A Pore-Scale Simulation of the Effect of Heterogeneity on Underground Hydrogen Storage
Abstract
:1. Introduction
2. Methodology
2.1. Geometry Models
2.2. Governing Equations
2.3. Initial and Boundary Conditions
3. Results and Discussion
3.1. The Influence of Heterogeneous Structures
3.2. The Influence of Wettability
3.3. Gravitational Influence
4. Conclusions
- (1)
- There are obvious differences in the H2–brine flow distributions in the four heterogeneous structures, which are due to the combined effects of capillary, viscous, and inertial forces in the heterogeneous pore structures.
- (2)
- H2 passing through the region of the low pore–throat ratio suffers from greater capillary resistance, and the breakthrough distance is shorter compared to the neighboring regions. The low-pore–throat ratio region is more easily affected by the neighboring pore region, and the obstruction effect is more obvious when it is adjacent to the high-pore–throat ratio region than when it is adjacent to the medium-pore–throat region. This is a result of the complex pressure distribution in heterogeneous pores.
- (3)
- In high-pore–throat ratio structures, an abrupt change in interfacial velocity is associated with the difference between wide pores and adjacent narrow throats. The interfacial velocity may increase by several orders at the local pore scale, leading to non-negligible viscous flow effects.
- (4)
- In this study, the increase in the pore–throat ratio from 6.35 (low pore–throat ratio) to 12.12 (medium pore–throat ratio) promotes H2 flow. In contrast, the increase in the pore–throat ratio from 12.12 (medium pore–throat ratio) to 23.67 (high pore–throat ratio) negatively affects H2 flow. This suggests that the complex interaction between contact angle and pore geometry plays a crucial role in controlling the pattern of displacement.
- (5)
- In the HLM structure, the saturation of H2 is the highest at a contact angle of 55° and the lowest at a contact angle of 80°. This phenomenon suggests that although normally, a decrease in wettability enhances the capillary resistance and reduces the saturation of the gas, the pore structure and pressure distribution in localized regions in complex heterogeneous structures may change this trend.
- (6)
- The influence of gravity on the two-phase H2–brine flow should not be neglected, and the gravity effect will change the gathering location of the liquid phase as well as the flow path of H2.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kalair, A.; Abas, N.; Saleem, M.S.; Kalair, A.R.; Khan, N. Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage 2021, 3, e135. [Google Scholar] [CrossRef]
- Guilbert, D.; Vitale, G. Hydrogen as a clean and sustainable energy vector for global transition from fossil-based to zero-carbon. Clean Technol. 2021, 3, 881–909. [Google Scholar] [CrossRef]
- Glenk, G.; Reichelstein, S. Economics of converting renewable power to hydrogen. Nat. Energy 2019, 4, 216–222. [Google Scholar] [CrossRef]
- Zhang, X.; Bauer, C.; Mutel, C.L.; Volkart, K. Life Cycle Assessment of Power-to-Gas: Approaches, system variations and their environmental implications. Appl. Energy 2017, 190, 326–338. [Google Scholar] [CrossRef]
- Ball, M.; Weeda, M. The hydrogen economy–vision or reality? Int. J. Hydrogen Energy 2015, 40, 7903–7919. [Google Scholar] [CrossRef]
- van der Spek, M.; Banet, C.; Bauer, C.; Gabrielli, P.; Goldthorpe, W.; Mazzotti, M.; Munkejord, S.T.; Røkke, N.A.; Shah, N.; Sunny, N.; et al. Perspective on the hydrogen economy as a pathway to reach net-zero CO 2 emissions in Europe. Energy Environ. Sci. 2022, 15, 1034–1077. [Google Scholar] [CrossRef]
- Tarkowski, R. Underground hydrogen storage: Characteristics and prospects. Renew. Sustain. Energy Rev. 2019, 105, 86–94. [Google Scholar] [CrossRef]
- Bade, S.O.; Taiwo, K.; Ndulue, U.F.; Tomomewo, O.S.; Oni, B.A. A review of underground hydrogen storage systems: Current status, modeling approaches, challenges, and future prospective. Int. J. Hydrogen Energy 2024, 80, 449–474. [Google Scholar] [CrossRef]
- Raad, S.M.J.; Leonenko, Y.; Hassanzadeh, H. Hydrogen storage in saline aquifers: Opportunities and challenges. Renew. Sustain. Energy Rev. 2022, 168, 112846. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Cai, S.; Yao, J.; Xie, Q. Pore-scale modelling on hydrogen transport in porous media: Implications for hydrogen storage in saline aquifers. Int. J. Hydrogen Energy 2023, 48, 13922–13933. [Google Scholar] [CrossRef]
- Delshad, M.; Umurzakov, Y.; Sepehrnoori, K.; Eichhubl, P.; Batista Fernandes, B.R. Hydrogen storage assessment in depleted oil reservoir and saline aquifer. Energies 2022, 15, 8132. [Google Scholar] [CrossRef]
- Zivar, D.; Kumar, S.; Foroozesh, J. Underground hydrogen storage: A comprehensive review. Int. J. Hydrogen Energy 2021, 46, 23436–23462. [Google Scholar] [CrossRef]
- Du, Z.; Dai, Z.; Yang, Z.; Zhan, C.; Chen, W.; Cao, M.; Thanh, H.V.; Soltanian, M.R. Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges. Renew. Sustain. Energy Rev. 2024, 196, 114366. [Google Scholar] [CrossRef]
- Heinemann, N.; Booth, M.G.; Haszeldine, R.S.; Wilkinson, M.; Scafidi, J.; Edlmann, K. Hydrogen storage in porous geological formations–onshore play opportunities in the midland valley (Scotland, UK). Int. J. Hydrogen Energy 2018, 43, 20861–20874. [Google Scholar] [CrossRef]
- Heinemann, N.; Alcalde, J.; Miocic, J.M.; Hangx, S.J.T.; Kallmeyer, J.; Ostertag-Henning, C.; Hassanpouryouzband, A.; Thaysen, E.M.; Strobel, G.J.; Schmidt-Hattenberger, C.; et al. Enabling large-scale hydrogen storage in porous media—The scientific challenges. Energy Environ. Sci. 2021, 14, 853–864. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, R.; Jha, N.K.; Sarmadivaleh, M.; Lebedev, M.; Al-Yaseri, A.; McClure, J.; Chen, C. Using X-ray computed tomography and pore-scale numerical modeling to study the role of heterogeneous rock surface wettability on hydrogen-brine two-phase flow in underground hydrogen storage. Fuel 2024, 366, 131414. [Google Scholar] [CrossRef]
- Al-Yaseri, A.; Fatah, A.; Adebayo, A.R.; Al-Qasim, A.S.; Patil, P.D. Pore structure analysis of storage rocks during geological hydrogen storage: Investigation of geochemical interactions. Fuel 2024, 361, 130683. [Google Scholar] [CrossRef]
- Bo, Z.; Hörning, S.; Underschultz, J.R.; Garnett, A.; Hurter, S. Effects of geological heterogeneity on gas mixing during underground hydrogen storage (UHS) in braided-fluvial reservoirs. Fuel 2024, 357, 129949. [Google Scholar] [CrossRef]
- Song, H.; Lao, J.; Zhang, L.; Xie, C.; Wang, Y. Underground hydrogen storage in reservoirs: Pore-scale mechanisms and optimization of storage capacity and efficiency. Appl. Energy 2023, 337, 120901. [Google Scholar] [CrossRef]
- Bahrami, M.; Amiri, E.I.; Zivar, D.; Ayatollahi, S.; Mahani, H. Challenges in the simulation of underground hydrogen storage: A review of relative permeability and hysteresis in hydrogen-water system. J. Energy Storage 2023, 73, 108886. [Google Scholar] [CrossRef]
- Hashemi, L.; Blunt, M.; Hajibeygi, H. Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological porous media. Sci. Rep. 2021, 11, 8348. [Google Scholar] [CrossRef]
- Medina, O.E.; Gallego, J.F.; Moncayo-Riascos, I.; Lysyy, M.; Benjumea, P.N.; Cortés, F.B.; Franco, C.A. Salinity influence on underground hydrogen storage: Insights from molecular dynamics and pore-scale analysis. Int. J. Hydrogen Energy 2024, 60, 959–975. [Google Scholar] [CrossRef]
- Alhotan, M.; Jia, C.; Alsousy, A.; Delshad, M.; Sepehrnoori, K. Impact of permeability heterogeneity coupled with well placement strategy on underground hydrogen storage reservoir simulation. In SPE Middle East Oil and Gas Show and Conference; SPE: Richardson, TX, USA, 2023; p. D031S097R003. [Google Scholar]
- Zamehrian, M.; Gupta, I.; Zeidouni, M. Perforation Design Coupled with Heterogeneity during Underground Hydrogen Storage in Steeply Dipping Anticline Aquifers. Gas Sci. Eng. 2024, 131, 205470. [Google Scholar] [CrossRef]
- Pfeiffer, W.T.; Bauer, S. Comparing simulations of hydrogen storage in a sandstone formation using heterogeneous and homogenous flow property models. Pet. Geosci. 2019, 25, 325–336. [Google Scholar] [CrossRef]
- Kim, S.; Zhang, J.; Ryu, S. Experimental Study: The Effect of Pore Shape, Geometrical Heterogeneity, and Flow Rate on the Repetitive Two-Phase Fluid Transport in Microfluidic Porous Media. Micromachines 2023, 14, 1441. [Google Scholar] [CrossRef]
- Lysyy, M.; Ersland, G.; Fernø, M. Pore-scale dynamics for underground porous media hydrogen storage. Adv. Water Resour. 2022, 163, 104167. [Google Scholar] [CrossRef]
- Lysyy, M.; Liu, N.; Solstad, C.M.; Fernø, M.A.; Ersland, G. Microfluidic hydrogen storage capacity and residual trapping during cyclic injections: Implications for underground storage. Int. J. Hydrogen Energy 2023, 48, 31294–31304. [Google Scholar] [CrossRef]
- Jangda, Z.; Menke, H.; Busch, A.; Geiger, S.; Bultreys, T.; Singh, K. Subsurface hydrogen storage controlled by small-scale rock heterogeneities. Int. J. Hydrogen Energy 2024, 60, 1192–1202. [Google Scholar] [CrossRef]
- Bagheri, M.; Mahani, H.; Ayatollahi, S.; Zivar, D. Direct pore-scale simulation of the effect of capillary number and gas compressibility on cyclic underground hydrogen storage & production in heterogeneous aquifers. Adv. Water Resour. 2023, 181, 104547. [Google Scholar]
- Bagheri, M.; Mahani, H.; Ayatollahi, S.; Zivar, D. Direct numerical approach for determination of H2-water flow functions applicable to underground hydrogen storage and production. J. Energy Storage 2024, 96, 112573. [Google Scholar] [CrossRef]
- Jasak, H. OpenFOAM: Open source CFD in research and industry. Int. J. Nav. Archit. Ocean Eng. 2009, 1, 89–94. [Google Scholar]
- OpenFOAM: User Guide: BlockMesh. Available online: https://www.openfoam.com/documentation/guides/latest/doc/guide-meshing-blockmesh.html (accessed on 15 October 2024).
- OpenFOAM: User Guide: SnappyHexMesh. Available online: https://www.openfoam.com/documentation/guides/latest/doc/guide-meshing-snappyhexmesh.html (accessed on 15 October 2024).
- Rahbari, A.; Brenkman, J.; Hens, R.; Ramdin, M.; Broeke, L.J.P.v.D.; Schoon, R.; Henkes, R.; Moultos, O.A.; Vlugt, T.J.H. Solubility of water in hydrogen at high pressures: A molecular simulation study. J. Chem. Eng. Data 2019, 64, 4103–4115. [Google Scholar] [CrossRef]
- Raad, S.M.J.; Ranjbar, E.; Hassanzadeh, H.; Leonenko, Y. Hydrogen-brine mixture PVT data for reservoir simulation of hydrogen storage in deep saline aquifers. Int. J. Hydrogen Energy 2023, 48, 696–708. [Google Scholar] [CrossRef]
- Aslannezhad, M.; Ali, M.; Kalantariasl, A.; Sayyafzadeh, M.; You, Z.; Iglauer, S.; Keshavarz, A. A review of hydrogen/rock/brine interaction: Implications for Hydrogen Geo-storage. Prog. Energy Combust. Sci. 2023, 95, 101066. [Google Scholar] [CrossRef]
- Stokes, G.G. On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. In Classics of Elastic Wave Theory; Society of Exploration Geophysicists: Houston, TX, USA, 2007. [Google Scholar]
- Navier, C. Mémoire Sur Les Lois du Mouvement des Fluids; Academie des Sciences: Paris, France, 1822; pp. 389–440. Available online: https://perso.crans.org/epalle/M2/EC/Histoire/Navier1822MemoireSurLesLoisDuMouvementDesFluides.pdf (accessed on 15 October 2024).
- Jasak, H. Error Analysis and Estimation in the Finite Volume Method with Applications to Fluid Flows. Ph.D. Thesis, University of London, London, UK, 1996. [Google Scholar]
- Zalesak, S.T. Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 1979, 31, 335–362. [Google Scholar] [CrossRef]
- Kuzmin, D.; Löhner, R.; Turek, S. (Eds.) Flux-Corrected Transport: Principles, Algorithms, and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- InterFoam—OpenFOAMWiki. Available online: https://openfoamwiki.net/index.php/InterFoam (accessed on 15 October 2024).
- Higgs, S.; Da Wang, Y.; Sun, C.; Ennis-King, J.; Jackson, S.J.; Armstrong, R.T.; Mostaghimi, P. In-situ hydrogen wettability characterisation for underground hydrogen storage. Int. J. Hydrogen Energy 2022, 47, 13062–13075. [Google Scholar] [CrossRef]
- Hashemi, L.; Boon, M.; Glerum, W.; Farajzadeh, R.; Hajibeygi, H. A comparative study for H2–CH4 mixture wettability in sandstone porous rocks relevant to underground hydrogen storage. Adv. Water Resour. 2022, 163, 104165. [Google Scholar] [CrossRef]
- Alanazi, A.; Yekeen, N.; Ali, M.; Ali, M.; Abu-Mahfouz, I.S.; Keshavarz, A.; Iglauer, S.; Hoteit, H. Influence of organics and gas mixing on hydrogen/brine and methane/brine wettability using Jordanian oil shale rocks: Implications for hydrogen geological storage. J. Energy Storage 2023, 62, 106865. [Google Scholar] [CrossRef]
- Erickson, D.; Li, D.; Park, C.B. Numerical simulations of capillary-driven flows in nonuniform cross-sectional capillaries. J. Colloid Interface Sci. 2002, 250, 422–430. [Google Scholar] [CrossRef]
- Sun, Z.; Santamarina, J.C. Haines jumps: Pore scale mechanisms. Phys. Rev. E 2019, 100, 023115. [Google Scholar] [CrossRef]
- Rabbani, H.S.; Joekar-Niasar, V.; Pak, T.; Shokri, N. New insights on the complex dynamics of two-phase flow in porous media under intermediate-wet conditions. Sci. Rep. 2017, 7, 4584. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, H.S.; Zhao, B.; Juanes, R.; Shokri, N. Pore geometry control of apparent wetting in porous media. Sci. Rep. 2018, 8, 15729. [Google Scholar] [CrossRef] [PubMed]
- Aghaei, H.; Al-Yaseri, A.; Toorajipour, A.; Shahsavani, B.; Yekeen, N.; Edlmann, K. Host-rock and caprock wettability during hydrogen drainage: Implications of hydrogen subsurface storage. Fuel 2023, 351, 129048. [Google Scholar] [CrossRef]
Low PTR | Median PTR | High PTR | ||
---|---|---|---|---|
Porosity | 0.27 | 0.20 | 0.18 | |
Pore–throat ratio | 6.35 | 12.12 | 23.67 | |
Specific surface area (103 m2/m3) | 5.84 | 3.20 | 1.64 | |
Size (μm) | Pore | 317.54 | 606.22 | 1183.57 |
Throat | 50 | |||
(Length, Width, Depth) | (4550, 4600, 50) |
Parameter | Value |
---|---|
Size (μm) (L × W × H) | 4550 × 4600 × 50 |
Original voxels | 360 × 360 × 4 |
Number of cells | 125,016 |
Number of points | 180,120 |
Porosity | 0.25 |
Parameter | Inlet Boundary Condition | Outlet Boundary Condition | Solid Walls |
---|---|---|---|
p | calculated | calculated | calculated |
p_rgh | fixedFluxPressure | totalPressure | fixedFluxPressure |
U | fixedValue | pressureInletOutletVelocity | noSlip |
α | fixedValue | zeroGradient | constantAlphaContactAngle |
T | fixedValue | fixedValue | fixedValue |
Parameter | Value | |||
---|---|---|---|---|
Pressure (MPa) | 10 | |||
Temperature (℃) | 35 | |||
Density (kg/m3) | H2 | 7.43 | ||
Brine | 1400 | |||
Viscosity (Pa·s) | H2 | 9.22 × 10−6 | ||
Brine | 7.19 × 10−4 | |||
Contact angle (°) | H2 | 100 | 125 | 150 |
Brine | 80 | 55 | 30 | |
Interfacial tension (N/m) | 0.077 | |||
Inlet velocity (m/s) | 0.01 | |||
Ca | 6.90 × 10−6 | 2.09 × 10−6 | 1.38 × 10−6 | |
Bo | 0.235 | 0.071 | 0.047 | |
Bo·Ca−1 | 3.41 × 104 | 3.40 × 104 | 3.41 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Zhou, Y.; Xie, Z.; Lao, J.; Yue, M. A Pore-Scale Simulation of the Effect of Heterogeneity on Underground Hydrogen Storage. Water 2024, 16, 3264. https://doi.org/10.3390/w16223264
Song H, Zhou Y, Xie Z, Lao J, Yue M. A Pore-Scale Simulation of the Effect of Heterogeneity on Underground Hydrogen Storage. Water. 2024; 16(22):3264. https://doi.org/10.3390/w16223264
Chicago/Turabian StyleSong, Hongqing, Yiyang Zhou, Zhenhuan Xie, Junming Lao, and Ming Yue. 2024. "A Pore-Scale Simulation of the Effect of Heterogeneity on Underground Hydrogen Storage" Water 16, no. 22: 3264. https://doi.org/10.3390/w16223264
APA StyleSong, H., Zhou, Y., Xie, Z., Lao, J., & Yue, M. (2024). A Pore-Scale Simulation of the Effect of Heterogeneity on Underground Hydrogen Storage. Water, 16(22), 3264. https://doi.org/10.3390/w16223264