cytogenetic Preparations from Cells of the Root Meristem of Common Barley (Hordeum vulgare L.)
Metaphase Method of Accounting for Chromosomal Aberrations
2.2.3. Method for Assessing the Dermal Irritant Effect
2.2.4. Method of Acute Toxicity Study Based on Frozen Bovine Semen
2.2.5. Method for Analyzing Phenol and Formaldehyde Migration Values
3. Results and Discussion
3.1. Assessment of Phytotoxic Properties of Microplastics
3.2. Assessment of Chromosomal Abnormalities
3.3. Results of Acute Toxicity Studies on Frozen Bull Semen
3.4. Results of Phenol and Formaldehyde Migration Analyses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khare, R.; Khare, S. Polymer and its effect on environment. J. Indian. Chem. Soc. 2023, 100, 100821. [Google Scholar] [CrossRef]
- Wiesinger, H.; Wang, Z.; Hellweg, S. Deep Dive into Plastic Monomers, Additives, and Processing Aids. Environ. Sci. Technol. 2021, 55, 9339–9351. [Google Scholar] [CrossRef] [PubMed]
- Viljoen, S.J.; Brailsford, F.L.; Murphy, D.V.; Hoyle, F.C.; Chadwick, D.R.; Jones, D.L. Leaching of phthalate acid esters from plastic mulch films and their degradation in response to UV irradiation and contrasting soil conditions. J. Hazard. Mater. 2023, 443, 130256. [Google Scholar] [CrossRef] [PubMed]
- Teuten, E.L.; Saquing, J.M.; Knappe, D.R.; Barlaz, M.A.; Jonsson, S.; Björn, A.; Rowland, S.J.; Thompson, R.C.; Galloway, T.S.; Yamashita, R.; et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2009, 364, 2027–2045. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.; Startin, J.R.; McGuinness, J.D. Compositional analysis of commercial PVC bottles and studies of aspects of specific and overall migration into foods and stimulants. Food. Addit. Contam. 1986, 3, 133–143. [Google Scholar] [CrossRef]
- Bostan, N.; Ilyas, N.; Akhtar, N.; Mehmood, S.; Saman, R.U.; Sayyed, R.Z.; Shatid, A.A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Pandiaraj, S. Toxicity assessment of microplastic (MPs); a threat to the ecosystem. Environ. Res. 2023, 234, 116523. [Google Scholar] [CrossRef]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 2017, 102, 165–176. [Google Scholar] [CrossRef]
- Guo, J.J.; Huang, X.P.; Xiang, L.; Wang, Y.Z.; Li, Y.W.; Li, H.; Cai, Q.Y.; Mo, C.H.; Wong, M.H. Source, migration and toxicology of microplastics in soil. Environ. Int. 2020, 137, 105263. [Google Scholar] [CrossRef]
- O’Brien, S.; Rauert, C.; Ribeiro, F.; Okoffo, E.D.; Burrows, S.D.; O’Brien, J.W.; Wang, X.; Wright, S.L.; Thomas, K.V. There’s something in the air: A review of sources, prevalence and behaviour of microplastics in the atmosphere. Sci. Total Environ. 2023, 874, 162193. [Google Scholar] [CrossRef]
- Calero, M.; Martín-Lara, M.A.; Godoy, V.; Quesada, L.; Martínez, D.; Peula, F.; Soto, J.M. Characterization of plastic materials present in municipal solid waste: Preliminary study for their mechanical recycling. Detritus 2018, 4, 104. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Lau, C.W.; Till, J.; Kloas, W.; Lehmann, A.; Becker, R.; Rillig, M.C. Impacts of Microplastics on the Soil Biophysical Environment. Environ. Sci. Technol. 2018, 52, 9656–9665. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Kumar, M.; Bolan, S.; Padhye, L.P.; Bolan, N.; Li, S.; Wang, L.; Hou, D.; Li, Y. Various additive release from microplastics and their toxicity in aquatic environments. Environ. Pollut. 2024, 343, 123219. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Huang, J.; Zheng, Y.; Yang, Y.; Zhang, Y.; He, F.; Chen, H.; Quan, G.; Yan, J.; Li, T.; et al. Environmental occurrences, fate, and impacts of microplastics. Ecotoxicol. Environ. Saf. 2019, 184, 109612. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wang, J.; Wang, M.; Ying, R.; Li, X.; Hu, Z.; Zhang, Y. Disposable plastic materials release microplastics and harmful substances in hot water. Sci. Total Environ. 2022, 818, 151685. [Google Scholar] [CrossRef] [PubMed]
- Galloway, T.S.; Cole, M.; Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 2017, 1, 0116. [Google Scholar] [CrossRef]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef]
- Wojnowska-Baryła, I.; Bernat, K.; Zaborowska, M. Plastic Waste Degradation in Landfill Conditions: The Problem with Microplastics, and Their Direct and Indirect Environmental Effects. Int. J. Environ. Res. Public. Health 2022, 19, 13223. [Google Scholar] [CrossRef]
- Caldeira, D.F.; Paulini, F.; Silva, R.C.; de Azevedo, R.B.; Lucci, C.M. In vitro exposure of bull sperm cells to DMSA-coated maghemite nanoparticles does not affect cell functionality or structure. Int. J. Hyperth. 2018, 34, 415–422. [Google Scholar] [CrossRef]
- Crosta, A.; Parolini, M.; De Felice, B. Microplastics Contamination in Nonalcoholic Beverages from the Italian Market. Int. J. Environ. Res. Public Health 2023, 20, 4122. [Google Scholar] [CrossRef]
- Sewwandi, M.; Wijesekara, H.; Rajapaksha, A.U.; Soysa, S.; Vithanage, M. Microplastics and plastics-associated contaminants in food and beverages; Global trends, concentrations, and human exposure. Environ. Pollut. 2023, 317, 120747. [Google Scholar] [CrossRef]
- Makhdoumi, P.; Hossini, H.; Pirsaheb, M. A review of microplastic pollution in commercial fish for human consumption. Rev. Environ. Health 2023, 38, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Mintenig, S.M.; Löder, M.G.J.; Primpke, S.; Gerdts, G. Low numbers of microplastics detected in drinking water from ground water sources. Sci. Total Environ. 2019, 648, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Welle, F.; Franz, R. Microplastic in bottled natural mineral water-literature review and considerations on exposure and risk assessment. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2018, 35, 2482–2492. [Google Scholar] [CrossRef] [PubMed]
- Senathirajah, K.; Attwood, S.; Bhagwat, G.; Carbery, M.; Wilson, S.; Palanisami, T. Estimation of the mass of microplastics ingested–A pivotal first step towards human health risk assessment. J. Hazard. Mater. 2021, 404, 124004. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Liu, Y.X.; Chen, P.Y.; Wang, L.; Deng, N.S. Determination of Trace Bisphenol A in Leachate by Solid Phase Microextraction Coupled with High Performance Liquid Chromatography. Anal. Lett. 2006, 39, 395–404. [Google Scholar] [CrossRef]
- Fromme, H.; Küchler, T.; Otto, T.; Pilz, K.; Müller, J.; Wenzel, A. Occurrence of phthalates and bisphenol A and F in the environment. Water Res. 2002, 36, 1429–1438. [Google Scholar] [CrossRef]
- Lehel, J.; Murphy, S. Microplastics in the Food Chain: Food Safety and Environmental Aspects. Rev. Environ. Contam. Toxicol. 2021, 259, 1–49. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef]
- Zarfl, C.; Fleet, D.; Fries, E.; Galgani, F.; Gerdts, G.; Hanke, G.; Matthies, M. Microplastics in oceans. Mar. Pollut. Bull. 2011, 62, 1589–1591. [Google Scholar] [CrossRef]
- Browne, M.A.; Dissanayake, A.; Galloway, T.S.; Lowe, D.M.; Thompson, R.C. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ. Sci. Technol. 2002, 42, 5026–5031. [Google Scholar] [CrossRef]
- Guševac Stojanović, I.; Drakulić, D.; Todorović, A.; Martinović, J.; Filipović, N.; Stojanović, Z. Acute Toxicity Assessment of Orally Administered Microplastic Particles in Adult Male Wistar Rats. Toxics 2024, 12, 167. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, K.; Green, D. The potential effects of microplastics on human health: What is known and what is unknown. Ambio 2021, 51, 518–530. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.L.; Lin, X.; Wang, J.J.; Gowen, A.A. A review of potential human health impacts of micro- and nanoplastics exposure. Sci. Total Environ. 2022, 851, 158111. [Google Scholar] [CrossRef] [PubMed]
- Çobanoğlu, H.; Belivermiş, M.; Sıkdokur, E.; Kılıç, Ö.; Çayır, A. Genotoxic and cytotoxic effects of polyethylene microplastics on human peripheral blood lymphocytes. Chemosphere 2021, 272, 129805. [Google Scholar] [CrossRef] [PubMed]
- Roshanzadeh, A.; Oyunbaatar, N.E.; Ganjbakhsh, S.E.; Park, S.; Kim, D.S.; Kanade, P.P.; Lee, S.; Lee, D.W.; Kim, E.S. Exposure to nanoplastics impairs collective contractility of neonatal cardiomyocytes under electrical synchronization. Biomaterials 2021, 278, 121175. [Google Scholar] [CrossRef] [PubMed]
- Winkler, A.S.; Cherubini, A.; Rusconi, F.; Santo, N.; Madaschi, L.; Pistoni, C.; Moschetti, G.; Sarnicola, M.L.; Crosti, M.; Rosso, L. Human airway organoids and microplastic fibers: A new exposure model for emerging contaminants. Environ. Int. 2022, 163, 107200. [Google Scholar] [CrossRef]
- Li, Y.; Tao, L.; Wang, Q.; Wang, F.; Li, G.; Song, M. Potential Health Impact of Microplastics: A Review of Environmental Distribution, Human Exposure, and Toxic Effects. Environ. Health 2023, 1, 249–257. [Google Scholar] [CrossRef]
- Wu, S.; Wu, M.; Tian, D.; Qiu, L.; Li, T. Effects of polystyrene microbeads on cytotoxicity and transcriptomic profiles in human Caco-2 cells. Env. Toxicol. 2020, 35, 495–506. [Google Scholar] [CrossRef]
- Wu, P.; Lin, S.; Cao, G.; Wu, J.; Jin, H.; Wang, C.; Wong, M.H.; Yang, Z.; Cai, Z. Absorption, distribution, metabolism, excretion and toxicity of microplastics in the human body and health implications. J. Hazard. Mater. 2022, 437, 129361. [Google Scholar] [CrossRef]
- Prata, J.C. Airborne microplastics: Consequences to human health? Environ. Pollut. 2018, 234, 115–126. [Google Scholar] [CrossRef]
- Bunge, A.; Lugert, V.; McClure, M.; Kammann, U.; Hanel, R.; Scharsack, J.P. Less impact than suspected: Dietary exposure of three-spined sticklebacks to microplastic fibers does not affect their body condition and immune parameters. Sci. Total Environ. 2022, 819, 153077. [Google Scholar] [CrossRef] [PubMed]
- Jemec, A.; Horvat, P.; Kunej, U.; Bele, M.; Kržan, A. Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environ. Pollut. 2016, 219, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Balestri, E.; Menicagli, V.; Ligorini, V.; Fulignati, S.; Galletti, A.M.R.; Lardicci, C. Phytotoxicity assessment of conventional and biodegradable plastic bags using seed germination test. Ecol. Indic. 2019, 102, 569–580. [Google Scholar] [CrossRef]
- Bosker, T.; Bouwman, L.J.; Brun, N.R.; Behrens, P.; Vijver, M.G. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 2019, 226, 774–781. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, M.; Meng, F.; Xiao, Y.; Dai, W.; Luan, Y. Effect of polystyrene microplastics on rice seed germination and antioxidant enzyme activity. Toxics 2021, 9, 179. [Google Scholar] [CrossRef]
- Jia, L.; Liu, L.; Zhang, Y.; Fu, W.; Liu, X.; Wang, Q.; Tanveer, M.; Huang, L. Microplastic stress in plants: Effects on plant growth and their remediations. Front. Plant Sci. 2023, 14, 1226484. [Google Scholar] [CrossRef]
- Yang, Z.; DeLoid, G.M.; Baw, J.; Zarbl, H.; Demokritou, P. Assessment of Ingested Micro- and Nanoplastic (MNP)-Mediated Genotoxicity in an In Vitro Model of the Small Intestinal Epithelium (SIE). Nanomaterials 2024, 14, 807. [Google Scholar] [CrossRef]
- Roursgaard, M.; Rothmann, M.H.; Schulte, J.; Karadimou, I.; Marinelli, E.; Møller, P. Genotoxicity of Particles From Grinded Plastic Items in Caco-2 and HepG2 Cells. Front. Public Health 2022, 10, 906430. [Google Scholar] [CrossRef]
- Wang, F.; Wong, C.S.; Chen, D.; Lu, X.; Wang, F.; Zeng, E.Y. Interaction of toxic chemicals with microplastics: A critical review. Water Res. 2018, 139, 208–219. [Google Scholar] [CrossRef]
- Revel, M.; Châtel, A.; Mouneyrac, C. Micro(nano)plastics: A threat to human health? Curr. Opin. Env. Sci. Health 2018, 1, 17–23. [Google Scholar] [CrossRef]
- Salikova, N.S.; Rodrigo-Ilarri, J.; Makeyeva, L.A.; Rodrigo-Clavero, M.-E.; Tleuova, Z.O.; Makhmutova, A.D. Monitoring of Microplastics in Water and Sediment Samples of Lakes and Rivers of the Akmola Region (Kazakhstan). Water 2024, 16, 1051. [Google Scholar] [CrossRef]
- Salikova, N.S.; Kerimkulova, A.R.; Rodrigo-Ilarri, J.; Alimova, K.K.; Rodrigo-Clavero, M.E.; Kapbassova, G.A. Sorption-Based Removal Techniques for Microplastic Contamination of Tap Water. Water 2024, 16, 1363. [Google Scholar] [CrossRef]
- Salikova, N.S.; Alimova, K.K. Communal, Domestic and Industrial Water Supply in Kazakhstan: Interim Report on the Project IRN AP14869081 ‘Modelling of Health Risks Based on Identification of Microplastics in Water Systems and Justification of Actions to Manage the Quality of Water Resources. Kokshetau. 2022. Available online: https://kuam.edu.kz/sites/default/files/2022/salikova_n.s._alimova_k.k._communal_domestic_and_industrial_water_supply_in_kazakhstan._interim_report_on_the_project_irn_ap14869081.pdf (accessed on 4 November 2024).
- Salikova, N.S.; Rodrigo-Ilarri, J.; Rodrigo-Clavero, M.E.; Urazbayeva, S.E.; Askarova, A.Z.; Magzhanov, K.M. Environmental Assessment of Microplastic Pollution Induced by Solid Waste Landfills in the Akmola Region (North Kazakhstan). Water 2023, 15, 2889. [Google Scholar] [CrossRef]
- Nelson, C.P.; Patton, G.W.; Arvidson, K.; Lee, H.; Twaroski, M.L. Assessing the toxicity of polymeric food-contact substances. Food Chem. Toxicol. 2011, 49, 1877–1897. [Google Scholar] [CrossRef]
- Lytle, J.S.; Lytle, T.F. Use of plants for toxicity assessment of estuarine ecosystems. Environ. Toxicol. Chem. 2001, 20, 68–83. [Google Scholar] [CrossRef]
- Ribé, V.; Nehrenheim, E.; Odlare, M. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays. Waste Manag. 2014, 34, 1871–1876. [Google Scholar] [CrossRef]
- Hubai, K.; Kováts, N.; Sainnokhoi, T.-A.; Eck-Varanka, B.; Hoffer, A.; Tóth, Á.; Teke, G. Phytotoxicity of particulate matter from controlled burning of different plastic waste types. Bull. Environ. Contam. Toxicol. 2022, 109, 852–858. [Google Scholar] [CrossRef]
- Sekar, V.; Shaji, S.; Sundaram, B. Microplastic prevalence and human exposure in the bottled drinking water in the west Godavari region of Andhra Pradesh, India. J. Contam. Hydrol. 2024, 264, 104346. [Google Scholar] [CrossRef]
- Mohanan, N.; Montazer, Z.; Sharma, P.K.; Levin, D.B. Microbial and Enzymatic Degradation of Synthetic Plastics. Front. Microbiol. 2020, 11, 580709. [Google Scholar] [CrossRef]
- Jahan, I.; Chowdhury, G.; Rafi, S.; Ashab, A.; Sarker, M.; Chakraborty, A.; Couetard, N.; Kabir, M.A.; Hossain, M.A.; Iqbal, M.M. Assessment of dietary polyvinylchloride, polypropylene and polyethylene terephthalate exposure in Nile tilapia, Oreochromis niloticus: Bioaccumulation, and effects on behaviour, growth, hematology and histology. Environ. Pollut. 2024, 345, 123548. [Google Scholar] [CrossRef]
- Giorgetti, L.; Spanò, C.; Muccifora, S.; Bottega, S.; Barbieri, F.; Bellani, L.; Castiglione, M.R. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress. Plant Physiol. Biochem. 2020, 149, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Maity, S.; Chatterjee, A.; Guchhait, R.; De, S.; Pramanick, K. Cytogenotoxic potential of a hazardous material, polystyrene microparticles on Allium cepa L. J. Hazard Mater. 2020, 385, 121560. [Google Scholar] [CrossRef] [PubMed]
- Phillips, L.; Steinberg, M.; Maibach, H.I.; Akers, W.A. A comparison of rabbit and human skin response to certain irritants. Toxicol. Appl. Pharmacol. 1972, 21, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Marzulli, F.N.; Maibach, H.I. The rabbit as a model for evaluating skin irritants: A comparison of results obtained on animals and man using repeated skin exposures. Food Cosmet. Toxicol. 1975, 13, 533–540. [Google Scholar] [CrossRef]
- Rooney, J.P.; Choksi, N.Y.; Ceger, P.; Daniel, A.B.; Truax, J.; Allen, D.; Kleinstreuer, N. Analysis of variability in the rabbit skin irritation assay. Regul. Toxicol. Pharmacol. 2021, 122, 104920. [Google Scholar] [CrossRef]
- Knasiak-Paluch, D. Toxicity of plastic materials as evaluated by means of bull semen (preliminary report). Pol. J. Pharmacol. Pharm. 1980, 32, 109–114. [Google Scholar]
- Petzoldt, R.; Wolf, H.; Reefschläger, J.; Karge, M.; Berger, G. A rapid quantitative method based on motility of bull sperm cells for in vitro toxicity testing of biomaterials. Biomaterials 1985, 6, 105–109. [Google Scholar] [CrossRef]
- Paluch, D.; Borzemska-Szymonowicz, M.; Olszewska-Błach, Z. In vitro screening studies of the toxicological testing of synthetic biomaterials. Introduction and comparative evaluation of a new method of testing applying breeding bull semen. Polim. Med. 1980, 10, 193–204. [Google Scholar]
- Paluch, D. Comparative studies in vitro of the toxic effect of water extracts from synthetic materials in biological tests on living cells. Polym. Med. 1982, 12, 79–130. [Google Scholar]
- Makhluf, S.B.D.; Qasem, R.; Rubinstein, S.; Gedanken, A.; Breitbart, H. Loading magnetic nanoparticles into sperm cells does not affect their functionality. Langmuir 2006, 22, 9480–9482. [Google Scholar] [CrossRef]
- Zakhidov, S.T.; Marshak, T.L.; Malolina, E.A.; Kulibin, A.Y.; Zelenina, I.; Pavluchenkova, S.M.; Rudoi, V.M.; Dement’eva, O.V.; Skuridin, S.G.; Evdokimov, Y.M. Gold nanoparticles disturb nuclear chromatin decondensation in mouse sperm in vitro. Biochem. (Mosc.) Suppl. Ser. A Membr. Cell Biol. 2010, 4, 293–296. [Google Scholar] [CrossRef]
- Grechi, N.; Ferronato, G.A.; Devkota, S.; Ferraz, M.A.M.M. Microplastics are detected in bull and dog sperm and polystyrene microparticles impair sperm fertilization. bioRxiv 2023. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, J.; Ma, S.; Sun, Z.; Wang, Z. Microplastics May Be a Significant Cause of Male Infertility. Am. J. Men’s Health 2022, 16, 15579883221096549. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Wu, S.; Wei, G. Adverse effects of microplastics and nanoplastics on the reproductive system: A comprehensive review of fertility and potential harmful interactions. Sci. Total Environ. 2023, 903, 166258. [Google Scholar] [CrossRef] [PubMed]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef]
- Gami, A.A.; Shukor, M.Y.; Khalil, K.A.; Dahalan, F.A.; Khalid, A.; Ahmad, S.A. Phenol and its toxicity. J. Environ. Microbiol. Toxicol. 2014, 2, 11–23. [Google Scholar] [CrossRef]
- Kuptsov, A.; Zhizhin, G. Fourier-Raman and Fourier-IR Spectra of Polymers; Fizmatlit: Moscow, Russia, 2001; Available online: https://www.researchgate.net/publication/262416516_Kupcov_AH_Zizin_GN_Fure-KR_i_Fure-IK_spektry_polimerov_m_Fizmatlit_2001_657_s (accessed on 1 May 2024).
- Fan, J.; Zou, L.; Zhao, G. Microplastic abundance, distribution, and composition in the surface water and sediments of the Yangtze River along Chongqing City, China. J. Soils Sediments 2021, 21, 1840–1851. [Google Scholar] [CrossRef]
- Crawford, C.B.; Quinn, B. Microplastic Pollutants, 1st ed.; Elsevier Limited: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Boehme, K.; Dietz, Y.; Hewitt, P.; Mueller, S.O. Activation of P53 in HepG2 cells as surrogate to detect mutagens and promutagens in vitro. Toxicol. Lett. 2010, 198, 272–281. [Google Scholar] [CrossRef]
- Doak, S.H.; Brüsehafer, K.; Dudley, E.; Quick, E.; Johnson, G.; Newton, R.P.; Jenkins, G.J. No-observed effect levels are associated with up-regulation of MGMT following MMS exposure. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2008, 648, 9–14. [Google Scholar] [CrossRef]
- Khalid, N.; Aqeel, M.; Noman, A. Microplastics could be a threat to plants in terrestrial systems directly or indirectly. Environ. Pollut. 2020, 267, 115653. [Google Scholar] [CrossRef]
- Minister of Health of the Republic of Kazakhstan. Order of the Acting Minister of Health of the Republic of Kazakhstan Dated March 24, 2005 No. 136. Sanitary and Epidemiological Rules and Norms “Sanitary and Epidemio-logical Requirements for the Content and Working Conditions in Laboratories Per-forming Chemical, Toxicological, and Radiological Research”. 2005. Available online: https://adilet.zan.kz/rus/docs/V1700015990 (accessed on 4 November 2024).
- Kolumbayeva, S.J.; Lovinskaya, A.V.; Kalimagambetov, A.M. Cytogenetic Methods in Genetic Monitoring; Kazak University: Almaty, Kazakhstan, 2017. [Google Scholar]
- USSR Ministry of Health. Assessment of the Impact of Harmful Chemical Compounds on the Skin and Justification of Maximum Permissible Levels of Skin Contamination.-Methodical Instructions No. 2102. Moscow. 1979. Available online: https://meganorm.ru/Data2/1/4293782/4293782372.htm (accessed on 3 May 2024).
- MU 1.1.037-95; Biotesting of Products from Polymeric and Other Materials. Russian Technical Standard: Moscow, Russia, 1996.
- Eurasian Economic Commission. Uniform Sanitary-Epidemiological and Hygienic Requirements for Products (Goods) Subject to Sanitary and Epidemiological Supervision (Control) № 299 of 28 May 2010. Section 16: Requirements for Materials and Products Made of Polymeric and Other Materials Intended for Contact with Food Products and Media. 2010. Available online: https://docs.eaeunion.org/docs/en-us/0027349/cuc_28062010_299_doc.pdf (accessed on 4 November 2024).
- Russia Ministry of Health. Guideline Document RD 52.24.492-2006 p.11 Mass Concentration of Formaldehyde in Waters Methodology of Measurements by Photometric Method with Acetylacetone. Moscow. 2009. Available online: https://meganorm.ru/Data2/1/4293837/4293837383.pdf (accessed on 4 November 2024).
- Liwarska-Bizukojc, E. Phytotoxicity assessment of biodegradable and non-biodegradable plastics using seed germination and early growth tests. Chemosphere 2022, 289, 133132. [Google Scholar] [CrossRef] [PubMed]
- Sahasa, R.G.K.; Dhevagi, P.; Poornima, R.; Ramya, A.; Moorthy, P.S.; Alagirisamy, B.; Karthikeyan, S. Effect of polyethylene microplastics on seed germination of Blackgram (Vigna mungo L.) and Tomato (Solanum lycopersicum L.). Environ. Adv. 2023, 11, 100349. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, H.; Liao, Y.; Ye, Z.; Li, M.; Klobučar, G. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ. Pollut. 2019, 250, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.Y.; Zheng, J.L.; Ren, J.H.; Luo, J.; Cui, X.Y.; Ma, L.Q. Effects of storage temperature and duration on release of antimony and bisphenol A from polyethylene terephthalate drinking water bottles of China. Environ. Pollut. 2014, 192, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, A.; Younesi, H.; Bahramifar, N. Migration of bisphenol A and nonylphenol from mineral water bottles and disposable plastic containers into water at different temperatures. Iran. J. Health Environ. 2014, 6, 515–522. [Google Scholar]
- Ginter-Kramarczyk, D.; Zembrzuska, J.; Kruszelnicka, I.; Zając-Woźnialis, A.; Ciślak, M. Influence of Temperature on the Quantity of Bisphenol A in Bottled Drinking Water. Int. J. Environ. Res. Public Health 2022, 19, 5710. [Google Scholar] [CrossRef]
- Casajuana, N.; Lacorte, S. Presence and release of phthalic esters and other endocrine disrupting compounds in drinking water. Chromatographia 2003, 57, 649–655. [Google Scholar] [CrossRef]
- Daniels, D.; Eberhardt, A.B. Climate change, microplastics, and male infertility. Curr. Opin. Urol. 2024, 34, 366–370. [Google Scholar] [CrossRef]
- Hasan, M.M.; Jho, E.H. Effect of Microplastics on the Germination and Growth of Terrestrial Plants. J. Korean Soc. Environ. Eng. 2022, 44, 375–382. [Google Scholar] [CrossRef]
- De Silva, Y.S.K.; Rajagopalan, U.M.; Kadono, H. Microplastics on the growth of plants and seed germina-tion in aquatic and terrestrial ecosystems. Glob. J. Environ. Sci. Manag. 2021, 7, 347–368. [Google Scholar] [CrossRef]
- Dainelli, M.; Pignattelli, S.; Bazihizina, N.; Falsini, S.; Papini, A.; Baccelli, I.; Mancuso, S.; Coppi, A.; Castellani, M.B.; Colzi, I.; et al. Can microplastics threaten plant productivity and fruit quality? Insights from Micro-Tom and Micro-PET/PVC. Sci. Total Environ. 2023, 895, 165119. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Yang, X.; Pelaez, A.M.; Lwanga, E.H.; Beriot, N.; Gertsen, H.; Garbeva, P.; Geissen, V. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 2018, 645, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Lozano, Y.M.; Caesaria, P.U.; Rillig, M.C. Microplastics of different shapes increase seed germination syn-chrony while only films and fibers affect seed germination velocity. Front. Environ. Sci. 2022, 10, 1017349. [Google Scholar] [CrossRef]
- Guo, M.; Zhao, F.; Tian, L.; Ni, K.; Lu, Y.; Borah, P. Effects of polystyrene microplastics on the seed germination of herbaceous ornamental plants. Sci. Total Environ. 2022, 809, 151100. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Liu, R.; Xu, Y.; Liu, W.; Wang, L.; Liang, X.; Huang, Q.; Sun, Y. Single and joint toxicity of polymethyl methacrylate microplastics and As (V) on rapeseed (Bras-sia campestris L.). Chemosphere 2022, 291, 133066. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Q.; Wei, Z.; Jiang, J.; Deng, J. Effects of microplastic type on growth and physiology of soil crops: Implications for farmland yield and food quality. Environ. Pollut. 2023, 326, 121512. [Google Scholar] [CrossRef]
- Pignattelli, S.; Broccoli, A.; Piccardo, M.; Terlizzi, A.; Renzi, M. Effects of polyethylene terephthalate (PET) microplastics and acid rain on physiology and growth of Lepidium sativum. Environ. Pollut. 2021, 282, 116997. [Google Scholar] [CrossRef]
- Hou, B.; Wang, F.; Liu, T.; Wang, Z. Reproductive toxicity of polystyrene microplastics: In vivo experimental study on testicular toxicity in mice. J. Hazard. Mater. 2021, 405, 124028. [Google Scholar] [CrossRef]
- Xu, W.; Yuan, Y.; Tian, Y.; Cheng, C.; Chen, Y.; Zeng, L.; Yuan, Y.; Li, D.; Zheng, L.; Luo, T. Oral exposure to polystyrene nanoplastics reduced male fertility and even caused male infertility by inducing testicular and sperm toxicities in mice. J. Hazard. Mater. 2023, 454, 131470. [Google Scholar] [CrossRef]
Experiment Variant | Germination, % | Germination Rate, Conventional Units | Germination Density, % | |
---|---|---|---|---|
Negative control, dHO2 | 86.67 ± 1.76 | 39.39 ± 0.81 | 28.89 ± 0.59 | |
Positive control, MMC (5 mg/dm)3 | 66.67 ± 1.76 ** | 31.39 ± 1.19 * | 22.22 ± 0.72 ** | |
Polystyrene (PS) | 0.175 mm | 69.33 ± 3.53 * | 30.83 ± 1.30 * | 23.11 ± 1.18 * |
0.3 mm | 71.3300 ± 3.53 | 32.83 ± 1.78 | 23.78 ± 1.18 | |
1.0 mm | 72.00 ± 4.16 | 29.61 ± 2.14 * | 24.00 ± 1.39 | |
2.0 mm | 74.00 ± 3.46 | 31.89 ± 2.50 | 24.67 ± 1.15 | |
3.0 mm | 75.33 ± 4.37 | 33.39 ± 2.31 | 25.11 ± 1.46 | |
Polyethylene terephthalate (PET) | 0.175 mm | 73.33 ± 1.76 * | 33.72 ± 0.86 * | 24.44 ± 0.59 * |
0.3 mm | 76.67 ± 3.33 | 33.72 ± 1.33 | 25.56 ± 1.11 | |
1.0 mm | 77.33 ± 5.46 | 34.56 ± 1.53 | 25.78 ± 1.82 | |
2.0 mm | 78,00 ± 4.62 | 36.72 ± 0.70 | 26.00 ± 1.54 | |
3.0 mm | 78.67 ± 2.40 | 35.61 ± 0.87 | 26.22 ± 0.80 | |
Polypropylene (PP) | 0.175 mm | 72.67 ± 2.40 * | 33.17 ± 1.42 * | 24.22 ± 0.80 * |
0.3 mm | 74.67 ± 2.40 * | 32.67 ± 0.75 ** | 24.89 ± 0.80 * | |
1.0 mm | 76.00 ± 4.00 | 35.89 ± 2.12 | 25.33 ± 1.33 | |
2.0 mm | 77.33 ± 2.91 | 35.22 ± 1.27 | 25.78 ± 0.97 | |
3.0 mm | 79.33 ± 4.06 | 34.06 ± 0.48 ** | 26.44 ± 1.35 | |
Polyethylene (PE) | 0.175 mm | 69.33 ± 2.91 * | 28.83 ± 2.18 * | 23.11 ± 0.97 * |
0.3 mm | 70.00 ± 3.06 * | 31.17 ± 1.04 * | 23.33 ± 1.02 * | |
1.0 mm | 71.33 ± 3.71 | 30.89 ± 1.65 * | 23.78 ± 1.24 | |
2.0 mm | 72.67 ± 3.53 | 32.28 ± 1.26 * | 24.22 ± 1.18 | |
3.0 mm | 75.33 ± 2.91 | 33.22 ± 0.96 * | 25.11 ± 0.97 |
Experiment Variant | Total Cells | Frequency of Aberrant Cells (M ± m,%) | Number of Chromosomal Aberrations per 100 Metaphase Cells | |||
---|---|---|---|---|---|---|
Total Aberrations | Chromosomal Type | Chromatid Type | ||||
Negative control, dHO2 | 450 | 1.11 ± 0.49 | 1.11 ± 0.49 | 0.44 ± 0.31 | 0.67 ± 0.38 | |
Positive control, MMC (5 mg/dm)3 | 471 | 5.31 ± 1.03 *** | 5.94 ± 1.09 *** | 2.55 ± 0.73 ** | 3.40 ± 0.83 ** | |
Polystyrene (PS) | 0.175 mm | 480 | 3.75 ± 0.87 ** | 4.58 ± 0.95 ** | 2.08 ± 0.65 * | 2.50 ± 0.71 * |
0.3 mm | 511 | 3.52 ± 0.82 * | 3.91 ± 0.86 ** | 1.37 ± 0.51 | 2.54 ± 0.70 * | |
1.0 mm | 512 | 3.32 ± 0.79 * | 3.91 ± 0.86 ** | 1.56 ± 0.55 | 2.34 ± 0.67 * | |
2.0 mm | 458 | 2.84 ± 0.78 | 3.28 ± 0.83 * | 1.09 ± 0.49 | 2.18 ± 0.68 | |
3.0 mm | 446 | 2.69 ± 0.77 | 2.91 ± 0.80 | 0.90 ± 0.45 | 2.02 ± 0.67 | |
Polyethylene Terephthalate (PET) | 0.175 mm | 462 | 4.55 ± 0.97 ** | 5.41 ± 1.05 *** | 2.16 ± 0.68 * | 3.25 ± 0.82 ** |
0.3 mm | 482 | 3.94 ± 0.89 ** | 4.15 ± 0.91 ** | 1.87 ± 0.62 * | 2.28 ± 0.68 * | |
1.0 mm | 425 | 4.24 ± 0.98 ** | 4.71 ± 1.03 ** | 1.18 ± 0.52 | 3.53 ± 0.90 ** | |
2.0 mm | 436 | 3.67 ± 0.90 * | 3.90 ± 0.93 ** | 1.61 ± 0.60 | 2.29 ± 0.72 * | |
3.0 mm | 440 | 3.64 ± 0.89 * | 3.86 ± 0.92 ** | 1.59 ± 0.60 | 2.27 ± 0.71 * | |
Polypropylene (PP) | 0.175 mm | 500 | 3.20 ± 0.79 * | 3.40 ± 0.81 * | 1.60 ± 0.56 | 1.80 ± 0.59 |
0.3 mm | 490 | 3.06 ± 0.78 * | 3.06 ± 0.78 * | 1.43 ± 0.54 | 1.63 ± 0.57 | |
1.0 mm | 442 | 2.94 ± 0.80 | 2.94 ± 0.80 | 1.36 ± 0.55 | 1.58 ± 0.59 | |
2.0 mm | 456 | 2.85 ± 0.78 | 2.85 ± 0.78 | 1.32 ± 0.53 | 1.54 ± 0.58 | |
3.0 mm | 495 | 2.63 ± 0.72 | 2.63 ± 0.72 | 1.21 ± 0.49 | 1.41 ± 0.53 | |
Polyethylene (PE) | 0.175 mm | 495 | 3.23 ± 0.79 * | 3.64 ± 0.84 * | 1.82 ± 0.60 * | 1.82 ± 0.60 |
0.3 mm | 500 | 3.20 ± 0.79 * | 3.40 ± 0.81 * | 1.60 ± 0.56 | 1.80 ± 0.59 | |
1.0 mm | 520 | 2.88 ± 0.73 * | 2.88 ± 0.73 * | 1.15 ± 0.47 | 1.73 ± 0.57 | |
2.0 mm | 465 | 2.80 ± 0.76 | 2.80 ± 0.76 | 1.08 ± 0.48 | 1.72 ± 0.60 | |
3.0 mm | 458 | 2.40 ± 0.72 | 2.40 ± 0.72 | 0.87 ± 0.43 | 1.53 ± 0.57 |
Polymer | Fraction, mm | Toxicity Index, % | Deviation of Sperm Motility of Bull Semen from the Norm, % |
---|---|---|---|
Polystyrene (PS) | 0.175 | 94.2 | 5.8 |
0.3 | 94.0 | 6.0 | |
1.0 | 92.4 | 7.6 | |
2.0 | 93.0 | 7.0 | |
3.0 | 93.8 | 6.2 | |
The average deviation of the PS is 6.52% | |||
Polyethylene terephthalate (PET) | 0.175 | 94.2 | 5.2 |
0.3 | 93.1 | 6.9 | |
1.0 | 96.7 | 3.3 | |
2.0 | 99.4 | 0.6 | |
3.0 | 90.9 | 9.1 | |
The average deviation on PET is 5.02% | |||
Polypropylene (PP) | 0.175 | 98.7 | 0.3 |
0.3 | 99.8 | 0.2 | |
1.0 | 105.6 | 5.6 | |
2.0 | 109.9 | 9.9 | |
3.0 | 107.2 | 7.2 | |
The average deviation on PP is 4.64% | |||
Polyethylene (PE) | 0.175 | 97.9 | 2.1 |
0.3 | 103.7 | 3.7 | |
1.0 | 96.8 | 3.2 | |
2.0 | 101.3 | 1.3 | |
3.0 | 99.5 | 0.5 | |
The average deviation in PE is 2.16% |
Polymer | Fraction (mm) | Phenol (mg/dm3)/PAM Share | Formaldehyde (mg/dm3)/PAM Share |
---|---|---|---|
PAM | Not More than 0.05 | Not More than 0.1 | |
Polystyrene (PS) | 0.175 | <0.01/0.02 | 0.30/3.0 |
0.3 | <0.01/0.02 | 0.40/4.0 | |
1.0 | <0.01/0.02 | 0.31/3.1 | |
2.0 | <0.01/0.02 | 0.11/1.1 | |
3.0 | <0.01/0.02 | 0.12/1.2 | |
Polyethylene terephthalate (PET) | 0.175 | <0.01/0.02 | 1.04/10.4 |
0.3 | <0.01/0.02 | 0.82/8.2 | |
1.0 | <0.01/0.02 | 0.50/5.0 | |
2.0 | <0.01/0.02 | 0.61/6.1 | |
3.0 | <0.01/0.02 | 0.40/4.0 | |
Polypropylene (PP) | 0.175 | <0.01/0.02 | 1.04/10.4 |
0.3 | <0.01/0.02 | 1.21/12.1 | |
1.0 | <0.01/0.02 | 0.30/3.0 | |
2.0 | <0.01/0.02 | 0.35/3.5 | |
3.0 | <0.01/0.02 | 0.26/2.6 | |
Polyethylene (PE) | 0.175 | <0.01/0.02 | 0.41/4.1 |
0.3 | <0.01/0.02 | 0.40/4.0 | |
1.0 | <0.01/0.02 | 0.34/3.4 | |
2.0 | <0.01/0.02 | 0.30/3.0 | |
3.0 | <0.01/0.02 | 0.32/3.2 |
Type of Microplastic (MP or NP) | Concentration | Origin of MP | Object and Studied Indicators | Research Result | Source |
---|---|---|---|---|---|
PP-MP PE-MP PS-MP | 1 g/100 dm3 of water (extractant, for seeds) | Hand-crushed to resemble natural form | Barley Hordeum vulgare L.: seed growth indicators, genotoxicity in apical meristem cells | decreased germination rates, increased frequency of aberrant cells and number of chromosomal aberrations | This study |
Acute toxicity to bull semen | presence of influence on sperm motility | ||||
Formaldehyde migration | exceeding permissible levels of migration | ||||
Phenol migration | no toxic effects detected | ||||
Skin irritant effect on the dermis of rabbits | no toxic effects detected | ||||
PS-MP PS-NP | 10−3–10−7 particles/sm3 extractant (water) | spherical (standardized production) | Watercress Lepidium sativum: seed germination, root and shoot growth, chlorophyll content, seed growth indicators | significant effect on seed germination and root growth on the first day, the adverse effect increased with the transition from NP to MP | [99] |
PET-MP PVC-MP | 0.5% (by soil weight) | spherical (standardized production) | Tomato Solanum lycopersicum L.: growth and number of fruits | Negative effects on growth and physiology, fruit set; increased anti-nutritional properties | [100] |
LDPE-MP | 0.4% (by soil weight) in a climate-controlled chamber | Hand-crushed | Wheat Triticum aestivum: Wheat growth exposed to low-density polyethylene (LDPE) and biodegradable starch-PET plastics | Negative impact on aboveground and underground parts of the plant during vegetative and reproductive growth | [101] |
MP: PET, PA, PP, PE, PU, PS, PC, PES | 0.4% (by soil weight) | Hand-chopped | Wild carrot Daucus carota: seed germination | Deterioration of seed germination rates depending on MPs shape | [102] |
PE-MP | 0.25, 0.50, 0.75 and 1.0% of water (extractant, for seeds) | Fragments (industrial production) | Blackgram (Vigna mungo L.) and tomato Solanum lycopersicum L.): growth and physiological parameters | effect on seed germination, root length and shoots, depending on the dose, type and duration of exposure | [91] |
PS (MP, NP) | 2 µm–80 nm in 0, 10, 50, 100 and 500 mg/L of water (extractant, for plants in the soil) | Fragments (industrial production) | Ornamental plants: Trifolium repens, Orychophragmus violaceus and Impatiens balsamina: seed germination tendency, germination rate and various physiological and biochemical parameters | inhibitory effect on seed germination processes | [103] |
PMMA (MP, NP) | 0, 0.01, 0.1, 1, 5 y 10 g/L (for plants, on soils) | Fragments (industrial production) | Rape Brassia campestris L.: Single and combined effects | Suppression of growth index GI, biomass growth biomass, root length and shoot length | [104] |
HDPE Mater-bi®, MB пакеты | pieces of plastic bags of size approximately 1 cm2, in liquid (water) to solid (plastic) ratios of 100, 10 and 5, corresponding to approximately 4.1 × 10−4, 4.1 × 10−3 and 8.3 × 10−3 bag/mL respectively (extractant, for seeds and seedlings) | Hand-crushed to resemble natural form | Garden cress Lepidium sativum L: seed germination | developmental abnormalities and decreased plant growth | [43] |
PES-MP PP-MP | 0.4% (by soil weight) | Fragments (industrial production) | Corn Zea mays, Soybean Glycine max, Peanut Arachis hypogaea: growth, physiological and biochemical parameters | negative consequences for plant growth, biomass accumulation and its quality | [105] |
PS-NP | 200 nm 0.1–1000 mg/L (for plants in the soil) | Fragments (industrial production) | Rice seeds: seed germination, root growth, antioxidant enzyme activity and transcriptome | gene expression, changes in growth rates, root length, accumulation of reactive oxygen species in the roots. No significant effect on seed germination was found. Significant increase in root length and decrease in antioxidant enzyme activity | [45] |
PET-MP PET-NP | 0.02% (w/w microplastic/soil) | industrial pellet crushing | Watercress Lepidium sativu: seed germination, plant height, fresh biomass production, oxidative stress response, photosynthetic apparatus disruption, aminolevulinic acid and proline production | The percentage of inhibition of seed germination was the only parameter that showed statistically significant changes | [106] |
PS-MP | 0.6–0.7 μg/day, 6–7 μg/ day, 60–70 μg/da | spherical (standardized production) | Mice | Decreased sperm quality, abnormal testicular spermatogenesis | [107] |
PS-NP | 50 mg/kg/day orally | spherical (standardized production) | Mice | Decreased fertility, expression of genes associated with apoptosis and inflammation | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salikova, N.S.; Lovinskaya, A.V.; Kolumbayeva, S.Z.; Bektemissova, A.U.; Urazbayeva, S.E.; Rodrigo-Clavero, M.-E.; Rodrigo-Ilarri, J. Evaluation of Microplastic Toxicity in Drinking Water Using Different Test Systems. Water 2024, 16, 3250. https://doi.org/10.3390/w16223250
Salikova NS, Lovinskaya AV, Kolumbayeva SZ, Bektemissova AU, Urazbayeva SE, Rodrigo-Clavero M-E, Rodrigo-Ilarri J. Evaluation of Microplastic Toxicity in Drinking Water Using Different Test Systems. Water. 2024; 16(22):3250. https://doi.org/10.3390/w16223250
Chicago/Turabian StyleSalikova, Natalya S., Anna V. Lovinskaya, Saule Zh. Kolumbayeva, Ainash U. Bektemissova, Saltanat E. Urazbayeva, María-Elena Rodrigo-Clavero, and Javier Rodrigo-Ilarri. 2024. "Evaluation of Microplastic Toxicity in Drinking Water Using Different Test Systems" Water 16, no. 22: 3250. https://doi.org/10.3390/w16223250
APA StyleSalikova, N. S., Lovinskaya, A. V., Kolumbayeva, S. Z., Bektemissova, A. U., Urazbayeva, S. E., Rodrigo-Clavero, M. -E., & Rodrigo-Ilarri, J. (2024). Evaluation of Microplastic Toxicity in Drinking Water Using Different Test Systems. Water, 16(22), 3250. https://doi.org/10.3390/w16223250