Epiplastic Algal Communities on Different Types of Polymers in Freshwater Bodies: A Short-Term Experiment in Karst Lakes
Abstract
:1. Introduction
- –
- What is the similarity between the species composition of phytoplankton communities and communities of epiplastic algae, and is there any similarity between communities of periphytic algae on the same polymers within one water system?
- –
- Is there selectivity among microalgae taxa in colonizing the surfaces of certain types of plastic?
- –
- Are there differences in the initial stages of the colonization of epiplastic algal communities of different types of plastic?
- –
- Is there a difference in the periphytic algae community formation at different layers of the photic zone (surface and lower transparency limit)?
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Sampling
2.3. Environmental Parameters
2.4. Phytoplankton and Epiplastic Algal Community Analysis
2.5. Statistical Analysis
3. Results
3.1. Environmental Variables
3.2. Taxonomical and Ecological Composition of Phytoplankton and Periphytic Algae of Different Plastic Substrates
3.3. Abundance and Biomass of Phytoplankton and Periphytic Algae Communities of Different Plastic Substrates
3.4. Dominant Species of Phytoplankton and Periphytic Algae Communities in Different Plastic Substrates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cera, A.; Cesarini, G.; Scalici, M. Microplastics in freshwater: What is the news from the world? Diversity 2020, 12, 276. [Google Scholar] [CrossRef]
- Plastics Europe. Plastics—The Facts 2022. An Analysis of European Plastics Production, Demand, Conversion and End-of-Life Management. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (accessed on 31 August 2024).
- Rochman, C.M.; Hoh, E.; Kurobe, T.; Teh, S.J. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep. 2013, 3, 3263. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, N.B.; Huffer, T.; Thompson, R.C.; Hassellov, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef]
- Kershaw, P. Sources, fate and effects of microplastics in the marine environment: Part two of a global assessment. GESAMP Fr. 2016, 93, 220. [Google Scholar]
- Bellasi, A.; Binda, G.; Pozzi, A.; Galafassi, S.; Volta, P.; Bettinetti, R. Microplastic contamination in freshwater environments: A review, focusing on interactions with sediments and benthic organisms. Environments 2020, 7, 30. [Google Scholar] [CrossRef]
- Gola, D.; Tyagi, P.; Arya, A.; Chauhan, N.; Agarwal, M.; Singh, S.K.; Gola, S. The impact of microplastics on marine environment: A review. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100552. [Google Scholar] [CrossRef]
- Raju, P.; Santhanam, P.; Perumal, P. Impacts of microplastics on marine organisms: Present perspectives and the way forward. Egypt. J. Aquat. Res. 2022, 48, 205–209. [Google Scholar] [CrossRef]
- De Souza Machado, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Chang. Bio. 2017, 24, 1405–1416. [Google Scholar] [CrossRef]
- Nugnes, R.; Lavorgna, M.; Orlo, E.; Russo, C.; Isidori, M. Toxic impact of polystyrene microplastic particles in freshwater organisms. Chemosphere 2022, 299, 134373. [Google Scholar] [CrossRef]
- Li, W.C.; Tse, H.F.; Fok, L. Plastic waste in the marine environment: A review of sources, occurrence and effects. Sci. Total. Environ. 2016, 566, 333–349. [Google Scholar] [CrossRef]
- Pasqualini, V.; Garrido, M.; Cecchi, P.; Connès, C.; Couté, A.; El Rakwe, M.; Henry, M.; Hervio-Heath, D.; Quilichini, Y.; Simonnet, J.; et al. Harmful algae and pathogens on plastics in three mediterranean coastal lagoons. Heliyon 2023, 9, e13654. [Google Scholar] [CrossRef] [PubMed]
- Gregory, M.R. Environmental implications of plastic debris in marine settings-entanglement, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. B. 2009, 364, 2013–2025. [Google Scholar] [CrossRef] [PubMed]
- Keswani, A.; Oliver, D.M.; Gutierrez, T.; Quilliam, R.S. Microbial hitchhikers on marine plastic debris: Human exposure risks at bathing waters and beach environments. Mar. Environ. Res. 2016, 118, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Artham, T.; Sudhakar, M.; Venkatesan, R.; Madhavan Nair, C.; Murty, K.V.G.K.; Doble, M. Biofouling and stability of synthetic polymers in sea water. Int. Biodeterioaration Biodegrad. 2009, 63, 884–890. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Natarajan, K.; Hemambika, B.; Ramesh, N.; Sumathi, C.S.; Kottaimuthu, R.; Rajesh Kannan, V. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett. Appl. Microbiol. 2010, 51, 205–211. [Google Scholar] [CrossRef]
- Zettler, E.R.; Mincer, T.J.; Amral-Zetter, L.A. Life in the ‘plastisphere’: Microbial communities on plastic marine debris. Environ. Sci. Technol. 2013, 47, 7137–7146. [Google Scholar] [CrossRef]
- Webb, H.; Arnott, J.; Crawford, R.; Ivanova, E. Plastic Degradation and Its Environmental Implications with Special Reference to Poly(ethylene terephthalate). Polymers 2013, 5, 1–18. [Google Scholar] [CrossRef]
- Reisser, J.; Shaw, J.; Hallegraeff, G.; Proietti, M.; Barnes, D.K.A.; Thums, M.; Wilcox, C.; Hardesty, B.D.; Pattiaratchi, C. Millimeter-sized marine plastics: A new pelagic habitat for microorganisms and invertebrates. PLoS ONE 2014, 9, e100289. [Google Scholar] [CrossRef]
- Andrády, A.L. Microplastics in the Marine Environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef]
- Wilson, H.L.; Johnson, M.F.; Wood, P.J.; Thorne, C.R.; Eichhorn, M.P. Anthropogenic litter is a novel habitat for aquatic macroinvertebrates in urban rivers. Freshw. Biol. 2021, 66, 524–534. [Google Scholar] [CrossRef]
- Mghili, B.; De-la-Torre, G.E.; Aksissou, M. Assessing the potential for the introduction and spread of alien species with marine litter. Mar. Pollut. Bull. 2023, 191, 114913. [Google Scholar] [CrossRef] [PubMed]
- Bottari, T.; Houssa, R.; Brundo, M.V.; Mghili, B.; Maaghloud, H.; Mancuso, M. Plastic litter colonization in a brackish water environment. Sci. Total Environ. 2024, 912, 169177. [Google Scholar] [CrossRef] [PubMed]
- Nava, V.; Leoni, B. A critical review of interactions between microplastics, microalgae and aquatic ecosystem function. Water Res. 2021, 188, 116476. [Google Scholar] [CrossRef] [PubMed]
- Algarte, V.M.; Siqueira, T.; Landeiro, V.L.; Rodrigues, L.; Bonecker, C.; Rodrigues, L.C.; Santana, N.F.; Thomaz, S.M.; Bini, L.M. Main predictors of periphyton species richness depend on adherence strategy and cell size. PLoS ONE 2017, 12, e0181720. [Google Scholar] [CrossRef]
- Pauli, N.-C.; Petermann, J.S.; Lott, C.; Weber, M. Macrofouling communities and the degradation of plastic bags in the sea: An in situ experiment. R. Soc. Open Sci. 2017, 4, 170549. [Google Scholar] [CrossRef] [PubMed]
- Ryabushko, L.I.; Bondarenko, A.V.; Miroshnichenko, E.S.; Shiroyan, A.G.; Lishaev, D.N. Diatom and cyanobacteria communities on artificial polymer substrates in the Crimean coastal waters of the Black Sea. Marine Pollution Bulletin. 2021, 169, 112521. [Google Scholar] [CrossRef]
- Eich, A.; Mildenberger, T.; Laforsch, C.; Weber, M. Bioflm and diatom succession on polyethylene (PE) and biodegradable plastic bags in two marine habitats: Early signs of degradation in the Pelagic and Benthic Zone? PLoS ONE 2015, 10, e0137201. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.L.; Stanton, T.; Law, A. Plastic habitats: Algal biofilms on photic and aphotic plastics. J. Hazard. Mater. Lett. 2021, 2, 100038. [Google Scholar] [CrossRef]
- Balkić, A.G.; Pfeiffer, T.Ž.; Čmelar, K.; Maronić, D.Š.; Stević, F.; Bek, N.; Martinović, A.; Nikolašević, R. Footprint of the plastisphere on freshwater zooplankton. Environ. Res. 2022, 212, 113563. [Google Scholar] [CrossRef] [PubMed]
- Ryabushko, L.I.; Sapozhnikov, P.V.; Bondarenko, A.V.; Kalinina, O.Y. Diatom foulings of synthetic polymer materials in Karantinnay Bay (Crimea, the Black Sea). Issues Mod. Algol. 2019, 20, 87–91. [Google Scholar] [CrossRef]
- Taurozzi, D.; Cesarini, G.; Scalici, M. Epiplastic microhabitats for epibenthic organisms: A new inland water frontier for diatoms. Environ. Sci. Pollut. Res. 2023, 30, 17984–17993. [Google Scholar] [CrossRef] [PubMed]
- Sapozhnikov, F.V.; Snigirova, A.A.; Kalinina, O.Y. Architecture of phytoperiphyton of polyethylene film from the surface of the Black Sea. In Proceedings Report IV All-Russian Scientific Conference with International Participation “Algae: Problems of Taxonomy, Ecology and Use in Monitoring”; Russian Academy of Sciences: St. Petersburg, Russia, 2018; pp. 378–383. (In Russian) [Google Scholar]
- Amaral-Zettler, L.A.; Zettler, E.R.; Slikas, B.; Boyd, G.D.; Melvin, D.W.; Morrall, C.E.; Proskurowski, G.; Mincer, J.T. The biogeography of the plastisphere: Implications for policy. Front. Ecol. Environ. 2015, 13, 541–546. [Google Scholar] [CrossRef]
- McCormick, A.; Hoellein, T.J.; Mason, S.A.; Schluep, J.; Kelly, J.J. Microplastic is an abundant and distinct microbial habitat in an urban river. Environ. Sci. Technol. 2014, 48, 11863–11871. [Google Scholar] [CrossRef] [PubMed]
- Oberbeckmann, S.; Kreikemeyer, B.; Labrenz, M. Environmental factors support the formation of specific bacterial assemblages on microplastics. Front. Microbiol. 2018, 8, 2709. [Google Scholar] [CrossRef]
- Davidov, K.; Iankelevich-Kounio, E.; Yakovenko, I.; Koucherov, Y.; Rubin-Blum, M.; Oren, M. Identification of plastic-associated species in the Mediterranean Sea using DNA metabarcoding with Nanopore MinION. Sci. Rep. 2020, 10, 17533. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G. Microbial Colonization in Marine Environments: Overview of Current Knowledge and Emerging Research Topics. J. Mar. Sci. Eng. 2020, 8, 78. [Google Scholar] [CrossRef]
- Dudek, K.L.; Cruz, B.N.; Polidoro, B.; Neuer, S. Microbial colonization of microplastics in the Caribbean Sea. Limnol. Oceanogr. Lett. 2020, 5, 5–17. [Google Scholar] [CrossRef]
- Harrison, J.P.; Hoellein, T.J.; Sapp, M.; Tagg, A.S.; Ju-Nam, Y.; Ojeda, J.J. Microplastic-Associated Biofilms: A Comparison of Freshwater and Marine Environments. In Freshwater Microplastics: Emerging Environmental Contaminants; Wagner, M., Lambert, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 58, pp. 181–201. [Google Scholar] [CrossRef]
- Domozych, D.S.; Domozych, C.R. Desmids and biofilms of freshwater wetlands: Development and microarchitecture. Microb. Ecol. 2008, 55, 81–93. [Google Scholar] [CrossRef]
- Sapozhnikov, P.V.; Kalinina, O.Y.; Vostokov, S.V. Microplaston artificial polymers in the Miass River and Lake Turgoyak (Southern Urals, Russia) in the early stages of colonization. South Russ. 2023, 18, 133–143. (In Russian) [Google Scholar] [CrossRef]
- Mikac, I.; Fiket, Z.; Baresic, J.; Mikac, N.; Ahel, M. Chemical indicators of anthropogenic impacts in sediments of the pristine karst lakes. Chemosphere 2011, 84, 1140–1149. [Google Scholar] [CrossRef]
- Valentic, L.; Kozel, P.; Pipan, T. Microplastic pollution in vulnerable karst environments: Case study from the Slovenian classical karst region. Acta Carsologica 2022, 51, 79–92. [Google Scholar] [CrossRef]
- Lukina, E.V. Geobotanical characteristics of some karst lakes in the Gorky region. In Biology of Lakes: 3rd All-Union Symposium on the Main Problems of Freshwater Lakes; Institute of Zoology and Parasitology and Department of Geography of the Academy of Sciences of the Lithuanian SSR: Vilnius, Lithuania, 1970; Volume 3, pp. 87–103. (In Russian) [Google Scholar]
- Lavrova, T.V. Spatial Structure of Zooplankton in the Water Area of a Lake System. Ph.D. Thesis, Nizhny Novgorod State University, Nizhny Novgorod, Russia, 2000; p. 16. [Google Scholar]
- All-Union State Standard 31957-2012; Methods for Determining Alkalinity and Mass Concentration of Carbonates and Hydrocarbonates. Standartinform: Moscow, Russia, 2019. (In Russian)
- Manual for the Chemical Analysis of Sea and Fresh Waters for Environmental Monitoring of Fishery Reservoirs; Sapozhinkov, V.V. (Ed.) Russian Federal Research Institute of Fisheries and Oceanography: Moscow, Russia, 2003; pp. 11–113. (In Russian) [Google Scholar]
- All-Union State Standard 33045-2014; Methods for Determination of Nitrogen-Containing Substances. Standartinform: Moscow, Russia, 2019. (In Russian)
- Federal Environmental Regulatory Document 14.1:2.159-2000; Methodology for Measuring the Mass Concentration of Sulfate Ions in Samples of Natural and Waste Waters Using the Turbidimetric Method. Federal Scientific and Methodological Center for Environmental Analysis and Monitoring: Moscow, Russia, 2005. (In Russian)
- All-Union State Standard 57164-2016; Methods for Determining Smell, Taste, Turbidity. Standartinform: Moscow, Russia, 2019. (In Russian)
- All-Union State Standard 31868-2012; Methods for Determining Colour of Water. Standartinform: Moscow, Russia, 2019. (In Russian)
- Komulainen, S.F. Methodological Recommendations for the Study of Phytoperiphyton in Small Rivers; Karelian Research Centre of RAS: Petrozavodsk, Russia, 2003; p. 43. (In Russian) [Google Scholar]
- Vodeneeva, E.L.; Kulizin, P.V. Algae of the Mordovian Nature Reserve. Annotated List of Species. Flora Fauna Nat. Reserves 2019, 134, 62. (In Russian) [Google Scholar]
- Guiry, M.D.; Guiry, G.M.; AlgaeBase. World-Wide Electronic Publication; National University of Ireland: Galway, Ireland, 2023; p. 724. Available online: http://www.algaebase.org (accessed on 29 July 2021).
- Korneva, L.G. Phytoplankton of Volga River Basin Reservoirs; Kostroma Printing House: Kostroma, Russia, 2015; p. 284. (In Russian) [Google Scholar]
- Meteleva, N.Y. Structure and Productivity of Phytoperiphyton of Reservoirs of the Upper Volga Basin. Ph.D. Thesis, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia, 2013; pp. 10–35. [Google Scholar]
- Khedairia, T.; Okhapkin, A.G.; Yakimov, V.N. Composition and Structure of Benthic Algocenoses of a Large Eutrophic River (Using the Example of the Oka River, Russia): II. Abundance Parameters and Species Diversity of Communities. Inland Water Biol. 2023, 16, 54–61. [Google Scholar] [CrossRef]
- Zhikharev, V.S.; Vodeneeva, E.L.; Kudrin, I.A.; Gavrilko, D.E.; Startseva, N.A.; Kulizin, P.V.; Erina, O.; Tereshina, M.; Okhapkin, A.; Shurganova, G.V. The Species structure of plankton communities as a response to changes in the trophic gradient of the mouth areas of large tributaries to a lowland reservoir. Water 2023, 15, 74. [Google Scholar] [CrossRef]
- Vodeneeva, E.L.; Okhapkin, A.G.; Genkal, S.I.; Kulizin, P.V.; Sharagina, E.M.; Skameikina, K.O. Composition, structure and distribution of the phytoplankton of highly mineralized karst lake. Inland Water Biol. 2020, 13, 576–584. [Google Scholar] [CrossRef]
- Trifonova, I.S. Ekologiya i Suktsessiya Ozernogo Fitoplanktona (Ecology and Succession of Lake Phytoplankton); Nauka: St. Petersburg, Russia, 1990. (In Russian) [Google Scholar]
- Magguran, A.E. Ecological Diversity and Its Measurement; Croom Helm: London, UK, 1988; p. 179. [Google Scholar] [CrossRef]
- Borcard, D.; Gillet, F.; Legendre, P. Numerical Ecology with R; Springer: New York, NY, USA, 2011; pp. 88–90. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. 2020. Available online: http://www.R-project.org/ (accessed on 6 March 2024).
- Alekin, O.A. Basics of Hydrochemistry; Bruevich, S.V., Ed.; Hydrometeorology: St. Petersburg, Russia, 1970; pp. 106–110. (In Russian) [Google Scholar]
- Kitaev, S.P. Basics of Limnology for Hydrobiologists and Ichthyologists; KarRC RAS: Petrozavodsk, Russia, 2007; p. 395. (In Russian) [Google Scholar]
- Yang, Y.; Liu, W.; Zhang, Z.; Grossart, H.-P.; Gadd, G.M. Microplastics provide new microbial niches in aquatic environments. Appl. Microbiol. Biotechnol. 2020, 104, 6501–6511. [Google Scholar] [CrossRef] [PubMed]
- Rummel, C.D.; Jahnke, A.; Gorokhova, E.; Kühnel, D.; Schmitt-Jansen, M. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic Microalgae colonization of different microplastic polymers in experimental mesocosms across an environmental gradient environment. Environ. Sci. Technol. Lett. 2017, 4, 258–267. [Google Scholar] [CrossRef]
- Wright, R.J.; Erni-Cassola, G.; Zadjelovic, V.; Latva, M.; Christie-Oleza, J.A. Marine Plastic Debris: A New Surface for Microbial Colonization. Environ. Sci. Technol. 2020, 54, 11657–11672. [Google Scholar] [CrossRef]
- Kiessling, T.; Gutow, L.; Thiel, M. Marine Litter as Habitat and Dispersal Vector. In Marine Anthropogenic Litter; Bergmann, M., Gutow, L., Klages, M., Eds.; Springer: Cham, Switzerland, 2015; pp. 141–184. [Google Scholar] [CrossRef]
- Oberbeckmann, S.; Loeder, M.G.J.; Gerdts, G.; Osborn, M.A. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiol. Ecol. 2014, 90, 478–492. [Google Scholar] [CrossRef]
- Oberbeckmann, S.; Bartosik, D.; Huang, S.; Werner, J.; Hirschfeld, C.; Wibberg, D.; Heiden, S.E.; Bunk, B.; Overmann, J.; Becher, D.; et al. Genomic and proteomic profiles of biofilms on microplastics are decoupled from artificial surface properties. Environ. Microbiol. 2021, 23, 3099–3115. [Google Scholar] [CrossRef]
- Cheng, J.; Jacquin, J.; Conan, P.; Pujo-Pay, M.; Barbe, V.; George, M.; Fabre, P.; Bruzaud, S.; Ter Halle, A.; Meistertzheim, A.-L.; et al. Relative Influence of Plastic Debris Size and Shape, Chemical Composition and Phytoplankton-Bacteria Interactions in Driving Seawater Plastisphere Abundance, Diversity and Activity. Front. Microbiol. 2021, 11, 610231. [Google Scholar] [CrossRef] [PubMed]
- Felisberto, S.; Rodrigues, L. Periphytic algal community in artificial and natural substratum in a tributary of the Rosana reservoir (Corvo Stream, Paraná State, Brazil). Acta Sci. Biol. Sci. 2010, 32, 4. [Google Scholar] [CrossRef]
- Amaral-Zettler, L.A.; Zettler, E.R.; Mincer, T.J. Ecology of the plastisphere. Nat. Rev. Microbiol. 2020, 18, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Oberbeckmann, S.; Osborn, A.M.; Duhaime, M.B. Microbes on a bottle: Substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS ONE 2016, 11, e0159289. [Google Scholar] [CrossRef] [PubMed]
- Bryant, J.A.; Clemente, T.M.; Viviani, D.A.; Fong, A.A.; Thomas, K.A.; Kemp, P.; Karl, D.M.; White, A.E.; DeLong, E.F. Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre. ASM J. 2016, 1, 10–1128. [Google Scholar] [CrossRef]
- Suseela, M.R.; Toppo, K. Algal biofilms on polythenes and its possible degradation. Curr. Sci. 2007, 92, 285–287. [Google Scholar]
- Barone, G.D.; Ferizović, D.; Biundo, A.; Lindblad, P. Hints at the Applicability of Microalgae and Cyanobacteria for the Biodegradation of Plastics. Sustainability 2020, 12, 10449. [Google Scholar] [CrossRef]
- Gunawardana, D.; Abeysiri, S.; Manage, P. Legacy of “New Normal” Plastics and “New Nitrogen” in the Cyanotoxin Footprint in Mangrove Ecosystems. Phycology 2023, 3, 106–126. [Google Scholar] [CrossRef]
- Wood, S.A.; Kuhajek, J.M.; de Winton, M.; Phillips, N.R. Species composition and cyanotoxin production in periphyton mats from three lakes of varying trophic status. FEMS Microbiol. Ecol. 2012, 79, 312–326. [Google Scholar] [CrossRef]
- Nava, V.; Matias, M.G.; Castillo-Escriva, A.; Messyasz, B.; Leoni, B. Microalgae colonization of different microplastic polymers in experimental mesocosms across an environmental gradient. Glob. Chang. Biol. 2022, 28, 1402–1413. [Google Scholar] [CrossRef]
- Rejoy, P.A.P.; Joseph, S.G.P.; Subramani, N. Advancing sustainability: The role of epiplastic microalgae and their enzymatic pathways in freshwater plastic biodegradation. J. Water Process Eng. 2024, 67, 106134. [Google Scholar] [CrossRef]
- Carson, H.S.; Nerheim, M.S.; Carroll, K.A.; Eriksen, M. The plastic-associated microorganisms of the North Pacific Gyre. Mar. Pollut. Bull. 2013, 75, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Kalinina, O.Y.; Sapozhnikov, F.V. The results of a study of microalgae fouling of plastic debris. Environ. Energy Sci. 2019, 4, 46–53. (In Russian) [Google Scholar] [CrossRef]
- Messyasz, B.; Kuczyńska-Kippen, N.; Nagengast, B. The epiphytic communities of various ecological types of aquatic vegetation of five pastoral ponds. Biologia 2009, 64, 88–96. [Google Scholar] [CrossRef]
Variables | Protoka | Lake Velikoye | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
4 July | 7 July | 14 July | 20 July | 25 July | 4 July | 7 July | 14 July | 20 July | 25 July | |
Transparency, cm | 110 | 110 | 70 | 70 | 70 | 100 | 100 | 70 | 70 | 70 |
WT, °C | 22.59 | 24.8 | 16.96 | 20.06 | − | 26.52 | 26.96 | 17.18 | 19.75 | − |
EC, μS/cm | 51.86 | 46.71 | 44.23 | 71.34 | − | 128.65 | 128.97 | 97.94 | 110.52 | − |
O2, % Sat | 113.68 | 109.06 | 70.36 | 96.14 | − | 131.64 | 166.48 | 75.84 | 98.61 | − |
pH | 8.09 | 7.56 | 7.45 | 8.92 | − | 8.59 | 8.59 | 7.81 | 7.65 | − |
Si, mg/L | − | 0.89 | 1.15 | 1.37 | 2.49 | − | 0.70 | 0.98 | 1.85 | 3.33 |
SO42−, mg/L | − | 0.07 | 0.11 | 0.04 | 0.31 | − | 0.01 | 0.04 | 0.01 | 0.04 |
HCO3−, mg/L | − | 27.45 | 6.86 | 30.50 | 27.45 | − | 109.83 | 13.72 | 41.18 | 13.72 |
TP, μg/L | − | 6.75 | 4.30 | 10.44 | 14.12 | − | 13.51 | 16.89 | 19.65 | 19.96 |
N-NO2, μg/L | − | 3.16 | 3.19 | 3.02 | 3.02 | − | 3.08 | 3.23 | 3.12 | 2.98 |
N-NO3, mg/L | − | 0.76 | 0.63 | 0.38 | 1.12 | − | 0.17 | 0.49 | 0.71 | 0.52 |
TUF | − | 0.42 | 0.08 | 0.42 | 0.01 | − | 0.80 | 0.01 | 0.28 | 0.46 |
Color, ° | − | 156 | 119 | 127 | 160 | − | 65 | 76 | 133 | 158 |
Dominant Taxa | fPET | dPET | fLDPE | dLDPE | fPP | dPP | fPS | dPS |
---|---|---|---|---|---|---|---|---|
Cyanobacteria | ||||||||
Aphanizomenon flos-aquae | 12 | 12 | − | 50 (12) | 12 | 12 | 12 | 25 |
Aphanocapsa incerta | − | 12 | − | 12 | − | − | − | − |
Dolichospermum spp. | − | − | 25 (12) | 25 (12) | − | − | − | − |
Lyngbya spp. | − | − | − | (12) | 12 | − | 29 (25) | − |
Merismopedia spp. | − | − | − | 12 | − | − | − | − |
Oscillatoria spp. | − | − | 25 (12) | (12) | − | 25 (12) | − | (13) |
Phormidium spp. | − | 25 (25) | 25 | 25 | − | (12) | − | − |
Pseudanabaena spp. | 12 | 12 | − | 25 | 12 | 25 | − | 25 |
Green algae (Chlorophyta + Charophyta) | ||||||||
CMGA * | 50 (50) | − | 25 (25) | − | 38 (38) | 12 | − | − |
Chlorophyta | ||||||||
Bulbochaete sp. | − | − | − | − | − | (12) | − | − |
Coenococcus planctonicus | 12 | − | − | − | − | 12 | − | − |
Coenochloris fottii | − | − | − | − | − | 12 | − | (13) |
Crucigenia quadrata | − | − | − | − | 12 | − | − | − |
Dictyosphaerium pulchellum | − | 12 | − | − | − | − | − | − |
Oedogonium spp. | 38 (25) | 12 (25) | 12 | (25) | 25 (25) | 12 (25) | 43 (50) | − |
Pediastrum duplex | − | − | − | − | 12(12) | − | − | − |
Bacillariophyta | ||||||||
Aulacoseira granulata | − | − | − | − | − | 12(12) | − | − |
Amphora ovalis | − | − | − | − | − | − | (12) | − |
Cyclotella spp. | (12) | 25 (38) | (12) | 12 | (12) | − | − | − |
Cymbella spp. | − | − | (38) | (12) | − | − | − | − |
Eunotia sp. | (12) | (12) | − | (25) | − | − | − | − |
Fragilaria sp. | − | − | − | (12) | (12) | − | − | − |
Gomphonema sp. | (12) | (25) | − | − | − | − | − | − |
Lindavia comta | 12 | 12 | (12) | − | − | 12 | − | 25 |
Melosira varians | − | 12 (12) | 12 | − | − | (12) | − | − |
Navicula spp. | (12) | (25) | (38) | (63) | 12 (25) | 38 (75) | (12) | (12) |
Nitzschia spp. | 12 (12) | − | − | (12) | − | 12 (12) | − | − |
Pinnularia sp. | − | (25) | − | − | (12) | (12) | − | − |
Stephanodiscus spp. | − | − | − | 12 (12) | − | 25 | − | − |
Tabellaria fenestrata | 12 (12) | 25 (38) | 25(38) | − | 25 | (12) | − | − |
Ulnaria ulna | − | (12) | − | − | (12) | − | − | − |
Ochrophyta (Xanthophyceae) | ||||||||
Tribonema spp. | − | − | − | 25 (25) | − | (12) | (12) | − |
Ochrophyta (Raphidophyceae) | ||||||||
Gonyostmum semen | − | − | − | − | − | (12) | − | − |
Dinophyta | ||||||||
Ceratium cf. hirundinella | (12) | − | − | − | − | − | − | − |
Gymnodinium sp. | − | − | (12) | − | − | − | − | − |
Peridinium spp. | 12 (12) | 12 (12) | (12) | − | − | − | − | − |
Euglenophyta | ||||||||
Phacus sp. | − | − | − | − | − | (12) | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vodeneeva, E.; Pichugina, Y.; Zhurova, D.; Sharagina, E.; Kulizin, P.; Zhikharev, V.; Okhapkin, A.; Ermakov, S. Epiplastic Algal Communities on Different Types of Polymers in Freshwater Bodies: A Short-Term Experiment in Karst Lakes. Water 2024, 16, 3288. https://doi.org/10.3390/w16223288
Vodeneeva E, Pichugina Y, Zhurova D, Sharagina E, Kulizin P, Zhikharev V, Okhapkin A, Ermakov S. Epiplastic Algal Communities on Different Types of Polymers in Freshwater Bodies: A Short-Term Experiment in Karst Lakes. Water. 2024; 16(22):3288. https://doi.org/10.3390/w16223288
Chicago/Turabian StyleVodeneeva, Ekaterina, Yulia Pichugina, Darja Zhurova, Ekaterina Sharagina, Pavel Kulizin, Vyacheslav Zhikharev, Alexander Okhapkin, and Stanislav Ermakov. 2024. "Epiplastic Algal Communities on Different Types of Polymers in Freshwater Bodies: A Short-Term Experiment in Karst Lakes" Water 16, no. 22: 3288. https://doi.org/10.3390/w16223288
APA StyleVodeneeva, E., Pichugina, Y., Zhurova, D., Sharagina, E., Kulizin, P., Zhikharev, V., Okhapkin, A., & Ermakov, S. (2024). Epiplastic Algal Communities on Different Types of Polymers in Freshwater Bodies: A Short-Term Experiment in Karst Lakes. Water, 16(22), 3288. https://doi.org/10.3390/w16223288