Fluvial Sediment Load Characteristics from the Yangtze River to the Sea During Severe Droughts
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Materials
3.2. Estimation of Sediment Components
3.3. Sediment Budget Analysis
3.4. Sediment Rating Curves
4. Results
4.1. Quantity Characteristics of Yangtze River Sediments Carried to the Sea During Severe Drought Years
4.2. Seasonal Characteristics of Yangtze River Sediments Transported to the Sea During Severe Drought Years
4.3. Grain Size and Composition Characteristics of Yangtze River Sediment Transported to the Sea During Severe Drought Years
4.4. Rating Parameters of Yangtze River Sediment Transported to the Sea During Severe Drought Years
5. Discussion
5.1. Causes of the Intensified Scarcity of Sediment Flux from the Yangtze River to the Sea During Severe Droughts
5.2. Consequences of the Intensified Scarcity of Sediment Carried from the Yangtze River to the Tidal Reach During Severe Droughts
5.3. Reconstruction of Sediment Load from the Yangtze River to the Sea During Severe Drought Years
5.4. General Application of This Study
6. Conclusion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, S. Modeling the growth limit of the Changjiang Delta. Geomorphology 2007, 85, 225–236. [Google Scholar] [CrossRef]
- Yang, S.L.; Milliman, J.D.; Li, P.; Xu, K.H. 50,000 dams later: Erosion of the Yangtze River and its delta. Glob. Planet. Chang. 2011, 75, 14–20. [Google Scholar] [CrossRef]
- Blum, M.D.; Roberts, H.H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat. Geosci. 2009, 2, 488–491. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Hutton, E.W.H.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Anthony, E.J.; Brunier, G.; Besset, M.; Goichot, M.; Dussouillez, P.; Nguyen, V.L. Linking rapid erosion of the Mekong River delta to human activities. Sci. Rep. 2015, 5, 14745. [Google Scholar] [CrossRef]
- Luan, H.L.; Ding, P.X.; Yang, S.L.; Wang, Z.B. Accretion-erosion conversion in the subaqueous Yangtze Delta in response to fluvial sediment decline. Geomorphology 2021, 382, 107680. [Google Scholar] [CrossRef]
- Yang, S.L.; Bouma, T.J.; Xu, K.; Shi, B.; Yang, H.; Zhang, W.; Luo, X.; Li, P.; Huang, Y.; Tian, M.; et al. Storms dominate the erosion of the Yangtze Delta and southward sediment transport. Sci. Bull. 2023, 68, 553–556. [Google Scholar] [CrossRef]
- Wu, X.; Bi, N.; Xu, J.; Nittrouer, J.A.; Yang, Z.; Saito, Y.; Wang, H. Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976–2013): Dominant roles of riverine discharge and sediment grain size. Geomorphology 2017, 292, 115–127. [Google Scholar] [CrossRef]
- Ludwig, W.; Probst, J.L.; Kempe, S. Predicting the oceanic input of organic carbon by continental erosion. Glob. Biogeochem. Cycles 1996, 10, 23–41. [Google Scholar] [CrossRef]
- Martin, J.M.; Meybeck, M. Elemental mass-balance of material carried by major world rivers. Mar. Chem. 1979, 7, 173–206. [Google Scholar] [CrossRef]
- Gao, J.H.; Wang, Y.P.; Yang, Y.; Li, J.; Bai, F.; Zou, X.; Gao, S. Variations in quantity, composition and grain size of Changjiang sediment discharging into the sea in response to human activities. Hydrol. Earth Syst. Sci. 2015, 19, 645–655. [Google Scholar] [CrossRef]
- Dethier, E.N.; Renshaw, C.E.; Magilligan, F.J. Rapid changes to global river suspended sediment flux by humans. Science 2022, 376, 1447–1452. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Chen, Z.; Yu, F.; Wang, Z.; Zhao, Y.; Wang, Z. Sediment rating parameters and their implications: Yangtze River, China. Geomorphology 2007, 85, 166–175. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Wang, Y.; Saito, Y.; Liu, J.P. Reconstruction of sediment flux from the Changjiang (Yangtze River) to the sea since the 1860s. J. Hydrol. 2008, 349, 318–332. [Google Scholar] [CrossRef]
- Hu, B.; Wang, H.; Yang, Z.; Sun, X. Temporal and spatial variations if sediment rating curves in the Changjiang (Yangtze River) basin and their implications. Quat. Int. 2011, 230, 34–43. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, X.; Strehmel, A.; Tian, P. Temporal variation of streamflow, sediment load and their relationship in the Yellow River Basin, China. PLoS ONE 2014, 9, e91048. [Google Scholar] [CrossRef]
- Sun, P.; Wu, Y.; Gao, J.; Yao, Y.; Zhao, F.; Lei, X.; Qiu, L. Shifts of sediment transport regime caused by ecological restoration in the Middle Yellow River Basin. Sci. Total Environ. 2020, 698, 134261. [Google Scholar] [CrossRef]
- Besset, M.; Anthony, E.J.; Bouchette, F. Multi-decadal variations in delta shorelines and their relationship to river sediment supply: An assessment and review. Earth-Sci. Rev. 2019, 193, 199–219. [Google Scholar] [CrossRef]
- Feng, W.; Liu, S.; Li, W.; Yang, H.; Chen, Y.; Wang, Y.P. Seismic investigation uncovers formation and spatial distribution of seafloor erosional features on the Changjiang (Yangtze) River subaqueous delta. Mar. Geol. 2024, 470, 107268. [Google Scholar] [CrossRef]
- Inman, D.L.; Jenkins, S.A. Climate change and the episodicity of sediment flux of small California rivers. J. Geol. 1999, 107, 251–270. [Google Scholar] [CrossRef]
- Liu, X.J.; Kettner, A.J.; Cheng, J.; Dai, S.B. Sediment characteristics of the Yangtze River during major flooding. J. Hydrol. 2020, 590, 125417. [Google Scholar] [CrossRef]
- Dai, Z.; Chu, A.; Stive, M.; Du, J.; Li, J. Is the Three Gorges Dam the cause behind the extremely low suspended sediment discharge into the Yangtze (Changjiang) Estuary of 2006? Hydrol. Sci. J. 2011, 56, 1280–1288. [Google Scholar] [CrossRef]
- Dai, Z.; Chu, A.; Stive, M.J.F.; Yao, H. Impact of the Three Gorges Dam overruled by an extreme climate hazard. Nat. Hazards Rev. 2012, 13, 310–316. [Google Scholar] [CrossRef]
- Méndez-Freire, V.; Villaseñor, T.; Mellado, C. Spatial and temporal changes in suspended sediment fluxes in central Chile induced by the mega drought: The case of the Itata River Basin (36°–37° S). J. S. Am. Earth Sci. 2022, 118, 103930. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Carrao, H.; Barbosa, P.; Vogt, J. World drought frequency, duration, and severity for 1951–2010. Int. J. Climatol. 2014, 34, 2792–2804. [Google Scholar] [CrossRef]
- Shao, J.; Li, Y.; Song, S. New computing method for standardized runoff index and its application. J. Nat. Disasters 2014, 23, 79–87. [Google Scholar] [CrossRef]
- Marine Warning and Monitoring Division (MWMD), Ministry of Natural Resources of the People’s Republic of China. Sea Level Bulletin of China in 2019; Marine Warning and Monitoring Division (MWMD), Ministry of Natural Resources of the People’s Republic of China: Beijing, China, 2020.
- Guo, L.; Su, N.; Townend, I.; Wang, Z.B.; Zhu, C.; Wang, X.; Zhang, Y.; He, Q. From the headwater to the delta: A synthesis of the basin-scale sediment load regime in the Changjiang River. Earth-Sci. Rev. 2019, 197, 102900. [Google Scholar] [CrossRef]
- Deng, C.-L.; She, D.-X.; Deng, Y.; Chen, J.; Zhang, L.-P.; Hong, S. Multi-model projections of meteorological drought characteristics under different scenarios in the middle and lower reaches of Yangtze River basin. J. Yangtze River Sci. Res. Inst. 2021, 38, 9–17. [Google Scholar] [CrossRef]
- Xu, K.; Chen, Z.; Zhao, Y.; Wang, Z.; Zhang, J.; Hayashi, S.; Murakami, S.; Watanabe, M. Simulated sediment flux during 1998 big-flood of the Yangtze (Changjiang) River, China. J. Hydrol. 2005, 313, 221–233. [Google Scholar] [CrossRef]
- Xia, J.; Chen, J.; She, D. Impacts and countermeasures of extreme drought in the Yangtze River Basin in 2022. Shuili Xuebao 2022, 53, 1143–1153. [Google Scholar] [CrossRef]
- Yang, X.; Cui, Z.; Ren, L.; Wu, F.; Yuan, S.; Jiang, S.; Liu, Y. Patterns and attributions of hydrological drought in the Yangtze River basin from 1966 to 2015. Adv. Water Sci. 2023, 34, 349–359. [Google Scholar] [CrossRef]
- Changjiang Water Resources Commision (CWRC). Changjiang Sediment Bulletin in 2002; Changjiang Water Resources Commision (CWRC): Wuhan, China, 2003. [Google Scholar]
- Li, J.; Shen, H.; Xu, H. The bedload movement in the Changjiang River Estuary. Oceanol. Limnol. Sin. 1995, 26, 138–145, (In Chinese with English Abstract). [Google Scholar]
- Wu, H.L.; Shen, H.T.; Yan, Y.X.; Wang, Y.H. Preliminary study on sediment flux into the sea from Changjiang Estuary. J. Sediment Res. 2006, 6, 75–81. [Google Scholar] [CrossRef]
- Yang, Y.P.; Zhang, M.J.; Li, Y.T.; Zhang, W. The variations of suspended sediment concentration in Yangtze River Estuary. J. Hydrodyn. 2015, 27, 845–856. [Google Scholar] [CrossRef]
- Guo, X.; Fan, D.; Zheng, S.; Wang, H.; Zhao, B.; Qin, C. Revisited sediment budget with latest bathymetric data in the highly altered Yangtze (Changjiang) Estuary. Geomorphology 2021, 391, 107873. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, H.; Saito, Y.; Milliman, J.D.; Xu, K.; Qiao, S.; Shi, G. Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: The past 55 years and after the Three Gorges Dam. Water Resour. Res. 2006, 42, W04407. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Li, Y.T.; He, Y.P. Sediment budget of the Yangtze River. Water Resour. Res. 2007, 43, W04401. [Google Scholar] [CrossRef]
- Yang, S.L.; Zhao, Q.Y.; Belkin, I.M. Temporal variation in the sediment load of the Yangtze River and the influence of human activities. J. Hydrol. 2002, 263, 56–71. [Google Scholar] [CrossRef]
- Changjiang Water Resources Commision (CWRC). Changjiang Sediment Bulletin in 1962; Changjiang Water Resources Commision (CWRC): Wuhan, China, 1963. [Google Scholar]
- Li, K.Q.; Tao, H. Correction of sediment grain size distribution measured by particle size apparatus. J. China Hydrol. 1986, 45–48, 19. [Google Scholar] [CrossRef]
- Dai, S.B.; Lu, X.X. Sediment deposition and erosion during the extreme flood events in the middle and lower reaches of the Yangtze River. Quat. Int. 2010, 226, 4–11. [Google Scholar] [CrossRef]
- Ferguson, R.I. River loads underestimated by rating curves. Water Resour. Res. 1986, 22, 74–76. [Google Scholar] [CrossRef]
- Duan, N. Smearing estimate: A nonparametric retransformation method. J. Am. Stat. Assoc. 1983, 78, 605–610. [Google Scholar] [CrossRef]
- Miller, D.M. Reducing transformation bias in curve fitting. Am. Stat. 1984, 38, 124–126. [Google Scholar] [CrossRef]
- Li, Y.; Guo, X.; Tang, J.; Sun, Z. Changes on runoff diversion from Jingjiang reach of the Yangtze River to Dongting Lake after the operation of Three Gorges Reservoir. J. Basin Sci. Eng. 2009, 17, 21–31, (In Chinese with English Abstract). [Google Scholar]
- Zhu, L.; Xu, Q.; Dai, M. Runoff diverted from the Jingjiang reach to the Dongting Lake and the effect of Three Gorges Reservoir. Adv. Water Sci. 2016, 27, 822–831, (In Chinese with English Abstract). [Google Scholar]
- Yang, S.L.; Xu, K.H.; Milliman, J.D.; Yang, H.F.; Wu, C.S. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes. Sci. Rep. 2015, 5, 12581. [Google Scholar] [CrossRef]
- Najafzadeh, M.; Tafarojnoruz, A.; Lim, S.Y. Prediction of local scour depth downstream of sluice gates using data-driven models. ISH J. Hydraul. Eng. 2017, 23, 195–202. [Google Scholar] [CrossRef]
- Nittrouer, J.A.; Viparelli, E. Sand as a stable and sustainable resource for nourishing the Mississippi River delta. Nat. Geosci. 2014, 7, 350–354. [Google Scholar] [CrossRef]
- Meade, R.H.; Moody, J.A. Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940–2007. Hydrol. Process 2010, 24, 35–49. [Google Scholar] [CrossRef]
- Stanley, J. Nile delta: Extreme case of sediment entrapment on a delta plain and consequent coastal land loss. Mar. Geol. 1996, 129, 189–195. [Google Scholar] [CrossRef]
- Wang, H.; Bi, N.; Saito, Y.; Wang, Y.; Sun, X.; Zhang, J.; Yang, Z. Recent changes in sediment delivery by the Huanghe (Yellow River) to the sea: Causes and environmental implications in its estuary. J. Hydrol. 2010, 391, 302–313. [Google Scholar] [CrossRef]
Period/Year | Annual Sediment Load at Yichang Station | Annual Sediment Load from Han River | Sediment Deposition at Dongting Lake | Sediment Deposition in the Main Channel of the Middle Reach | Annual Sediment Load at Hankou Station | Annual Sediment Load from Poyang Lake | Sediment Deposition in the Main Channel of the Lower Reach | Annual Sediment Load at Datong Station |
---|---|---|---|---|---|---|---|---|
×1011 kg | ×1011 kg | ×1011 kg | ×1011 kg | ×1011 kg | ×1011 kg | ×1011 kg | ×1011 kg | |
1954–1969 | 5.61 | 1.12 | −1.38 | −0.98 | 4.42 | 0.11 | 0.43 | 4.99 |
1959 | 4.77 | 0.31 | −0.92 | −0.47 | 3.72 | 0.15 | 0.10 | 4.02 (19%) |
1960 | 4.19 | 0.86 | −1.14 | 0.09 | 4.02 | 0.13 | −0.13 | 4.06 (19%) |
1970–1985 | 5.25 | 0.28 | −0.77 | −0.53 | 4.27 | 0.14 | 0.02 | 4.46 |
1972 | 3.86 | 0.25 | −0.31 | −0.11 | 3.74 | 0.05 | −0.39 | 3.40 (24%) |
1978 | 4.42 | 0.04 | −0.47 | −0.10 | 3.92 | 0.11 | −0.35 | 3.70 (17%) |
1986–2002 | 4.11 | 0.08 | −0.45 | −0.47 | 3.30 | 0.08 | −0.0011 | 3.40 |
1986 | 3.61 | 0.03 | −0.36 | −0.07 | 3.25 | 0.16 | −0.34 | 3.11 (9%) |
2003–2013 | 0.47 | 0.07 | 0.08 | 0.48 | 1.12 | 0.12 | 0.16 | 1.43 |
2006 | 0.09 | 0.03 | 0.14 | 0.31 | 0.58 | 0.14 | 0.13 | 0.85 (41%) |
2011 | 0.06 | 0.05 | 0.13 | 0.43 | 0.69 | 0.08 | −0.06 | 0.72 (50%) |
2014–2022 | 0.15 | 0.04 | 0.11 | 0.38 | 0.67 | 0.07 | 0.36 | 1.13 |
2022 | 0.028 | 0.01 | 0.12 | 0.20 | 0.36 | 0.05 | 0.24 | 0.67 (41%) |
Period/Year | Annual Runoff | Runoff During Flood Season | Runoff During Dry Season | Contribution of Runoff During Flood Seasons | Annual Sediment Load | Sediment Load During Flood Season | Sediment Load During Dry Season | Contribution of Sediment Load During Flood Season |
---|---|---|---|---|---|---|---|---|
×1011 m3 | ×1011 m3 | ×1011 m3 | % | ×1011 kg | ×1011 kg | ×1011 kg | % | |
1954–1969 | 8.96 | 6.51 | 2.45 | 73 | 4.99 | 4.35 | 0.64 | 87 |
1959 | 7.73 | 5.13 | 2.60 | 66 | 4.02 | 3.32 | 0.70 | 83 |
1960 | 7.67 | 5.55 | 2.12 | 72 | 4.06 | 3.61 | 0.45 | 89 |
1970–1985 | 8.81 | 6.30 | 2.51 | 72 | 4.46 | 3.95 | 0.51 | 89 |
1972 | 6.95 | 4.60 | 2.35 | 66 | 3.40 | 2.96 | 0.44 | 87 |
1978 | 6.76 | 4.80 | 1.96 | 71 | 3.70 | 3.43 | 0.27 | 93 |
1986–2002 * | 9.28 | 6.56 | 2.71 | 70 | 3.28 | 2.90 | 0.38 | 88 |
1986 | 7.16 | 5.04 | 2.12 | 70 | 3.11 | 2.79 | 0.32 | 90 |
2003–2013 | 8.33 | 5.71 | 2.62 | 69 | 1.43 | 1.15 | 0.28 | 80 |
2006 | 6.89 | 4.42 | 2.47 | 64 | 0.85 | 0.60 | 0.25 | 71 |
2011 | 6.67 | 4.26 | 2.41 | 64 | 0.72 | 0.55 | 0.17 | 76 |
2014–2022 | 9.31 | 6.21 | 3.10 | 67 | 1.12 | 0.88 | 0.24 | 79 |
2022 | 7.71 | 4.84 | 2.87 | 63 | 0.67 | 0.50 | 0.17 | 75 |
Period/Year | Median Grain Size | Quantity of Clay | Content of Clay | Quantity of Silt | Content of Silt | Quantity of Sand | Content of Sand |
---|---|---|---|---|---|---|---|
μm | ×1011 kg | % | ×1011 kg | % | ×1011 kg | % | |
1960–1967 | 11.7 | 1.56 | 30 | 2.82 | 57 | 0.69 | 13 |
1960 | 16.8 | 0.62 | 15 | 3.02 | 74 | 0.42 | 11 |
1971–1985 * | 12.6 | 1.28 | 29 | 2.60 | 58 | 0.60 | 13 |
1978 | 6.1 | 1.44 | 39 | 2.02 | 55 | 0.24 | 6 |
1986–2002 ** | 9.5 | 1.26 | 38 | 1.67 | 50 | 0.42 | 12 |
1986 | 15.2 | 0.75 | 24 | 1.96 | 63 | 0.40 | 13 |
2003–2009 | 9.9 | 0.49 | 34 | 0.73 | 48 | 0.26 | 18 |
2006 | 8.0 | 0.31 | 36 | 0.38 | 44 | 0.17 | 20 |
2010–2021 | 14.0 | 0.24 | 19 | 0.71 | 57 | 0.29 | 24 |
2011 | 9.0 | 0.19 | 26 | 0.46 | 64 | 0.07 | 10 |
Periods | (m3/s) | (kg/m3) | log(a) | b | r2 |
---|---|---|---|---|---|
1954–1969 | 28,433 | 0.56 | −6.0666 | 1.2735 | 0.7695 |
1959 | 24,525 | 0.52 | −5.0961 | 1.0659 | 0.5734 |
1960 | 24,265 | 0.53 | −6.8108 | 1.4447 | 0.8087 |
1970–1985 | 28,022 | 0.50 | −6.2062 | 1.2875 | 0.766 |
1972 | 22,063 | 0.49 | −7.2898 | 1.5677 | 0.78 |
1978 | 21,431 | 0.55 | −7.779 | 1.6823 | 0.7893 |
1986–2002 * | 29,428 | 0.35 | −6.6634 | 1.3543 | 0.7281 |
1986 | 22,650 | 0.44 | −7.4997 | 1.5896 | 0.836 |
2003–2013 | 26,398 | 0.17 | −4.916 | 0.9129 | 0.6598 |
2006 | 21,843 | 0.12 | −4.2691 | 0.7589 | 0.667 |
2011 | 21,154 | 0.11 | −5.5537 | 1.0403 | 0.6531 |
2014–2021 | 30,143 | 0.12 | −5.3513 | 0.9706 | 0.6394 |
Year | Annual Sediment Load from Upper Reach | Annual Sediment Load from Han River | Sediment Deposition in Main Channel of Middle Reach | Sediment Deposition in Main Channel of Lower Reach |
---|---|---|---|---|
% | % | % | % | |
1959 | 35 | 33 | / | 32 |
1960 | 35 | 6 | / | 59 |
1972 | 49 | 1 | / | 39 |
1978 | 36 | 10 | / | 49 |
1986 | 12 | 1 | / | 87 |
2006 | 60 | 6 | 27 | 5 |
2011 | 52 | 3 | 6 | 31 |
2022 | 25 | 6 | 36 | 26 |
Period/Severe Drought Year | Relative Error Without Correction | Relative Error with Correction |
---|---|---|
% | % | |
1955–2002 * | 21 | 21 |
1959 ** | 10 | 2 |
1960 | 15 | 7 |
1972 | 36 | 32 |
1978 | 40 | 35 |
1986 | 43 | 36 |
1959, 1960, 1972, 1978, 1986 *** | 29 | 22 |
2003–2021 | 10 | 11 |
2006 | 6 | 12 |
2011 | 14 | 20 |
2006, 2011 | 10 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Sun, Y.; Kettner, A.J.; Wang, D.; Cheng, J.; Zou, Z. Fluvial Sediment Load Characteristics from the Yangtze River to the Sea During Severe Droughts. Water 2024, 16, 3319. https://doi.org/10.3390/w16223319
Liu X, Sun Y, Kettner AJ, Wang D, Cheng J, Zou Z. Fluvial Sediment Load Characteristics from the Yangtze River to the Sea During Severe Droughts. Water. 2024; 16(22):3319. https://doi.org/10.3390/w16223319
Chicago/Turabian StyleLiu, Xiujuan, Yuanyuan Sun, Albert J. Kettner, Daosheng Wang, Jun Cheng, and Zhenhua Zou. 2024. "Fluvial Sediment Load Characteristics from the Yangtze River to the Sea During Severe Droughts" Water 16, no. 22: 3319. https://doi.org/10.3390/w16223319
APA StyleLiu, X., Sun, Y., Kettner, A. J., Wang, D., Cheng, J., & Zou, Z. (2024). Fluvial Sediment Load Characteristics from the Yangtze River to the Sea During Severe Droughts. Water, 16(22), 3319. https://doi.org/10.3390/w16223319