The Distributed Xin’anjiang Model Incorporating the Analytic Solution of the Storage Capacity Under Unsteady-State Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methods
2.3.1. The Analytic Solutions of Groundwater Depth and Evaporation Capacity About Matric Potential Under Unsteady-State Conditions
2.3.2. The Analytic Solution of the Storage Capacity About Topographic Index Under Unsteady-State Conditions
2.3.3. Runoff Generation and Confluence Calculation
2.3.4. The Simulation of the Storage Capacity
- The analytic solution of the storage capacity under unsteady-state conditions.
- The numerical solution under unsteady-state conditions, where a very small time step is utilized to approximate the true value closely.
- The analytic solution of the storage capacity under equilibrium-state conditions, assuming all vertical evaporation fluxes are zero.
- The analytic solution of the storage capacity under steady-state conditions, where all vertical evaporation fluxes are set to the actual evaporation.
2.3.5. Model Parameters and Evaluation Metrics
3. Results
3.1. The Comparison of the Storage Capacity Among Four Methods
- Unsteady-State Solution: This is the analytic solution of the storage capacity under unsteady-state conditions.
- Numerical Solution for Unsteady State: The truncation error of this numerical solution is related to the time step. When the time step is set to 1 s, the truncation error is virtually zero, making the calculated value approximately the true value. The vertical distribution of soil moisture is calculated using this numerical solution, which takes into account the diving evaporation flux at the lower boundary and the actual evaporation flux at the upper boundary. The time step for these calculations is 1 s and the calculated value is almost the true value. To assess the accuracy of other methods, we compare their calculated values with those obtained from the numerical solution. A smaller difference between the values indicates higher accuracy for the method being compared.
- Equilibrium-State Solution: This is the analytic solution of the storage capacity under equilibrium-state conditions, where all vertical evaporation fluxes are zero.
- Steady-State Solution: This is the analytic solution of the storage capacity under steady-state conditions, where all vertical evaporation fluxes are set to the actual evaporation.
3.2. Model Performance Evaluation
4. Discussion
4.1. Advantages of the Model
4.2. Limitations and Outlook
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beven, K.J.; Kirkby, M.J. A physically-based variable conmodel of basin hydrology. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Liang, X. A Two-Layer Variable Infiltration Capacity Land Surface Representation for General Circulation Models; University of Washington: Seattle, WA, USA, 1994; p. 208. [Google Scholar]
- Xu, Y.; Yu, Q.; Liu, C.; Li, W.; Quan, L.; Niu, C.; Zhao, C.; Luo, Q.; Hu, C. Construction of a semi-distributed hydrological model considering the combination of saturation-excess and infiltration-excess runoff space under complex substratum. J. Hydrol. Reg. Stud. 2024, 51, 101642. [Google Scholar] [CrossRef]
- Yáñez-Morroni, G.; Suárez, F.; Muñoz, J.F.; Lagos, M.S. Hydrological modeling of the Silala River basin. 2. Validation of hydrological fluxes with contemporary data. Wiley Interdiscip. Rev. Water 2024, 11, e1696. [Google Scholar] [CrossRef]
- Dembélé, M.; Hrachowitz, M.; Savenije, H.H.; Mariéthoz, G.; Schaefli, B. Improving the predictive skill of a distributed hydrological model by calibration on spatial patterns with multiple satellite data sets. Water Resour. Res. 2020, 56, e2019WR026085. [Google Scholar] [CrossRef]
- Imhoff, R.O.; Van Verseveld, W.J.; Van Osnabrugge, B.; Weerts, A.H. Scaling point-scale (pedo) transfer functions to seamless large-domain parameter estimates for high-resolution distributed hydrologic modeling: An example for the Rhine River. Water Resour. Res. 2020, 56, e2019WR026807. [Google Scholar] [CrossRef]
- Western, A.W.; Blöschl, G.; Grayson, R.B. How well do indicator variograms capture the spatial connectivity of soil moisture? Hydrol. Process. 1998, 12, 1851–1868. [Google Scholar] [CrossRef]
- Koster, R.D.; Marcstieglitz, A.D.; Suarez, P.K.M. A catchment-based approach to modeling land surface processes in a general circulation model. J. Geophys. Res. 2000, 24, 809–822. [Google Scholar]
- Zhang, Y.; Zhou, J.; Lu, C. Integrated hydrologic and hydrodynamic models to improve flood simulation capability in the data-scarce three gorges reservoir region. Water 2020, 12, 1462. [Google Scholar] [CrossRef]
- Stoyanova, J.S.; Georgiev, C.G. SVAT modelling in support to flood risk assessment in Bulgaria. Atmos. Res. 2013, 123, 384–399. [Google Scholar] [CrossRef]
- Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J. An introduction to the European Hydrological System—Systeme Hydrologique Europeen,“SHE”, 1: History and philosophy of a physically-based, distributed modelling system. J. Hydrol. 1986, 87, 45–59. [Google Scholar] [CrossRef]
- Wigmosta, M.S.; Lettenmaier, D.P.; Vail, L.W. A distributed hydrology vegetation model for complex terrain. Water Resour. Res. 1994, 30, 1665–1679. [Google Scholar] [CrossRef]
- Koren, V.; Moreda, F.; Reed, S.; Smith, M.; Zhang, Z. Evaluation of a grid-based distributed hydrological model over a large area. Water Energy Abstr. 2007, 16, 13–14. [Google Scholar]
- Shi, P.; Rui, X.F.; Qu, S.M.; Chen, X. Calculating storage capacity with topographic index. Adv. Water Sci. 2008, 19, 264–267. [Google Scholar]
- Chen, X.; Chen, Y.D.; Xu, C.Y. A distributed monthly hydrological model for integrating spatial variations of basin topography and rainfall. Hydrol. Process. 2007, 21, 242–252. [Google Scholar] [CrossRef]
- Yao, C.; Li, Z.; Yu, Z.; Zhang, K. A priori parameter estimates for a distributed, grid-based Xinanjiang model using geographically based information. J. Hydrol. 2012, 468, 47–62. [Google Scholar] [CrossRef]
- Xiang, X.; Song, Q.; Chen, X.; Wu, X.; Wang, C. A storage capacity model integrating terrain and soil characteristics. Adv. Water Sci. 2013, 24, 651–657. [Google Scholar]
- Zhao, R. Hydrological Model of Basin: Xinanjiang Model and Shanbei Model; China Water Power Press: Beijing, China, 1984; pp. 106–130. [Google Scholar]
- Sadeghi, M.; Shokri, N.; Jones, S.B. A novel analytical solution to steady-state evaporation from porous media. Water Resour. Res. 2012, 48, W9516. [Google Scholar] [CrossRef]
- Western, A.W.; Blöschl, G.; Grayson, R.B. Geostatistical characterisation of soil moisture patterns in the Tarrawarra Catchment. J. Hydrol. 1998, 205, 20–37. [Google Scholar] [CrossRef]
- Western, A.W.; Grayson, R.B.; Blöschl, G.; Willgoose, G.R.; McMahon, T.A. Observed spatial organization of soil moisture and its relation to terrain indices. Water Resour. Res. 1999, 35, 797–810. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, A.T. Hydraulic Properties of Porous Media; Colorado State University: Fort Collins, CO, USA, 1964. [Google Scholar]
- Troch, P. Conceptual Basin-Scale Runoff Process Models for Humid Catchments: Analysis, Synthesis and Applications; Ghent University: Ghent, Belgium, 1992; pp. 62–67. [Google Scholar]
- Konoplev, A.; Wakiyama, Y.; Wada, T.; Ivanov, M.; Komissarov, M.; Nanba, K. Reconstruction of time changes in radiocesium concentrations in the river of the Fukushima Dai-ichi NPP contaminated area based on its depth distribution in dam reservoir’s bottom sediments. Environ. Res. 2022, 206, 112307. [Google Scholar] [CrossRef]
- Richards, L.A. Capillary conduction of liquids through porous mediums. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and Efficient Global Optimization for Conceptual Rainfall-Runoff Models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Penmam, H.L. Natural evaporation from open water, baresoil land grass. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1948, 193, 120–146. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements; FAO Irrigation and Drainage: Rome, Italy, 1977; Volume 24. [Google Scholar]
- Komissarov, A.; Komissarov, M.; Safin, K.; Ishbulatov, M.; Kovshov, Y. Long-term irrigation effect on soil and vegetation cover of floodplain estuaries in the Southern Urals. Asian J. Water Environ. Pollut. 2020, 17, 83–90. [Google Scholar] [CrossRef]
Parameter | sz | l | fyb | oo | eta | sm | ki |
---|---|---|---|---|---|---|---|
Value | 1947.37 | 0.41 | 306.22 | 0.32 | 0.81 | 24.73 | 0.47 |
Range | 1500–2500 | 0.1–0.8 | 150–500 | 0.2–0.4 | 0.7–1.2 | 10–50 | 0.1–0.7 |
Parameter | kg | ei | eg | es1 | a1 | Ks | |
Value | 0.51 | 0.22 | 0.997 | 0.93 | 0.21 | 61.22 | |
Range | 0.1–0.7 | 0.5–0.95 | 0.99–0.999 | 0.5–1 | 0.1–0.3 | 10–100 | |
Parameter | dmax | wum | wlm | ccc | nn | fy1 | |
Value | 3.52 | 21.53 | 53.91 | 0.23 | 2.03 | 324.57 | |
Range | 1–5 | 5–35 | 20–100 | 0.1–0.5 | 1–5 | 100–500 |
The New Model | DHSVM | Storage Capacity Model | |
---|---|---|---|
The calculation amount for a single stochastic parametric simulation | 1,240,000 | 61,959,700 | 123,900 |
The calculation time required for 100 stochastic parametric simulations | 2 min | 100 min | 12 s |
Point | NSC | RMSE | R2 | ||||||
---|---|---|---|---|---|---|---|---|---|
The New Model | Storage Capacity Model | DHSVM | The New Model | Storage Capacity Model | DHSVM | The New Model | Storage Capacity Model | DHSVM | |
S1 | 0.93 | 0.92 | 0.92 | 9.37 | 9.88 | 9.87 | 0.95 | 0.94 | 0.91 |
S2 | 0.92 | 0.66 | 0.68 | 8.43 | 17.03 | 16.47 | 0.93 | 0.74 | 0.84 |
S3 | 0.86 | 0.83 | 0.88 | 12.04 | 12.94 | 10.88 | 0.94 | 0.92 | 0.91 |
S4 | 0.84 | 0.83 | 0.90 | 12.90 | 13.05 | 10.11 | 0.92 | 0.91 | 0.93 |
S5 | 0.95 | 0.94 | 0.88 | 8.68 | 9.63 | 13.46 | 0.97 | 0.96 | 0.93 |
S6 | 0.93 | 0.94 | 0.85 | 10.04 | 8.67 | 14.29 | 0.92 | 0.96 | 0.82 |
S7 | 0.92 | 0.90 | 0.92 | 9.02 | 9.60 | 8.44 | 0.94 | 0.93 | 0.94 |
S8 | 0.92 | 0.90 | 0.86 | 10.62 | 11.79 | 14.42 | 0.94 | 0.92 | 0.89 |
S9 | 0.71 | 0.55 | 0.66 | 15.12 | 18.99 | 16.48 | 0.89 | 0.86 | 0.86 |
S10 | 0.82 | 0.81 | 0.79 | 18.61 | 19.18 | 20.14 | 0.96 | 0.94 | 0.92 |
S11 | 0.93 | 0.91 | 0.91 | 10.39 | 11.37 | 11.12 | 0.92 | 0.90 | 0.93 |
S12 | 0.90 | 0.88 | 0.84 | 10.62 | 11.57 | 13.62 | 0.94 | 0.93 | 0.91 |
S13 | 0.72 | 0.59 | 0.71 | 15.05 | 18.25 | 15.37 | 0.89 | 0.87 | 0.88 |
S14 | 0.93 | 0.92 | 0.91 | 10.23 | 10.90 | 11.81 | 0.92 | 0.91 | 0.91 |
S15 | 0.93 | 0.75 | 0.86 | 8.60 | 16.54 | 12.52 | 0.94 | 0.80 | 0.87 |
S16 | 0.79 | 0.76 | 0.75 | 21.11 | 21.89 | 22.46 | 0.93 | 0.91 | 0.90 |
S17 | 0.92 | 0.89 | 0.85 | 10.80 | 11.56 | 14.03 | 0.91 | 0.89 | 0.85 |
Average | 0.88 | 0.82 | 0.83 | 11.86 | 13.70 | 13.83 | 0.93 | 0.90 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Q.; Chen, X.; Zhang, Z. The Distributed Xin’anjiang Model Incorporating the Analytic Solution of the Storage Capacity Under Unsteady-State Conditions. Water 2024, 16, 3252. https://doi.org/10.3390/w16223252
Song Q, Chen X, Zhang Z. The Distributed Xin’anjiang Model Incorporating the Analytic Solution of the Storage Capacity Under Unsteady-State Conditions. Water. 2024; 16(22):3252. https://doi.org/10.3390/w16223252
Chicago/Turabian StyleSong, Qifeng, Xi Chen, and Zhicai Zhang. 2024. "The Distributed Xin’anjiang Model Incorporating the Analytic Solution of the Storage Capacity Under Unsteady-State Conditions" Water 16, no. 22: 3252. https://doi.org/10.3390/w16223252
APA StyleSong, Q., Chen, X., & Zhang, Z. (2024). The Distributed Xin’anjiang Model Incorporating the Analytic Solution of the Storage Capacity Under Unsteady-State Conditions. Water, 16(22), 3252. https://doi.org/10.3390/w16223252