The Impact of Extreme Precipitation on Soil Moisture Transport in Apple Orchards of Varying Ages on the Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Experiment Design
2.3. Data Acquisition
2.3.1. Meteorological Data Acquisition
2.3.2. Sample Collection
2.3.3. Soil Physical Properties Determination
2.3.4. Hydrogen and Oxygen Isotope Determination
2.4. Calculation Method
2.4.1. Soil Water Storage and Available Soil Water Deficit
2.4.2. Convection Diffusion Equation
2.4.3. Lc-Excess
3. Results and Analysis
3.1. Interannual Variation Characteristics of Autumn Rainfall and Division of Extreme Precipitation Years
3.1.1. Interannual Variation Characteristics of Autumn Rainfall
3.1.2. Division of Extreme Precipitation Years
3.2. Effects of Extreme Precipitation on Distribution of Soil Moisture Characteristics in Apple Orchards of Varying Ages
3.2.1. Effects of Extreme Precipitation on Soil Moisture Content in Apple Orchards of Varying Ages
3.2.2. Effects of Extreme Precipitation on δ2H and δ18O of Soil Moisture in Apple Orchards of Varying Ages
3.2.3. Effects of Extreme Precipitation on Soil Moisture Storage and Soil Moisture Deficit in Apple Orchards of Varying Ages
3.3. Effects of Extreme Precipitation on Soil Recharge in Apple Orchards of Varying Ages
3.3.1. Effects of Extreme Precipitation on Soil Moisture Recharge Characteristics of Apple Orchards of Varying Ages
3.3.2. Effects of Extreme Precipitation on Soil Water Recharge Depth in Apple Orchards of Varying Ages
3.3.3. Effects of Extreme Precipitation on Soil Moisture Recharge Modes in Apple Orchards of Varying Ages
4. Discussion
4.1. The Impact of Extreme Precipitation on Soil Moisture Distribution at Varying Growth Stages in Apple Orchards
4.2. Effects of Extreme Precipitation on Soil Moisture Recharge at Varying Growth Stages in Apple Orchards
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lemoine, N.P.; Budny, M.L. Seasonal soil moisture variability, not drought, drives differences in photosynthetic physiology of two C4 grass species. Plant Ecol. 2022, 223, 627–642. [Google Scholar] [CrossRef]
- Shao, R.; Jia, S.; Tang, Y.; Zhang, J.; Li, H.; Li, L.; Chen, J.; Guo, J.; Wang, H.; Yang, Q.; et al. Soil water deficit suppresses development of maize ear by altering metabolism and photosynthesis. Environ. Exp. Bot. 2021, 192, 104651. [Google Scholar] [CrossRef]
- Zhao, C.; Jia, X.; Zhu, Y.; Shao, M. Long-term temporal variations of soil water content under different vegetation types in the Loess Plateau, China. CATENA 2017, 158, 55–62. [Google Scholar] [CrossRef]
- Huang, Y.; Chang, Q.; Li, Z. Land use change impacts on the amount and quality of recharge water in the loess tablelands of China. Sci. Total Environ. 2018, 628–629, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Fan, J.; Zhang, S.; Zhao, X.; Luo, Z.; Zhou, G. Changes and driving factors of soil water in mixed-species plantations and different precipitation scenarios on the Loess Plateau of China. CATENA 2024, 246, 108370. [Google Scholar] [CrossRef]
- Bao, H.; Tang, M.; Lan, H.-X.; Peng, J.-B.; Zheng, H.; Guo, G.-M. Soil erosion and its causes in high-filling body: A case study of a valley area on the Loess Plateau, China. J. Mt. Sci. 2023, 20, 182–196. [Google Scholar] [CrossRef]
- Li, T.; Shao, M.; Jia, Y.; Jia, X.; Huang, L. Profile distribution of soil moisture in the gully on the northern Loess Plateau, China. CATENA 2018, 171, 460–468. [Google Scholar] [CrossRef]
- Wen, Y.; Li, M.; Xu, R.; Qiu, D.; Gao, P.; Mu, X. Spatial distribution characteristics and influencing factors of shallow and deep soil moisture under ecological restoration in the loess plateau, China. Hydrol. Process. 2024, 38, e15109. [Google Scholar] [CrossRef]
- Chen, Y.; Qian, H.; Hou, K.; Zhang, Q.; Zhang, Y. Vertical distribution characteristics of soil moisture with different strata in deep profile in Guanzhong Basin, China. Environ. Earth Sci. 2020, 79, 103. [Google Scholar] [CrossRef]
- He, Z.; Jia, G.; Liu, Z.; Zhang, Z.; Yu, X.; Xiao, P. Field studies on the influence of rainfall intensity, vegetation cover and slope length on soil moisture infiltration on typical watersheds of the Loess Plateau, China. Hydrol. Process. 2020, 34, 4904–4919. [Google Scholar] [CrossRef]
- Xu, G.; Huang, M.; Li, P.; Li, Z.; Wang, Y. Effects of land use on spatial and temporal distribution of soil moisture within profiles. Environ. Earth Sci. 2021, 80, 128. [Google Scholar] [CrossRef]
- Han, J.-J.; Duan, X.; Zhao, Y.-Y.; Li, M. Characteristics of Stable Hydrogen and Oxygen Isotopes of Soil Moisture under Different Land Use in Dry Hot Valley of Yuanmou. Open Chem. 2019, 17, 105–115. [Google Scholar] [CrossRef]
- Rau, G.C.; Andersen, M.S.; McCallum, A.M.; Acworth, R.I. Analytical methods that use natural heat as a tracer to quantify surface water–groundwater exchange, evaluated using field temperature records. Hydrogeol. J. 2010, 18, 1093–1110. [Google Scholar] [CrossRef]
- Du, K.; Zhang, B.; Li, L. Soil Water Dynamics Under Different Land Uses in Loess Hilly Region in China by Stable Isotopic Tracing. Water 2021, 13, 242. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.; Sprenger, M.; Liu, B.; Cao, J. Response of soil water movement and groundwater recharge to extreme precipitation in a headwater catchment in the North China Plain. J. Hydrol. 2019, 576, 466–477. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, X.-C.; Dang, T.; Ouyang, Z.; Li, Z.; Wang, J.; Wang, R.; Gao, C. Soil water dynamics and deep soil recharge in a record wet year in the southern Loess Plateau of China. Agric. Water Manag. 2010, 97, 1133–1138. [Google Scholar] [CrossRef]
- Huang, Y.; Evaristo, J.; Li, Z. Multiple tracers reveal different groundwater recharge mechanisms in deep loess deposits. Geoderma 2019, 353, 204–212. [Google Scholar] [CrossRef]
- Sun, J.; Li, B.; Wang, W.; Yan, X.; Li, Q.; Li, Z. Variations and controls on groundwater recharge estimated by combining the water-table fluctuation method and Darcy’s law in a loess tableland in China. Hydrogeol. J. 2024, 32, 379–394. [Google Scholar] [CrossRef]
- Song, X.; Wang, S.; Xiao, G.; Wang, Z.; Liu, X.; Wang, P. A study of soil water movement combining soil water potential with stable isotopes at two sites of shallow groundwater areas in the North China Plain. Hydrol. Process. 2009, 23, 1376–1388. [Google Scholar] [CrossRef]
- Zhu, X.; He, Z.-B.; Du, J.; Chen, L.-F.; Lin, P.-F.; Li, J. Temporal variability in soil moisture after thinning in semi-arid Picea crassifolia plantations in northwestern China. For. Ecol. Manag. 2017, 401, 273–285. [Google Scholar] [CrossRef]
- Luan, J.; Zhang, Y.; Li, X.; Ma, N.; Naeem, S.; Xu, Z.; He, S.; Miao, P.; Tian, X.; Wang, R. Unexpected consequences of large-scale ecological restoration: Groundwater declines are reversed. Ecol. Indic. 2023, 155, 111008. [Google Scholar] [CrossRef]
- Ye, S.; Li, J.; Kong, H.; Shen, J.; Wu, D. Effects of different mulch materials on the photosynthetic characteristics, yield, and soil water use efficiency of wheat in Loess tableland. Sci. Rep. 2023, 13, 18106. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Gao, J.; Zhang, Y.; Ahmad, R.; Gao, Z.; Zhou, F. Effects of Planting Practices on Soil Organic Carbon during Old Apple Orchards’ Reconstruction on the Loess Plateau. Agronomy 2023, 13, 897. [Google Scholar] [CrossRef]
- Lu, Y.; Li, H.; Si, B.; Li, M. Chloride tracer of the loess unsaturated zone under sub-humid region: A potential proxy recording high-resolution hydroclimate. Sci. Total Environ. 2020, 700, 134465. [Google Scholar] [CrossRef] [PubMed]
- Houborg, R.; McCabe, M.F. Adapting a regularized canopy reflectance model (REGFLEC) for the retrieval challenges of dryland agricultural systems. Remote Sens. Environ. 2016, 186, 105–120. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, J.; Dai, T.; Jing, S.; Hua, Y.; Zhang, Q.; Liu, H.; Wu, Y.; Zhang, Z.; Chen, J. Assessing accuracy of crop water stress inversion of soil water content all day long. Precis. Agric. 2024, 25, 1894–1914. [Google Scholar] [CrossRef]
- Igaz, D.; Aydin, E.; Šinkovičová, M.; Šimanský, V.; Tall, A.; Horák, J. Laser Diffraction as An Innovative Alternative to Standard Pipette Method for Determination of Soil Texture Classes in Central Europe. Water 2020, 12, 1232. [Google Scholar] [CrossRef]
- Huang, J.; Wang, S.; Guo, Y.; Chen, J.; Yao, Y.; Chen, D.; Liu, Q.; Zhang, Y.; Zhang, Z.; Xiang, Y. Hysteresis between winter wheat canopy temperature and atmospheric temperature and its driving factors. Plant Soil 2024, 499, 55–71. [Google Scholar] [CrossRef]
- Tao, G.; Lei, D.; Liu, L.; Li, Y.; Zhu, X. Prediction of Soil Water Characteristic Curve Based on Soil Water Evaporation. Adv. Civ. Eng. 2021, 2021, 6686442. [Google Scholar] [CrossRef]
- Sprenger, M.; Tetzlaff, D.; Tunaley, C.; Dick, J.; Soulsby, C. Evaporation fractionation in a peatland drainage network affects stream water isotope composition. Water Resour. Res. 2017, 53, 851–866. [Google Scholar] [CrossRef]
- Huang, T.; Ma, B.; Pang, Z.; Li, Z.; Li, Z.; Long, Y. How does precipitation recharge groundwater in loess aquifers? Evidence from multiple environmental tracers. J. Hydrol. 2020, 583, 124532. [Google Scholar] [CrossRef]
- Mathias, S.A.; Butler, A.P.; McIntyre, N.; Wheater, H.S. The significance of flow in the matrix of the Chalk unsaturated zone. J. Hydrol. 2005, 310, 62–77. [Google Scholar] [CrossRef]
- Shi, P.; Huang, Y.; Ji, W.; Xiang, W.; Evaristo, J.; Li, Z. Impacts of deep-rooted fruit trees on recharge of deep soil water using stable and radioactive isotopes. Agric. For. Meteorol. 2021, 300, 108325. [Google Scholar] [CrossRef]
- Chen, K.; Liu, G.; Xia, C.; Meng, Y.; Tetzlaff, D.; Zhong, Q.; Chang, J. Water cycling and partitioning through the soil–plant–atmosphere continuum in a subtropical, urban woodland inferred by water stable isotopes. Hydrol. Process. 2022, 36, e14746. [Google Scholar] [CrossRef]
- Sprenger, M.; Tetzlaff, D.; Soulsby, C. Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone. Hydrol. Earth Syst. Sci. 2017, 21, 3839–3858. [Google Scholar] [CrossRef]
- Landwehr, J.M.; Coplen, T.B.; Stewart, D.W. Spatial, seasonal, and source variability in the stable oxygen and hydrogen isotopic composition of tap waters throughout the USA. Hydrol. Process. 2014, 28, 5382–5422. [Google Scholar] [CrossRef]
- Souza Wojahn, V.d.; Bartels, G.K.; Collares, G.L. Temporal stability of soil moisture: A case study in a small watershed in the subtropical region of Brazil. Environ. Earth Sci. 2023, 82, 61. [Google Scholar] [CrossRef]
- Gierke, C.; Newton, B.T.; Phillips, F.M. Soil-water dynamics and tree water uptake in the Sacramento Mountains of New Mexico (USA): A stable isotope study. Hydrogeol. J. 2016, 24, 805–818. [Google Scholar] [CrossRef]
- Zhu, S.; Li, H.; Xu, W.; Zhang, T.; Liu, C.; Peng, Y. Dynamic process and model simulation of soil water content during citrus growth period. Acta Geophys. 2023, 71, 1525–1537. [Google Scholar] [CrossRef]
- Pu, H.; Song, W.; Wu, J. Using Soil Water Stable Isotopes to Investigate Soil Water Movement in a Water Conservation Forest in Hani Terrace. Water 2020, 12, 3520. [Google Scholar] [CrossRef]
- Xiang, W.; Si, B.C.; Biswas, A.; Li, Z. Quantifying dual recharge mechanisms in deep unsaturated zone of Chinese Loess Plateau using stable isotopes. Geoderma 2019, 337, 773–781. [Google Scholar] [CrossRef]
- Zhou, J.J.; Wang, X.; Ma, L.; Luo, C.Y.; Tang, H.T.; Guo, Z.N.; Chen, J.W.; Shi, S.H.; Shi, W.; Wei, W.; et al. Variation of soil-plant-atmosphere continuum stable isotope and water source in Qinghai spruce forest of the eastern Qilian Mountains. J. Mt. Sci. 2023, 20, 355–366. [Google Scholar] [CrossRef]
Land Types | Planting Year | Stand Age | Period | Latitude | Longitude |
---|---|---|---|---|---|
Agricultural land | \ | \ | \ | 107°41′7.96″ | 35°14′52.75″ |
Apple orchard | 2008 | 12 years | Full bearing | 107°41′05.88″ | 35°14′58.72″ |
2005 | 15 years | Full bearing | 107°41′09.01″ | 35°14′52.18″ | |
2001 | 19 years | Senescence | 107°40′46.74″ | 35°14′34.12″ | |
1998 | 22 years | Senescence | 107°41′03.00″ | 35°14′08.82″ |
Land Types | Sampling Depth (m) | ||
---|---|---|---|
October 2020 | May 2021 | May 2021 | |
Agricultural land | 0~15 | \ | 0~15 |
Apple orchards of 12 y | 0~15 | 0~6 | 0~12 |
Apple orchards of 15 y | 0~15 | 0~6 | 0~10 |
Apple orchards of 19 y | 0~15 | 0~6 | 0~10 |
Apple orchards of 22 y | 0~15 | 0~6 | 0~8 |
Year | Precipitation Days | ARI | Type |
---|---|---|---|
(d) | |||
2015 | 31 | 7.9 | Ordinary precipitation year |
2016 | 29 | 4.7 | Ordinary precipitation year |
2017 | 32 | 6.9 | Ordinary precipitation year |
2018 | 32 | 5.3 | Ordinary precipitation year |
2019 | 28 | 9.1 | Ordinary precipitation year |
2020 | 36 | 6.9 | Ordinary precipitation year |
2021 | 40 | 21.2 | Extremely precipitation year |
Average value | 32.6 | 8.9 | |
Standard deviation | 4.2 | 5.6 |
Land Types | Year | Soil Water Storage | Field Capacity | Soil Water Deficit |
---|---|---|---|---|
(mm) | (mm) | (mm) | ||
Agricultural land | 2020 | 1931 | 1739 | 0 |
2022 | 1851 | 1739 | 0 | |
Apple orchards of 12 y | 2020 | 1720 | 1739 | 19 |
2022 | 1891 | 1739 | 0 | |
Apple orchards of 15 y | 2020 | 1529 | 1739 | 210 |
2022 | 1701 | 1739 | 38 | |
Apple orchards of 19 y | 2020 | 1201 | 1739 | 538 |
2022 | 1643 | 1739 | 96 | |
Apple orchards of 22 y | 2020 | 1090 | 1739 | 649 |
2022 | 1380 | 1739 | 359 |
Land Types | Minimum Soil Moisture Content Before Recharge (%) | Depth of Minimum Soil Moisture Content Before Recharge (mm) | Maximum Soil Moisture Content After Recharge (%) | Depth of Maximum Soil Moisture Content Before Recharge (mm) |
---|---|---|---|---|
Agricultural land | 25 | 2 | 36 | 10.2 |
Apple orchards of 12 y | 25 | 7.8 | 38 | 9.8 |
Apple orchards of 15 y | 18 | 9.8 | 31 | 7 |
Apple orchards of 19 y | 15 | 10 | 32 | 6.6 |
Apple orchards of 22 y | 16 | 10.2 | 29 | 4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Hua, Y.; Zhang, Y.; Xu, W.; Gu, L.; Tian, Y.; Wu, Y.; Long, Q.; Wei, H.; Li, M. The Impact of Extreme Precipitation on Soil Moisture Transport in Apple Orchards of Varying Ages on the Loess Plateau. Water 2024, 16, 3322. https://doi.org/10.3390/w16223322
Huang J, Hua Y, Zhang Y, Xu W, Gu L, Tian Y, Wu Y, Long Q, Wei H, Li M. The Impact of Extreme Precipitation on Soil Moisture Transport in Apple Orchards of Varying Ages on the Loess Plateau. Water. 2024; 16(22):3322. https://doi.org/10.3390/w16223322
Chicago/Turabian StyleHuang, Jialiang, Yi Hua, Yuqing Zhang, Wei Xu, Linyun Gu, Yu Tian, Yi Wu, Quan Long, Haoyan Wei, and Min Li. 2024. "The Impact of Extreme Precipitation on Soil Moisture Transport in Apple Orchards of Varying Ages on the Loess Plateau" Water 16, no. 22: 3322. https://doi.org/10.3390/w16223322
APA StyleHuang, J., Hua, Y., Zhang, Y., Xu, W., Gu, L., Tian, Y., Wu, Y., Long, Q., Wei, H., & Li, M. (2024). The Impact of Extreme Precipitation on Soil Moisture Transport in Apple Orchards of Varying Ages on the Loess Plateau. Water, 16(22), 3322. https://doi.org/10.3390/w16223322