Efficient Solar-Powered Bioremediation of Hexavalent Chromium in Contaminated Waters by Chlorella sp. MQ-1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of MQ-1
2.2. Identification of MQ-1
2.3. Scanning Electron Microscopy (SEM) Analysis of MQ-1
2.4. Cr(VI) Removal Capacity of MQ-1
2.5. Cr(VI) Removal Capacity of Different Microalgae
2.6. Cr Content in MQ-1 Extracellular Polymeric Substances (EPSs)
2.7. Intracellular Cr Content in MQ-1
2.8. Cr(VI) Removal Capacity of MQ-1 Biomass
2.9. Determination of Cr(VI) and Cr(III)
3. Statistical Analysis
4. Results and Discussion
4.1. Screening and Characterization of MQ-1 Strains with Cr(VI) Tolerance Ability
4.2. Removal Efficiency of Cr(VI) by MQ-1
4.3. Removal Efficiency of Cr(VI) by Different Microalgae
Microalgae | Cr(VI) ppm | Removal (%) | Time | Mechanism | References |
---|---|---|---|---|---|
Chlorella minutissima | 1.7 | 92% | 12 day | Biosorption and bioaccumulation | [37] |
Chlorella thermophilia | 0.2–0.6 | 50–65% | 15 day | Biosorption and bioaccumulation | [41] |
Desmodesmus subspicatus | 1 | 95% | 15 day | Biosorption and bioaccumulation | [42] |
Scenedesmus dimorphus | 0.1 | 94.24% | 5 day | Biosorption and bioaccumulation | [43] |
Parachlorella kessleri R-3 | 5 | 81.50% | 9 day | Biosorption and bioaccumulation | [20] |
Spirulina platensis | 5 | 65.20% | 28 day | Biosorption and bioaccumulation | [44] |
Chlorella vulgaris FACHB-2338 | 0.5 | 67.34% | 5 day | - | Present study |
Chlorella sp. FACHB-9 | 0.5 | 43.38% | 5 day | - | Present study |
Scenedesmus sp.FACHB-1420 | 0.5 | 48.44% | 5 day | - | Present study |
Parachlorella kessleri FACHB-4 | 0.5 | 65.03% | 5 day | - | Present study |
Chlorella sp. MQ-1(growth) | 1–2 | 86.13–60.90% | 5 day | Bioreduction and bioaccumulation | Present study |
Chlorella sp. MQ-1(high biomass) | 2 | 91.31% | 1.5 day | Bioreduction and bioaccumulation | Present study |
4.4. Mechanism of Cr(VI) Removal by MQ-1
4.5. Removal of Cr(VI) by MQ-1 Biomass
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sevak, P.; Pushkar, B.; Mazumdar, S. Mechanistic evaluation of chromium bioremediation in Acinetobacter junii strain b2w: A proteomic approach. J. Environ. Manag. 2023, 328, 116978. [Google Scholar] [CrossRef] [PubMed]
- He, C.W.; Gu, L.P.; Xu, Z.X.; He, H.; Fu, G.; Han, F.X.; Huang, B.; Pan, X.J. Cleaning chromium pollution in aquatic environments by bioremediation, photocatalytic remediation, electrochemical remediation and coupled remediation systems. Environ. Chem. Lett. 2020, 18, 561–576. [Google Scholar] [CrossRef]
- Tasleem, M.; El-Sayed, A.A.A.A.; Hussein, W.M.; Alrehaily, A. Bioremediation of Chromium-Contaminated Groundwater Using Chromate Reductase from Pseudomonas putida: An In Silico Approach. Water 2023, 15, 150. [Google Scholar] [CrossRef]
- Shan, B.; Hao, R.X.; Xu, H.; Zhang, J.M.; Li, J.N.; Li, Y.H.; Ye, Y.B. Hexavalent chromium reduction and bioremediation potential of Fusarium proliferatum S4 isolated from chromium-contaminated soil. Environ. Sci. Pollut. Res. 2022, 29, 78292–78302. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.F.; Li, W.B.; Wang, T.K.; Wen, Y.J.; Shi, W.W.; Zhang, W.J.; Guo, B.; Yang, Y.S. Isolation of functional bacterial strains from chromium-contaminated site and bioremediation potentials. J. Environ. Manag. 2022, 307, 114557. [Google Scholar] [CrossRef]
- Pushkar, B.; Sevak, P.; Parab, S.; Nilkanth, N. Chromium pollution and its bioremediation mechanisms in bacteria: A review. J. Environ. Manag. 2021, 287, 112279. [Google Scholar] [CrossRef]
- Qiu, L.J.; Ma, Z.Y.; Li, P.P.; Hu, X.J.; Chen, C.; Zhu, X.H.; Liu, M.L.; Zhang, Y.Y.; Li, H.T.; Yao, S.Z. Sensitive and selective detection of chromium (VI) based on two-dimensional luminescence metal organic framework nanosheets via the mechanism integrating chemical oxidation-reduction and inner filter effect. J. Hazard. Mater. 2021, 419, 126443. [Google Scholar] [CrossRef]
- Lei, C.; Wang, C.W.; Chen, W.Q.; He, M.H.; Huang, B.B. Polyaniline@magnetic chitosan nanomaterials for highly efficient simultaneous adsorption and in-situ chemical reduction of hexavalent chromium: Removal efficacy and mechanisms. Sci. Total Environ. 2020, 733, 139316. [Google Scholar] [CrossRef]
- Kozaderova, O. Chromium-Modified Heterogeneous Bipolar Membrane: Structure, Characteristics, and Practical Application in Electrodialysis. Membranes 2023, 13, 172. [Google Scholar] [CrossRef]
- El-Nemr, M.A.; Hassaan, M.A.; Ashour, I. Formation of self-nitrogen-doping activated carbon from Fish/sawdust/ZnCl2 by hydrothermal and pyrolysis for toxic chromium adsorption from wastewater. Sci. Rep. 2023, 13, 11556. [Google Scholar] [CrossRef]
- Jimenez-Paz, J.; Lozada-Castro, J.J.; Lester, E.; Williams, O.; Stevens, L.; Barraza-Burgos, J. Solutions to hazardous wastes issues in the leather industry: Adsorption of Chromium iii and vi from leather industry wastewaters using activated carbons produced from leather industry solid wastes. J. Environ. Chem. Eng. 2023, 11, 109715. [Google Scholar] [CrossRef]
- Deng, L.Y.; Xu, G.R.; Yan, Z.C.; Liu, Q.H.; Li, G.B. Removal effect of Cr (VI) by adsorbent made from sewage sludge. Water Sci. Technol. 2010, 62, 2961–2969. [Google Scholar] [CrossRef] [PubMed]
- Peña-Castro, J.M.; Martínez-Jerónimo, F.; Esparza-García, F.; Cañizares-Villanueva, R.O. Heavy metals removal by the microalga Scenedesmus incrassatulus in continuous cultures. Bioresour. Technol. 2004, 94, 219–222. [Google Scholar] [CrossRef]
- Luo, L.; Yang, C.; Jiang, X.; Guo, W.S.; Ngo, H.H.; Wang, X.C. Impacts of fulvic acid and Cr(VI) on metabolism and chromium removal pathways of green microalgae. J. Hazard. Mater. 2023, 459, 132171. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, D.; Sukla, L.B.; Mishra, B.B.; Devi, N. Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. J. Clean. Prod. 2019, 209, 617–629. [Google Scholar] [CrossRef]
- Wang, Y.K.; Wang, Z.J.; Huang, J.C.; Zhou, C.A.Q.; Zou, H.H.; He, S.B.; Chen, V.Y.C. Feasibility of using Chlorella vulgaris for the removal of selenium and chromium in water: Competitive interactions with sulfur, physiological effects on algal cells and its resilience after treatment. J. Clean. Prod. 2021, 313, 127939. [Google Scholar] [CrossRef]
- Zou, H.H.; Huang, J.C.; Zhou, C.Q.; He, S.B.; Zhou, W.L. Mutual effects of selenium and chromium on their removal by Chlorella vulgaris and associated toxicity. Sci. Total Environ. 2020, 724, 138219. [Google Scholar] [CrossRef]
- Aksu, Z.; Açikel, Ü. Modelling of a single-staged bioseparation process for simultaneous removal of iron(III) and chromium(VI) by using Chlorella vulgaris. Biochem. Eng. J. 2000, 4, 229–238. [Google Scholar] [CrossRef]
- Wei, S.J.; Cao, J.; Ma, X.Y.; Ping, J.; Zhang, C.; Ke, T.; Zhang, Y.R.; Tao, Y.; Chen, L.Z. The simultaneous removal of the combined pollutants of hexavalent chromium and o-nitrophenol by Chlamydomonas reinhardtii. Ecotoxicol. Environ. Safe 2020, 198, 110648. [Google Scholar] [CrossRef]
- Song, X.T.; Liu, B.F.; Kong, F.Y.; Song, Q.Q.; Ren, N.Q.; Ren, H.Y. Simultaneous chromium removal and lipid accumulation by microalgae under acidic and low temperature conditions for promising biodiesel production. Bioresour. Technol. 2023, 370, 128515. [Google Scholar] [CrossRef]
- Pappas, C.P.; Randall, S.T.; Sneddon, J. An Atomic-Emission Study of the Removal and Recovery of Chromium from Solution by an Algal Biomass (Chlorella-Vulgaris). Talanta 1990, 37, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Khoubestani, R.S.; Mirghaffari, N.; Farhadian, O. Removal of three and hexavalent chromium from aqueous solutions using a microalgae biomass-derived biosorbent. Environ. Prog. Sustain. 2015, 34, 949–956. [Google Scholar] [CrossRef]
- Sarker, S.S.; Akter, T.; Parveen, S.; Uddin, M.T.; Mondal, A.K.; Sujan, S.M.A. Microalgae-based green approach for effective chromium removal from tannery effluent: A review. Arab. J. Chem. 2023, 16, 105085. [Google Scholar] [CrossRef]
- Pereira, M.; Bartolomé, M.C.; Sánchez-Fortún, S. Bioadsorption and bioaccumulation of chromium trivalent in Cr(III)-tolerant microalgae: A mechanisms for chromium resistance. Chemosphere 2013, 93, 1057–1063. [Google Scholar] [CrossRef]
- Matsena, M.T.; Tichapondwa, S.M.; Chirwa, E.M.N. Improved chromium (VI) reduction performance by bacteria in a biogenic palladium nanoparticle enhanced microbial fuel cell. Electrochim. Acta 2021, 368, 137640. [Google Scholar] [CrossRef]
- Chen, J.; Tian, Y.Q. Hexavalent chromium reducing bacteria: Mechanism of reduction and characteristics. Environ. Sci. Pollut. Res. 2021, 28, 20981–20997. [Google Scholar] [CrossRef]
- Mohamed, M.S.M.; El-Arabi, N.I.; El-Hussein, A.; El-Maaty, S.A.A.; Abdelhadi, A.A. Reduction of chromium-VI by chromium-resistant Escherichia coli FACU: A prospective bacterium for bioremediation. Folia Microbiol. 2020, 65, 687–696. [Google Scholar] [CrossRef]
- Han, X.; Wong, Y.S.; Wong, M.H.; Tam, N.F.Y. Effects of anion species and concentration on the removal of Cr(VI) by a microalgal isolate, Chlorella miniata. J. Hazard. Mater. 2008, 158, 615–620. [Google Scholar] [CrossRef]
- Yen, H.W.; Chen, P.W.; Hsu, C.Y.; Lee, L. The use of autotrophic Chlorella vulgaris in chromium (VI) reduction under different reduction conditions. J. Taiwan. Inst. Chem. Eng. 2017, 74, 1–6. [Google Scholar] [CrossRef]
- Xie, Z.Z.; Lin, W.T.; Liu, J.Z.; Luo, J.F. Mixotrophic cultivation of Chlorella for biomass production by using pH-stat culture medium: Glucose-Acetate-Phosphorus (GAP). Bioresour. Technol. 2020, 313, 123506. [Google Scholar] [CrossRef]
- Lloyd, C.; Tan, K.H.; Lim, K.L.; Valu, V.G.; Fun, S.M.Y.; Chye, T.R.; Mak, H.M.; Sim, W.X.; Ng, J.J.Q.; Nordin, N.S.B.; et al. Identification of microalgae cultured in Bold’s Basal medium from freshwater samples, from a high-rise city. Sci. Rep. 2021, 11, 4474. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.Z.; Li, S.R.; Lin, W.T.; Luo, J.F. Parasulfuritortus cantonensis gen. nov., sp. nov., a microaerophilic sulfur-oxidizing bacterium isolated from freshwater sediment. Int. J. Syst. Evol. Microbiol. 2021, 71, 004657. [Google Scholar] [CrossRef] [PubMed]
- Sonmez, M.E.; Altinsoy, B.; Ozturk, B.Y.; Gumus, N.E.; Eczacioglu, N. Deep learning-based classification of microalgae using light and scanning electron microscopy images. Micron 2023, 172, 103506. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Li, F.; Liu, N.; Ge, F.; Xiao, H.X.; Yang, Y.X. Role of extracellular polymeric substances from Chlorella vulgaris in the removal of ammonium and orthophosphate under the stress of cadmium. Bioresour. Technol. 2015, 190, 299–306. [Google Scholar] [CrossRef]
- Omura, T.; Isobe, N.; Miura, T.; Ishii, S.; Mori, M.; Ishitani, Y.; Kimura, S.; Hidaka, K.; Komiyama, K.; Suzuki, M.; et al. Microbial decomposition of biodegradable plastics on the deep-sea floor. Nat. Commun. 2024, 15, 568. [Google Scholar] [CrossRef]
- Dikobe, J.; Melato, F.A.; Adlem, C.J.L.; Netshiongolwe, K. Determination of chromium species in water using diphenylcarbazide with a sequential spectrophotometric discrete robotic analyser. Heliyon 2024, 10, e34670. [Google Scholar] [CrossRef]
- Choudhary, S.; Tripathi, S.; Poluri, K.M. Elucidating the adaptive response and enhanced lipid production of Chlorella minutissima under Cr (VI) stress. J. Water Process Eng. 2024, 63, 105498. [Google Scholar] [CrossRef]
- Wrobel, K.; Wrobel, K.; LopezdeAlba, P.L.; LopezMartinez, L. Enhanced spectrophotometric determination of chromium (VI) with diphenylcarbazide using internal standard and derivative spectrophotometry. Talanta 1997, 44, 2129–2136. [Google Scholar] [CrossRef]
- Matamoros, V.; Gutiérrez, R.; Ferrer, I.; García, J.; Bayona, J.M. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: A pilot-scale study. J. Hazard. Mater. 2015, 288, 34–42. [Google Scholar] [CrossRef]
- Xiong, Q.; Hu, L.X.; Liu, Y.S.; Zhao, J.L.; He, L.Y.; Ying, G.G. Microalgae-based technology for antibiotics removal: From mechanisms to application of innovational hybrid systems. Environ. Int. 2021, 155, 106594. [Google Scholar] [CrossRef]
- Ganguly, A.; Nag, S.; Bhowmick, T.K.; Gayen, K. Bioremediation of chromium(VI) and arsenic(III) using isolated microalgal (Chlorella thermophilia): Analysis of growth, biomolecular compositions (carbohydrate, protein, chlorophyll) and biosorption kinetics. Algal Res. 2024, 82, 103635. [Google Scholar] [CrossRef]
- Ganguly, A.; Nag, S.; Bhowmick, T.K.; Gayen, K. Phycoremediation of As(III) and Cr(VI) by Desmodesmus subspicatus: Impact on growth and biomolecules (carbohydrate, protein, chlorophyll and lipid)—A dual mode investigation. Environ. Sci. Pollut. Res. Int. 2024, 31, 48545–48560. [Google Scholar] [CrossRef] [PubMed]
- Putri, L.S.E. Biosorption Ability of Microalgae Scenedesmus dimorphus for Cr (VI) and Cd in Aqueous Solution. Adv. Sci. Lett. 2015, 21, 196–198. [Google Scholar] [CrossRef]
- Magro, C.D.; Deon, M.C.; De Rossi, A.; Reinehr, C.O.; Hemkemeier, M.; Colla, L.M. Chromium (VI) biosorption and removal of chemical oxygen demand by Spirulina platensis from wastewater-supplemented culture medium. J. Environ. Sci. Health A 2012, 47, 1818–1824. [Google Scholar] [CrossRef] [PubMed]
- Zha, S.L.; Yu, A.; Wang, Z.B.; Shi, Q.; Cheng, X.N.; Liu, C.L.; Deng, C.J.; Zeng, G.S.; Luo, S.L.; Zhao, Z.W.; et al. Microbial strategies for effective hexavalent chromium removal: A comprehensive review. Chem. Eng. J. 2024, 489, 151457. [Google Scholar] [CrossRef]
- Giri, S.; Mukherjee, A. Ageing with algal EPS reduces the toxic effects of polystyrene nanoplastics in freshwater microalgae Scenedesmus obliquus. J. Environ. Chem. Eng. 2021, 9, 105978. [Google Scholar] [CrossRef]
- Toucheteau, C.; Deffains, V.; Gaignard, C.; Rihouey, C.; Laroche, C.; Pierre, G.; Lépine, O.; Probert, I.; Le Cerf, D.; Michaud, P.; et al. Role of some structural features in EPS from microalgae stimulating collagen production by human dermal fibroblasts. Bioengineered 2023, 14, 2254027. [Google Scholar] [CrossRef]
- Han, X.; Wong, Y.S.; Wong, M.H.; Tam, N.F.Y. Biosorption and bioreduction of Cr(VI) by a microalgal isolate, Chlorella miniata. J. Hazard. Mater. 2007, 146, 65–72. [Google Scholar] [CrossRef]
- Arica, M.Y.; Tüzün, I.; Yalçin, E.; Ince, Ö.; Bayramoglu, G. Utilisation of native, heat and acid-treated microalgae Chlamydomonas reinhardtii preparations for biosorption of Cr(VI) ions. Process Biochem. 2005, 40, 2351–2358. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, T.; Xie, Z.; Jiang, X.; Zou, X.; Cheng, J.; Chen, C.; Kuang, C.; Ye, J.; Wang, Y.; Liu, F. Efficient Solar-Powered Bioremediation of Hexavalent Chromium in Contaminated Waters by Chlorella sp. MQ-1. Water 2024, 16, 3315. https://doi.org/10.3390/w16223315
Zhou T, Xie Z, Jiang X, Zou X, Cheng J, Chen C, Kuang C, Ye J, Wang Y, Liu F. Efficient Solar-Powered Bioremediation of Hexavalent Chromium in Contaminated Waters by Chlorella sp. MQ-1. Water. 2024; 16(22):3315. https://doi.org/10.3390/w16223315
Chicago/Turabian StyleZhou, Tiancheng, Zhangzhang Xie, Xinyu Jiang, Xiangbo Zou, Jiong Cheng, Chuangting Chen, Cao Kuang, Ji Ye, Ying Wang, and Fanghua Liu. 2024. "Efficient Solar-Powered Bioremediation of Hexavalent Chromium in Contaminated Waters by Chlorella sp. MQ-1" Water 16, no. 22: 3315. https://doi.org/10.3390/w16223315
APA StyleZhou, T., Xie, Z., Jiang, X., Zou, X., Cheng, J., Chen, C., Kuang, C., Ye, J., Wang, Y., & Liu, F. (2024). Efficient Solar-Powered Bioremediation of Hexavalent Chromium in Contaminated Waters by Chlorella sp. MQ-1. Water, 16(22), 3315. https://doi.org/10.3390/w16223315