Nuclear Magnetic Resonance (NMR) and Density Functional Theory (DFT) Study of Water Clusters of Hydrogen-Rich Water (HRW)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrogen-Rich Water (HRW)
2.2. NMR Spectroscopy
2.3. Theoretical Calculations
2.4. Water Clusters
2.5. Research of pH and Oxidation–Reduction Potential (ORP)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xun, Z.-M.; Zhao, Q.-H.; Zhang, Y.; Ju, F.-D.; He, J.; Yao, T.-T.; Zhang, X.-K.; Yi, Y.; Ma, S.-N.; Zhao, P.-X.; et al. Effects of long-term hydrogen intervention on the physiological function of rats. Sci. Rep. 2020, 10, 18509. [Google Scholar] [CrossRef] [PubMed]
- Ohsawa, I.; Ishikawa, M.; Takahashi, K.; Watanabe, M.; Nishimaki, K.; Yamagata, K.; Ken-Ichiro, K.; Katayama, S.; Asoh, S.; Ohta, S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007, 13, 688–694. [Google Scholar] [CrossRef] [PubMed]
- LeBaron, T.W.; Kura, B.; Kalocayova, B.; Kalocayova, B.; Tribulova, N.; Slezak, J. A new approach for the prevention and treatment of cardiovascular disorders. Molecular hydrogen significantly reduces the effects of oxidative stress. Molecules 2019, 24, 2076. [Google Scholar] [CrossRef] [PubMed]
- Ostojic, S.M. Targeting molecular hydrogen to mitochondria: Barriers and gateways. Pharmacol. Res. 2015, 94, 51–53. [Google Scholar] [CrossRef]
- Zanini, D.; Todorovic, N.; Stajer, V.; Hüther, F.; Ostojic, S.M. Short-term intake of hydrogen-rich water positively affects neuropsychological performance in young adults. Clin. Nutr. ESPEN 2023, 54, 715. [Google Scholar] [CrossRef]
- Xie, F.; Tikhonov, D.S.; Schell, M. Electric nuclear quadrupole coupling reveals dissociation of HCl with a few water molecules. Science 2024, 384, 1435–1440. [Google Scholar] [CrossRef]
- Laongam, C.; Phonyiem, M.; Chaiwongwattana, S.; Kawazoe, Y.; Sagarik, K. Characteristic NMR spectra of proton transfer in protonated water clusters. Chem. Phys. 2013, 420, 50–61. [Google Scholar] [CrossRef]
- Andersson, M.P. The shape of water-how cluster formation explains the hydrophobic effect. J. Mol. Liq. 2024, 400, 124491. [Google Scholar] [CrossRef]
- Hack, J.H.; Dombrowski, J.P.; Ma, X.; Chen, Y.; Lewis, N.H.; Carpenter, W.B.; Li, C.; Voth, G.A.; Kung, H.H.; Tokmakoff, A.; et al. Structural characterization of protonated water clusters confined in H2SM-5 zeolites. J. Am. Chem. Soc. 2021, 143, 10203–10213. [Google Scholar] [CrossRef]
- Mi, D.; Xu, J.; Zhang, Y.; Zhu, T.; Ouyang, J.; Dong, X.; Chingin, K. Formation of protonated water-hydrogen clusters in an ion trap mass spectrometer at room temperature. Phys. Chem. Chem. Phys. 2022, 12, 7180–7184. [Google Scholar] [CrossRef]
- Russel, G.; Nenov, A.; Hancock, J. How hydrogen (H2) can support food security: From farm to fork. Appl. Sci. 2024, 14, 2877. [Google Scholar] [CrossRef]
- Gao, C.Y.; Ma, Y.Y.; Chen, Q.; Li, S.D. Fluxional hydrogen Bonds in small water clusters (H2O)n (n = 2–6). J. Clust. Sci. 2024, 35, 693–700. [Google Scholar] [CrossRef]
- Telfah, A.; Charifi, Z.; Latelli, N.; Quattan, J.A.; Baazir, H.; Al-Bataineh, Q.M.; Alsaad, A.M.; Sabrianov, R.F. Formation of hydrogen bonding network of methane sulfonic acid at low degree of hydration (MSA)m·(H2O)n (m = 1–2 and n = 1–5). Sci. Rep. 2024, 14, 11252. [Google Scholar] [CrossRef] [PubMed]
- Oka, K.; Shibue, T.; Sugimura, N.; Watabe, Y.; Winther-Jensen, B.; Nishide, H. Long-lived water clusters in hydrophobic solvents investigated by standard NMR techniques. Sci. Rep. 2019, 9, 223. [Google Scholar] [CrossRef]
- Ojha, D.; Karhan, K.; Kühne, T.D. On the hydrogen bond strength and vibrational spectroscopy of liquid water. Sci. Rep. 2018, 8, 16888. [Google Scholar] [CrossRef]
- Qian, P.; Song, W.; Lu, L.; Yang, Z. Ab initio investigation of water clusters (H2O)n (n = 2–34). Int. J. Quantum Chem. 2010, 110, 1923–1937. [Google Scholar] [CrossRef]
- Choi, T.H.; Jordan, K.D. Application of the SCC-DFTB Method to H+(H2O)6, H+(H2O)21, and H+(H2O)22. J. Phys. Chem. B 2010, 114, 6932–6936. [Google Scholar] [CrossRef]
- Kuo, J.-L.; Coe, J.V.; Singer, S.J.; Band, Y.B.; Ojamäe, L. On the use of graph invariants for efficiently generating hydrogen bond topologies and predicting physical properties of water clusters and ice. J. Chem. Phys. 2001, 114, 2527–2540. [Google Scholar] [CrossRef]
- Iliev, M.T.; Huether, F.; Ignatov, I.; Gramatikov, P.S. Education of students on Physics and Chemistry with effects of water filtration. Modeling of water clusters and hexagonal structures. Eur. J. Contemp. Educ. 2023, 12, 1546–1560. [Google Scholar]
- Mehandjiev, D.; Ignatov, I.; Neshev, N.; Huether, F.; Gluhchev, G.; Drossinakis, C. Formation of clusters in water and their distribution according to the number of water molecules. Bulg. Chem. Commun 2022, 54, 211–216. [Google Scholar]
- Zhang, B.; Yu, Y.; Zhang, Y.-Y.; Jiang, S.; Li, Q.; Hu, H.-S.; Li, G.; Zhao, Z.; Wang, C.; Xie, H.; et al. Infrared spectroscopy of neutral water clusters at finite temperature: Evidence for a noncyclic pentamer. Proc. Natl. Acad. Sci. USA 2020, 117, 15423–15428. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Fang, H.; Ni, K. A hierarchical clustering method of hydrogen bond networks in liquid water undergoing shear flow. Sci. Rep. 2021, 11, 9542. [Google Scholar] [CrossRef] [PubMed]
- Kelkkanen, A.K.; Lundqvist, B.I.; Nørskov, J.K. Density functional for van der Waals forces accounts for hydrogen bond in benchmark set of water hexamers. J. Chem. Phys. 2009, 131, 046102. [Google Scholar] [CrossRef] [PubMed]
- Seijas, L.E.; Zambrano, C.H.; Almeida, R.; Alí-Torres, J.; Rincón, L.; Torres, F.J. Exploring the non-covalent bonding in water clusters. Int. J. Mol. Sci. 2023, 24, 5271. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Schmidt, J.R.; Skinner, J.L. Hydrogen bonding definitions and dynamics in liquid water. J. Chem. Phys. 2007, 126, 204107. [Google Scholar] [CrossRef]
- Edamana, S.; Login, F.H.; Yamada, S.; Kwon, T.-H.; Nejsum, L.N. Aquaporin water channels as regulators of cell-cell adhesion proteins. Am. J. Physiol.-Cell Physiol. 2015, 185, 109–128. [Google Scholar] [CrossRef]
- Yi, W.; Emad, T. Molecular mechanisms of conduction and selectivity in aquaporin water Channels. J. Nutr. 2007, 137, 15095–15155. [Google Scholar]
- Chanturiya, A.; Chernomordik, L.V.; Zimmerberg, J. Flickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers. Proc. Natl. Acad. Sci. USA 1997, 94, 14423–14428. [Google Scholar] [CrossRef]
- Marelli, G.; Smirnova, Y.G.; Müller, M. Mechanics of membrane fusion/pore formation. Chem. Phys. Lipids 2015, 185, 109–128. [Google Scholar]
- Milhaud, J. New insights into water–phospholipid model membrane interactions. Biochim. Biophys. Acta (BBA)–Biomembr. 2004, 1663, 19–51. [Google Scholar] [CrossRef]
- Villanelo, F.; Escalona, Y.; Pareja-Barrueto, C.; Garate, J.A.; Skerrett, I.M.; Perez-Acle, T. Accessing gap-junction channel structure-function relationships through molecular modeling and simulations. BMC Cell Biol. 2017, 18, 5. [Google Scholar] [CrossRef] [PubMed]
- Darré, L.; Machado, M.R.; Dans, P.D.; Herrera, F.E.; Pantano, S. Another coarse grain model for aqueous solvation: WAT FOUR? J. Chem. Theory Comput. 2010, 6, 3793–3807. [Google Scholar] [CrossRef]
- Heine, N.; Fagiani, M.R.; Rossi, M.; Wende, T.; Berden, G.; Blum, V.; Asmis, K.R. Isomer-selective detection of hydrogen-bond vibrations in the protonated water hexamer. J. Am. Chem. Soc. 2013, 135, 8266–8273. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.-T.; Yang, Y.-H. Intake of molecular hydrogen in drinking water increases membrane transporters, p-Glycoprotein, and multidrug resistance-associated protein 2 without affecting Xenobiotic-Metabolizing Enzymes in Rat Liver. Molecules 2019, 24, 2627. [Google Scholar] [CrossRef] [PubMed]
- Nakao, A.; Toyoda, Y.; Sharma, P.; Evans, M.; Guthrie, N. Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndrome—An open label pilot study. J. Clin. Biochem. Nutr. 2010, 46, 140–149. [Google Scholar] [CrossRef]
- Timon, R.; Olcina, G.; Gonzalez-Custodio, A.; Camacho-Cardenosa, M.; Camacho-Cardenosa, A.; Guardado, I. Effects of 7-day intake of hydrogen-rich water on physical performance of trained and untrained subjects. Biol. Sport 2021, 38, 269–275. [Google Scholar] [CrossRef]
- Ignatov, I.; Huether, F.; Neshev, N.; Kiselova-Kaneva, Y.; Popova, T.P.; Bankova, R.; Valcheva, N.; Ignatov, A.I.; Angelcheva, M.; Angushev, I.; et al. Research of water molecules cluster structuring during Haberlea rhodopensis Friv. Hydration. Plants 2022, 11, 2655. [Google Scholar] [CrossRef]
- Huether, F. Filter System. Fabio and Markus Membrane ENG GMBH. CH Patent WO2020169852A1, 3 January 2019. Available online: https://patents.google.com/patent/US20220126239A1/en (accessed on 10 November 2024).
- Ignatov, I.; Marinov, Y.; Huether, F.; Gluhchev, G.; Iliev, M.T. Modeling of water clusters: Spectral analyses, Gaussian distribution, and linear Function during Time. Ukr. J. Phys. 2024, 69, 632–642. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
- Shields, R.M.; Temelso, B.; Archer, K.A.; Morrell, T.E.; Shields, G.C. Accurate Predictions of water cluster formation, (H2O)n=2-10. J. Phys. Chem. A 2010, 114, 11725–11737. [Google Scholar] [CrossRef]
- Sun, N.; Li, Z.; Qiu, N.; Yu, X.; Zhang, X.; Li, Y.; Yang, L.; Luo, K.; Huang, Q.; Du, S. Ab initio studies on the clathrate hydrates of some nitrogen- and sulfur-containing gases. J. Phys. Chem. A 2017, 121, 2620–2626. [Google Scholar] [CrossRef]
- Yang, N.; Duong, C.H.; Kelleher, P.J.; Johnson, M.A. Capturing intrinsic site-dependent spectral signatures and lifetimes of isolated OH oscillators in extended water networks. Nat. Chem. 2020, 12, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Rakshit, A.; Bandyopadhyay, P.; Heindel, J.P.; Xantheas, S.S. Atlas of putative minima and low-lying energy networks of water clusters n = 3–25. J. Chem. Phys. 2019, 151, 214307. [Google Scholar] [CrossRef] [PubMed]
- Ditchfield, R. Self-consistent perturbation theory of diamagnetism. Mol. Phys. 1974, 27, 789–807. [Google Scholar] [CrossRef]
- Klein, R.A. Ab initio conformational studies on diols and binary diol-water systems using DFT methods. Intramolecular hydrogen bonding and 1:1 complex formation with water. J. Comput. Chem. 2002, 23, 585–599. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.A. Hydrogen bonding in diols and binary diol–water systems investigated using DFT methods. II. Calculated infrared OH-stretch frequencies, force constants, and NMR chemical shifts correlate with hydrogen bond geometry and electron density topology. A re-evaluation of geometrical criteria for hydrogen bonding. J. Comput. Chem. 2003, 24, 1120–1131. [Google Scholar]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Temelso, B.; Köddermann, T.; Kirschner, K.N.; Klein, K.; Shields, G.C. Structure and thermodynamics of H3O+(H2O)8 clusters: A combined molecular dynamics and quantum mechanics approach. Computat.Theor. Chem. 2013, 1021, 240–248. [Google Scholar] [CrossRef]
- Kumar, P.; Sathyamurthy, N. Theoretical studies of host-guest interaction in Gas hydrates. J. Phys. Chem. A 2011, 115, 14276–14281. [Google Scholar] [CrossRef]
- Botek, M.; Krejčí, J.; McKune, A.J.; Sládečková, B.; Naumovski, N. Hydrogen-rich water improved ventilatory, perceptual, and lactate responses to exercise. Int. Sports Med. 2019, 40, 879–885. [Google Scholar] [CrossRef]
- Najmanová, E.; Manethová, H.; Botek, M.; Pluháček, F. Effects of acute hydrogen-rich water intake in intraocular pressure in healthy subjects. Czech Slovak Ophthalmol. 2023, 79, 180–184. [Google Scholar] [CrossRef]
- Stroobants, K.; Absillis, G.; Shestakova, P.S.; Willem, R.; Parac-Vogt, T.N. Hydrolysis of tetraglycine by a Zr(IV)-substituted Wells-Dawson polyoxotungstate studied by diffusion ordered NMR spectroscopy. J. Clust. Sci. 2014, 25, 855–866. [Google Scholar] [CrossRef]
- Mackie, C.J.; Lu, W.; Liang, J.; Kostko, O.; Bandyopadhyay, B.; Gupta, I.; Ahmed, M.; Head-Gordon, M. Magic numbers and stabilities of photoionized water clusters: Computational and experimental characterization of the nanosolvated hydronium ion. J. Phys. Chem. B 2023, 127, 5999–6011. [Google Scholar] [CrossRef] [PubMed]
- Maheshwary, S.; Patel, N.; Sathyamurthy, N.; Kulkarni, A.D.; Gadre, S.R. Structure and stability of water clusters (H2O)n, n = 8−20: An ab initio investigation. J. Phys. Chem. A 2001, 105, 10525–10537. [Google Scholar] [CrossRef]
- Masella, M.; Flament, J.P. A pairwise and two many-body models for water: Influence of nonpairwise effects upon the stability and geometry of (H2O)n cyclic (n = 3–6) and cagelike (n = 6–20) clusters. J. Chem. Phys. 1997, 10, 9105–9116. [Google Scholar] [CrossRef]
- Toshkova, R.; Neshev, N.; Ignatov, I.; Huether, F.; Ignatov, A.I.; Angushev, I. Effects of hydrogen-rich water on hamsters with experimental myeloid tumor. Libr. Oncol. 2023, 51, 85–96. [Google Scholar] [CrossRef]
- Anant, D.K. Unraveling hydrogen bonded clustering with water: Density Functional Theory Perspective. In Density Functional Theory, Rij; Daniel, G.-M., Ed.; IntechOpen: London, UK, 2021; Volume 10. [Google Scholar]
- Kristinaitytė, K.; Dagys, L.; Kausteklis, J.; Klimavicius, V.; Doroshenko, I.; Pogorelov, V.; Valevičienė, N.R.; Balevicius, V. NMR and FTIR studies of clustering of water molecules: From low-temperature matrices to nano-structured materials used in innovative medicine. J. Mol. Liq. 2017, 235, 1–6. [Google Scholar] [CrossRef]
Sample | δ, ppm | Δν1/2, Hz | Comment |
---|---|---|---|
1 | 4.173 | 6.50 | A control sample of filtered tap water |
2 | 4.257 | 8.77 | Sample of HEW |
Number of Water Molecules in Cluster | Number of Hydrogen Bonds | δ, ppm |
---|---|---|
3 | 3 | 2.38 |
4 | 4 | 4.16 |
5 | 5 | 4.39 |
6 | 8 | 4.28 |
7 | 10 | 4.54 |
8 | 12 | 4.97 |
9 | 13 | 5.03 |
10 | 15 | 5.19 |
11 | 17 | 5.03 |
12 | 20 | 5.12 |
13 | 21 | 5.19 |
14 | 23 | 5.30 |
16 | 28 | 5.20 |
17 | 28 | 5.50 |
18 | 31 | 5.27 |
19 | 31 | 5.57 |
20 | 34 | 5.52 |
21 | 34 | 5.72 |
22 | 38 | 5.51 |
23 | 39 | 5.60 |
Cluster | Number of Hydrogen Bonds | δ, ppm | Comment |
---|---|---|---|
H2O | 0 | 1.83 | |
(H2O)2 | 1 | 2.56 | |
(H2O)3 | 3 | 3.69 | Cyclic |
(H2O)4 | 4 | 4.38 | Cyclic |
(H2O)5 | 5 | 4.60 | Cyclic |
(H2O)6 | 6 | 4.58 | Cyclic |
(H2O)7 | 8 | 4.83 | CH1 |
(H2O)8 | 12 | 5.42 | D2d |
(H2O)9 | 13 | 5.45 | D2dDDh |
(H2O)10 | 15 | 5.57 | PP1 |
(H2O)20 | 30 | 5.60 | [42] |
(H2O)24 | 36 | 5.29 | [42] |
(H2O)28 | 42 | 5.33 | [42] |
H3O+(H2O)20 | 34 | 6.02 | [43] |
Number of Water Molecules in Cluster | Number of Hydrogen Bonds | δ, ppm |
---|---|---|
3 | 3 | 6.14 |
4 | 4 | 6.14 |
5 | 5 | 6.14 |
6 | 8 | 6.01 |
7 | 10 | 6.16 |
8 | 12 | 6.16 |
9 | 13 | 6.15 |
10 | 15 | 6.15 |
11 | 17 | 6.15 |
12 | 20 | 5.93 |
13 | 21 | 5.94 |
14 | 23 | 5.93 |
16 | 28 | 5.91 |
17 | 28 | 5.92 |
18 | 31 | 5.90 |
19 | 31 | 5.96 |
20 | 34 | 6.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vassilev, N.; Ignatov, I.; Popova, T.P.; Huether, F.; Ignatov, A.I.; Iliev, M.T.; Marinov, Y. Nuclear Magnetic Resonance (NMR) and Density Functional Theory (DFT) Study of Water Clusters of Hydrogen-Rich Water (HRW). Water 2024, 16, 3261. https://doi.org/10.3390/w16223261
Vassilev N, Ignatov I, Popova TP, Huether F, Ignatov AI, Iliev MT, Marinov Y. Nuclear Magnetic Resonance (NMR) and Density Functional Theory (DFT) Study of Water Clusters of Hydrogen-Rich Water (HRW). Water. 2024; 16(22):3261. https://doi.org/10.3390/w16223261
Chicago/Turabian StyleVassilev, Nikolay, Ignat Ignatov, Teodora P. Popova, Fabio Huether, Alexander I. Ignatov, Mario T. Iliev, and Yordan Marinov. 2024. "Nuclear Magnetic Resonance (NMR) and Density Functional Theory (DFT) Study of Water Clusters of Hydrogen-Rich Water (HRW)" Water 16, no. 22: 3261. https://doi.org/10.3390/w16223261
APA StyleVassilev, N., Ignatov, I., Popova, T. P., Huether, F., Ignatov, A. I., Iliev, M. T., & Marinov, Y. (2024). Nuclear Magnetic Resonance (NMR) and Density Functional Theory (DFT) Study of Water Clusters of Hydrogen-Rich Water (HRW). Water, 16(22), 3261. https://doi.org/10.3390/w16223261