The Impact of Soil Dry–Wet Cycles on the Mineralization of Soil Organic Carbon and Total Nitrogen in Check Dams of the Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dry–Wet Cycle Experiment
2.3. Sample Determination and Analysis
2.4. Mineralization Calculation
2.5. Statistical Analyses
3. Results
3.1. Effects of Dry–Wet Cycles on Soil Aggregates
3.2. Changes in Soil Organic Carbon Mineralization with Dry–Wet Cycles
3.3. Changes in Soil Total Nitrogen Mineralization with Dry–Wet Cycles
3.4. Effects of Dry–Wet Cycles on Soil Enzyme Activities
3.5. The Impacts of Environmental Factors Associated with the Dry–Wet Cycle on SOC and STN Mineralization
4. Discussion
4.1. Changes in Soil Aggregate Composition Drive the Mineralization of SOC and STN
4.2. The Interaction Between Soil Enzyme Activity and the Mineralization of SOC and STN
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barnard, R.L.; Blazewicz, S.J.; Firestone, M.K. Rewetting of soil: Revisiting the origin of soil CO2 emissions. Soil Biol. Biochem. 2020, 147, 107819. [Google Scholar] [CrossRef]
- Kim, D.G.; Vargas, R.; Bond-Lamberty, B.; Turetsky, M.R. Effects of soil rewetting and thawing on soil gas fluxes: A review of current literature and suggestions for future research. Biogeosciences 2012, 9, 2459–2483. [Google Scholar] [CrossRef]
- Miura, M.; Jones, T.G.; Ford, H.; Hill, P.W.; Jones, D.L. Role of plants in determining the soil response to either a single freeze-thaw or dry-wet event. Appl. Soil Ecol. 2022, 175, 104409. [Google Scholar] [CrossRef]
- Bi, W.; Weng, B.; Yan, D.; Wang, M.; Wang, H.; Wang, J.; Yan, H. Effects of drought-flood abrupt alternation on phosphorus in summer maize farmland systems. Geoderma 2020, 363, 114147. [Google Scholar] [CrossRef]
- Gao, D.; Bai, E.; Li, M.; Zhao, C.; Yu, K.; Hagedorn, F. Responses of soil nitrogen and phosphorus cycling to drying and rewetting cycles: A meta-analysis. Soil Biol. Biochem. 2020, 148, 107896. [Google Scholar] [CrossRef]
- Nsabimana, G.; Bao, Y.; He, X.; Nambajimana, J.D.; Yang, L.; Li, J.; Uwiringiyimana, E.; Nsengumuremyi, P.; Ntacyabukura, T. Soil aggregate stability response to hydraulic conditions in water level fluctuation zone of the Three Gorges Reservoir, China. Catena 2021, 204, 105387. [Google Scholar] [CrossRef]
- Ma, R.; Cai, C.; Li, Z.; Wang, J.; Xiao, T.; Peng, G.; Yang, W. Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X-ray micro-computed tomography. Soil. Tillage Res. 2015, 149, 1–11. [Google Scholar] [CrossRef]
- Denef, K.; Six, J.; Bossuyt, H.; Frey, S.D.; Paustian, K. Influence of dry-wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol. Biochem. 2001, 33, 1599–1611. [Google Scholar] [CrossRef]
- Miura, M.; Hill, P.W.; Jones, D.L. Impact of a single freeze-thaw and dry-wet event on soil solutes and microbial metabolites. Appl. Soil Ecol. 2020, 153, 103636. [Google Scholar] [CrossRef]
- Sun, D.; Li, K.; Bi, Q.; Zhu, J.; Zhang, Q.; Jin, C.; Lu, L.; Lin, X. Effects of organic amendment on soil aggregation and microbial community composition during drying-rewetting alternation. Sci. Total Environ. 2017, 574, 735–743. [Google Scholar] [CrossRef]
- Qi, J.; Chen, B.; Gao, J.; Peng, Z.; Jiao, S.; Wei, G. Responses of soil bacterial community structure and function to dry-wet cycles more stable in paddy than in dryland agricultural ecosystems. Glob. Ecol. Biogeogr. 2021, 31, 362–377. [Google Scholar] [CrossRef]
- Mikha, M.M.; Rice, C.W.; Milliken, G.A. Carbon and nitrogen mineralization as affected by drying and wetting cycles. Soil Biol. Biochem. 2005, 37, 339–347. [Google Scholar] [CrossRef]
- Grant, C.D.; Dexter, A.R. Air entrapment and differential swelling as factors in the mellowing of molded soil during rapid wetting. Aust. J. Soil Res. 1990, 28, 361–369. [Google Scholar] [CrossRef]
- Mueller, C.W.; Schlund, S.; Prietzel, J.; Kögel-Knabner, I.; Gutsch, M. 2012. Soil aggregate destruction by ultrasonication increases soil organic matter mineralization and mobility. Soil Sci. Soc. Am. J. 2012, 76, 1634–1643. [Google Scholar] [CrossRef]
- Schmitt, A.; Glaser, B.; Borken, W.; Matzner, E. Organic matter quality of a forest soil subjected to repeated drying and different re-wetting intensities. Eur. J. Soil Sci. 2010, 61, 243–254. [Google Scholar] [CrossRef]
- Wilhelm, R.C.; Lynch, L.; Webster, T.M.; Schweizer, S.; Inagaki, T.M.; Tfaily, M.M.; Kukkadapu, R.; Hoeschen, C.; Buckley, D.H.; Lehmann, J. Susceptibility of new soil organic carbon to mineralization during dry-wet cycling in soils from contrasting ends of a precipitation gradient. Soil Biol. Biochem. 2022, 169, 108681. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Y.; Ren, Z.; Yu, Y.; Li, P.; Gong, J. Land-use changes and check dams reducing runoff and sediment yield on the Loess Plateau of China. Sci. Total Environ. 2019, 664, 984–994. [Google Scholar] [CrossRef]
- Chen, G.; Wu, Q.; Wang, Y.; Zhao, Y.; Yu, H.; Lu, Y.; Feng, H.; Li, M.; Siddique, K.H.M. Deep soil water use of old-aged vegetation (17- to 36-year stand age) after the formation of dried soil layers based on in situ monitoring. J. Hydrol.-Reg. Stud. 2023, 48, 101446. [Google Scholar] [CrossRef]
- Parham, J.A.; Deng, S.P. Detection, quantification and characterization of β-glucosaminidase activity in soil. Soil Biol. Biochem. 2000, 32, 1183–1190. [Google Scholar] [CrossRef]
- Yoder, R.E. A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. J. Agron. 1936, 28, 337–351. [Google Scholar] [CrossRef]
- Birch, H.F. The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil 1958, 10, 9–31. [Google Scholar] [CrossRef]
- Singer, M.J.; Southard, R.J.; Warrington, D.N.; Janitzky, P. Stability of synthetic sand-clay aggregates after wetting and drying cycles. Soil Sci. Soc. Am. J. 1992, 56, 1843–1848. [Google Scholar] [CrossRef]
- Kaiser, M.; Berhe, A.A. How does sonication affect the mineral and organic constituents of soil aggregates?—A review. J. Plant Nutr. Soil Sci. 2014, 177, 479–495. [Google Scholar] [CrossRef]
- Degens, B.P.; Sparling, G.P. Repeated dry-wet cycles do not accelerate the mineralization of organic C involved in the macro-aggregation of a sandy loam soil. Plant Soil 1995, 175, 197–203. [Google Scholar] [CrossRef]
- Shi, P.; Ren, M.; Li, P.; Li, Z.; Sun, J.; Min, Z.; Ding, S. Effects of 15-year vegetation restoration on organic carbon in soil aggregates on the Loess Plateau, China. Arch. Agron. Soil Sci. 2022, 69, 344–357. [Google Scholar] [CrossRef]
- Nyamadzawo, G.; Nyamangara, J.; Nyamugafata, P.; Muzulu, A. Soil microbial biomass and mineralization of aggregate protected carbon in fallow-maize systems under conventional and no-tillage in Central Zimbabwe. Soil Tillage Res. 2009, 102, 151–157. [Google Scholar] [CrossRef]
- Hartmann, A.A.; Barnard, R.L.; Marhan, S.; Niklaus, P. Effects of drought and N-fertilization on N cycling in two grassland soils. Oecologia 2013, 171, 705–717. [Google Scholar] [CrossRef]
- Diel, J.; Vogel, H.; Schlüter, S. Impact of wetting and drying cycles on soil structure dynamics. Geoderma 2019, 345, 63–71. [Google Scholar] [CrossRef]
- Park, E.J.; Sul, W.J.; Smucker, A.J.M. Glucose additions to aggregates subjected to drying/wetting cycles promote carbon sequestration and aggregate stability. Soil Biol. Biochem. 2007, 39, 2758–2768. [Google Scholar] [CrossRef]
- Song, M.; He, T.; Chen, H.; Wang, K.; Li, D. Dynamics of soil gross nitrogen transformations during post-agricultural succession in a subtropical Karst region. Geoderma 2019, 341, 1–9. [Google Scholar] [CrossRef]
- Cenkseven, S.; Kizildag, N.; Kocak, B.; Sagliker, H.A.; Darici, C. Soil Organic Matter Mineralization under Different Temperatures and Moisture Conditions in Kizildag Plateau, Turkey. Sains Malays. 2017, 46, 763–771. [Google Scholar] [CrossRef]
- Rashid, M.I.; Shahzad, T.; Shahid, M.; Ismail, I.M.I.; Shah, G.M.; Almeelbi, T. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil. J. Hazard. Mater. 2017, 324, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Han, J.; Li, J.; Xu, Y.; Wang, X. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure. PLoS ONE 2019, 14, e0211163. [Google Scholar]
- Keuskamp, J.A.; Schmitt, H.; Laanbroek, H.J.; Verhoeven, J.T.A.; Hefting, M.M. Nutrient amendment does not increase mineralisation of sequestered carbon during incubation of a nitrogen limited mangrove soil. Soil Biol. Biochem. 2013, 57, 822–829. [Google Scholar] [CrossRef]
- He, Y.; Wang, Y.; Jiang, Y.; Yin, G.; Cao, S.; Liu, X.; Wang, R.; Wu, Z.; Chen, F. Drivers of soil respiration and nitrogen mineralization change after litter management at a subtropical Chinese sweetgum tree plantation. Soil Use Manag. 2023, 39, 92–103. [Google Scholar] [CrossRef]
Dry–Wet Treatment | Soil Macro-Aggregates (>5 mm) | Soil Small Aggregates (0.25–5 mm) | Soil Micro-Aggregates (<0.25 mm) |
---|---|---|---|
CK | 76.38 ± 4.23 | 13.52 ± 2.31 | 10.09 ± 2.21 |
5% | 55.61 ± 5.89 | 22.03 ± 2.74 | 22.36 ± 5.52 |
10% | 55.41 ± 4.69 | 18.89 ± 2.89 | 25.71 ± 1.89 |
15% | 57.25 ± 11.79 | 21.19 ± 6.30 | 21.56 ± 5.63 |
100% | 93.88 ± 6.79 | 4.84 ± 1.04 | 1.28 ± 0.09 |
Group | Soil Moisture | Dry–Wet Cycle | Soil Enzyme Activity | Soil Aggregate |
---|---|---|---|---|
SOC mineralization | −0.319 ** | 0.613 ** | 0.423 ** | −0.433 ** |
STN mineralization | 0.016 | 0.457 ** | 0.290 ** | −0.416 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Shi, P.; Bai, L.; Min, Z.; Xu, D.; Wang, B.; Cui, L. The Impact of Soil Dry–Wet Cycles on the Mineralization of Soil Organic Carbon and Total Nitrogen in Check Dams of the Loess Plateau. Water 2024, 16, 3274. https://doi.org/10.3390/w16223274
Gao Z, Shi P, Bai L, Min Z, Xu D, Wang B, Cui L. The Impact of Soil Dry–Wet Cycles on the Mineralization of Soil Organic Carbon and Total Nitrogen in Check Dams of the Loess Plateau. Water. 2024; 16(22):3274. https://doi.org/10.3390/w16223274
Chicago/Turabian StyleGao, Zechao, Peng Shi, Lulu Bai, Zhiqiang Min, Duoxun Xu, Bo Wang, and Lingzhou Cui. 2024. "The Impact of Soil Dry–Wet Cycles on the Mineralization of Soil Organic Carbon and Total Nitrogen in Check Dams of the Loess Plateau" Water 16, no. 22: 3274. https://doi.org/10.3390/w16223274
APA StyleGao, Z., Shi, P., Bai, L., Min, Z., Xu, D., Wang, B., & Cui, L. (2024). The Impact of Soil Dry–Wet Cycles on the Mineralization of Soil Organic Carbon and Total Nitrogen in Check Dams of the Loess Plateau. Water, 16(22), 3274. https://doi.org/10.3390/w16223274