The Study of Nitrogen and Phosphorus Removal Efficiency in Urbanized River Systems Using Artificial Wetland Systems with Different Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Test Substrates
2.1.2. Test Solution
2.2. Research Methods
2.2.1. Pore Observation of Substrates
2.2.2. Analysis of Microbial Community Structure
2.2.3. Denitrification and Phosphorus Removal Efficiency Test
2.2.4. Data Analysis Methods
3. Results and Analysis
3.1. Pore Analysis of Substrates
3.2. Microbial Biofilm Analysis
3.3. Treatment Effects of Substrate Membrane Hanging
3.3.1. pH
3.3.2. Ammonia Nitrogen Removal Effect
3.3.3. Total Nitrogen Removal Effect
3.3.4. Total Phosphorus Removal Effect
4. Conclusions and Discussion
4.1. The Impact of Substrate Characteristics on Microbial Community Composition
4.2. Impact of Substrate–Microbe Systems on Water Quality
4.3. Innovation
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, Y.; Ye, J.F.; Sun, X.N.; Hu, S.Y.; Chen, X.; Tang, J.F.; Chen, H. Analyzing the Pollution Sources and Mechanisms of Urban Rivers Based on Identifying the Molecular Signature of Dissolved Organic Matter. Huanjing Kexue 2023, 44, 4353–4363. [Google Scholar] [PubMed]
- Stefanidis, K.; Christopoulou, A.; Poulos, S.; Dassenakis, E.; Dimitriou, E. Nitrogen and Phosphorus Loads in Greek Rivers: Implications for Management in Compliance with the Water Framework Directive. Water 2020, 12, 1531. [Google Scholar] [CrossRef]
- Hao, Z.R. Macroinvertebrate Community Characteristics and Its Relationship with Environmental Factors in River-Lake Ecotone. Ph.D. Thesis, Qingdao University, Shandong, China, 2022. [Google Scholar]
- Malyan, S.K.; Yadav, S.; Sonkar, V.; Goyal, V.C.; Singh, O.; Singh, R. Mechanistic understanding of the pollutant removal and transformation processes in the constructed wetland system. Water Environ. Res. A Res. Publ. Water Environ. Fed. 2021, 93, 1882–1909. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.M.; Li, Y.; Wang, J.R.; Yang, W.Z.; Wang, S.; Kong, F.L. Effects of substrate combinations on greenhouse gas emissions and wastewater treatment performance in vertical subsurface flow constructed wetlands. Ecol. Indic. 2021, 121, 107189. [Google Scholar] [CrossRef]
- Yi, X.S.; Lin, D.X.; Li, J.H.; Zeng, J.; Wang, D.X.; Yang, F. Ecological treatment technology for agricultural non-point source pollution in remote rural areas of China. Environ. Sci. Pollut. Res. Int. 2020, 28, 40075–40087. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.H.; Lu, S.Y.; Zhao, B.; Wang, Z.; Xi, B.D.; Guo, W. Adsorption and biodegradation of sulfamethoxazole and ofloxacin on zeolite: Influence of particle diameter and redox potential. Chem. Eng. J. 2020, 384, 123346. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, M.M.; He, D.; Zhu, J.L.; Yang, S.Q.; Fang, F.; Yang, L.Y. Submerged macrophyte promoted nitrogen removal function of biofilms in constructed wetland. Sci. Total Environ. 2024, 914, 169666. [Google Scholar] [CrossRef]
- Huang, Y.D.; Liu, Y.L.; Fan, K.M.; Xia, S.J. Influence of powdered activated carbon on gravity-driven ultrafiltration for decentralized drinking water treatment: Insights from microbial community and biofilm structure. Sep. Purif. Technol. 2023, 313, 123451. [Google Scholar] [CrossRef]
- Zhao, J.; Ni, G.F.; Piculell, M.; Li, J.; Hu, H.T.; Wang, Z.Y.; Guo, J.H.; Yuan, Z.G.; Zheng, M.; Hu, S.H. Characterizing and comparing microbial community and biofilm structure in three nitrifying moving bed biofilm reactors. J. Environ. Manag. 2022, 320, 115883. [Google Scholar] [CrossRef]
- Andrés, E.; Araya, F.; Vera, I.; Vidal, G.; Pozo, G. Phosphate removal using zeolite in treatment wetlands under different oxidation-reduction potentials. Ecol. Eng. 2018, 117, 18–27. [Google Scholar] [CrossRef]
- Ahmed, A.T.; Farooq, Q.U. Experimental and Computational Analyses for Advanced Wastewater Treatment by Volcanic Rocks. Water Environ. Res. A Res. Publ. Water Environ. Fed. 2023, 95, e10919. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.Q.; Li, J.Z.; Liu, X.G.; Huang, S.L. Influencing Factors of Phosphorus Removal Performance of Constructed Wetlands Substr ates. J. Agro-Environ. Sci. 2008, 27, 748–752. [Google Scholar]
- Gorgoglione, A.; Torretta, V. Sustainable Management and Successful Application of Constructed Wetlands: A Critical Review. Sustainability 2018, 10, 3910. [Google Scholar] [CrossRef]
- Kadlec, H.R.; Brix, H. Large Constructed Wetlands for Phosphorus Control: A Review. Water 2016, 8, 243. [Google Scholar] [CrossRef]
- Shi, X.; Fan, J.L.; Zhang, J.; Shen, Y.H. Enhanced phosphorus removal in intermittently aerated constructed wetlands filled with various construction wastes. Environ. Sci. Pollut. Res. Int. 2017, 24, 22524–22534. [Google Scholar] [CrossRef]
- Mielcarek, A.; Ostrowska, K.; Rodziewicz, J.; Janczukowicz, W. Influence of temperature and C/N ratio on nitrifying and denitrifying bacteria of biofilters treating wastewater from de-icing airport runways. E3S Web Conf. 2019, 116, 00050. [Google Scholar] [CrossRef]
- Papangkorn, J.; Garret, H.; Amanda, F.; Raj, D.; Mouritz, A.P.; Easton, M.A. Characterization of self-piercing rivet joints using X-ray computed tomography. Tomogr. Mater. Struct. 2023, 2, 100010. [Google Scholar]
- Jiao, L.Y. Virtual Mechanical Research on Mesoscopic Structure of Asphaltmixture Based on X-ray CT Technology. Master’s Thesis, Southeast University, Nanjin, China, 2017. [Google Scholar]
- Thi Van, T.H.; Dang, P.M.; Tu, L.T.; Dang, M.P.; Thoa, L.T.; Tai, H.T.; Long, G.B. Assessing the Ability to Treat industrial Wastewater by Constructed Wetland Model Using the Brachiaria mutica. Waste Biomass Valorization 2020, 11, 5615–5626. [Google Scholar] [CrossRef]
- Wang, G.L.; Yu, L.J.; Wang, L.; Fan, P.Y.; Liu, M.S. Study on microbial community composition and influencing factors of ecological restoration river. J. Environ. Eng. Technol. 2023, 13, 1562–1572. [Google Scholar]
- Zraunig, A.; Estelrich, M.; Gattringer, H. Long term decentralized greywater treatment for water reuse purposes in a tourist facility by vertical ecosystem. Ecol. Eng. 2019, 138, 138–147. [Google Scholar] [CrossRef]
- Wang, Q.K.; He, J.Z. Complete nitrogen removal via simultaneous nitrification and denitrification by a novel phosphate accumulating Thauera sp. strain SND5. Water Res. 2020, 185, 116300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.Y.; Ding, Y.; Huang, M.S. Screening of heterotrophic nitrification-aerobic denitrifying bacteria and its nitrogen removal characteristics. J. East China Norm. Univ. (Nat. Sci.) 2018, 2018, 22–31+87. [Google Scholar]
- Gui, L.L.; Zhou, C.H.; Fiore, S.; Yu, W.H. Interactions between microorganisms and clay minerals: New insights and broader applications. Appl. Clay Sci. 2019, 177, 91–113. [Google Scholar]
- Song, S.X.; Li, B.W. Adsorption at Natural Minerals/Water Interfaces; Springer: Cham, Switzerland, 2021; pp. 2–36. [Google Scholar]
- Usman, M.O.; Aturagaba, G.; Ntale, M.; Nyakairu, G.W. A review of adsorption techniques for removal of phosphates from wastewater. Water Sci. Technol. 2022, 86, 3113–3132. [Google Scholar] [CrossRef]
- Zhao, M.J.; Li, S.C.; Liu, X.J.; Li, Y.T. Adsorption Performance of Low-Concentration Phosphorus from Water by Iron Modified Volcanic Rock Particles. Environ. Sci. Technol. 2021, 34, 19–23+29. [Google Scholar]
- Lei, Y.; Jin, X.H.; Hu, Y.W.; Zhang, M.Q.; Wang, H.H.; Jia, Q.; Yang, Y.F. Technical structure and influencing factors of nitrogen and phosphorus removal in constructed wetlands. Water Sci. Technol. 2024, 89, 271–289. [Google Scholar]
- Shen, T.; Jiang, J.; Li, N.; Luo, X.N. Aerobic denitrifiers and the application in remediation of micro-polluted water source. Acta Microbiol. Sin. 2023, 63, 465–482. [Google Scholar]
- Pan, X.Y.; Raaijmakers, J.M.; Carrión, V.J. Importance of Bacteroidetes in host-microbe interactions and ecosystem functioning. Trends Microbiol. 2023, 31, 959–971. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, R.; Wei, Z.; Gong, L.; Zhang, G.; Wen, D.; Li, W. The Study of Nitrogen and Phosphorus Removal Efficiency in Urbanized River Systems Using Artificial Wetland Systems with Different Substrates. Water 2024, 16, 3309. https://doi.org/10.3390/w16223309
Chi R, Wei Z, Gong L, Zhang G, Wen D, Li W. The Study of Nitrogen and Phosphorus Removal Efficiency in Urbanized River Systems Using Artificial Wetland Systems with Different Substrates. Water. 2024; 16(22):3309. https://doi.org/10.3390/w16223309
Chicago/Turabian StyleChi, Ran, Zhongqing Wei, Longcong Gong, Guosheng Zhang, Duo Wen, and Weiying Li. 2024. "The Study of Nitrogen and Phosphorus Removal Efficiency in Urbanized River Systems Using Artificial Wetland Systems with Different Substrates" Water 16, no. 22: 3309. https://doi.org/10.3390/w16223309
APA StyleChi, R., Wei, Z., Gong, L., Zhang, G., Wen, D., & Li, W. (2024). The Study of Nitrogen and Phosphorus Removal Efficiency in Urbanized River Systems Using Artificial Wetland Systems with Different Substrates. Water, 16(22), 3309. https://doi.org/10.3390/w16223309