Egg White Protein–Soybean Protein Isolate Hierarchical Network Hydrogel for Enhanced Adsorption of Methylene Blue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of EWP/SPI Hydrogel Beads
2.3. Characterisations
2.4. Adsorption Experiments
2.4.1. Adsorption of MB
2.4.2. Optimization of the Performance of EWP/SPI Hydrogel Beads
2.5. Stability of EWP/SPI Hydrogel Beads
2.5.1. Wettability of EWP/SPI Hydrogel Beads
2.5.2. Floatability of EWP/SPI Hydrogel Beads
2.6. Recyclability Experiments
3. Results and Discussion
3.1. Characterization of EWP/SPI Hydrogel Beads
3.2. Adsorption Performance of EWP/SPI Hydrogel Beads
3.3. Adsorption Kinetics of EWP/SPI Hydrogel Beads
3.4. Adsorption Isotherm of EWP/SPI Hydrogel Beads
3.5. Thermodynamic Studies of EWP/SPI Hydrogel Beads
3.6. Floatability Performance of EWP/SPI Hydrogel Beads
3.7. Regeneration Performance of EWP/SPI Hydrogel Beads
3.8. Comparison of Adsorption Performance of EWP/SPI Hydrogel Beads with Other Adsorbents
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, M.; Janssen, A.B.G.; Bazin, J.; Strokal, M.; Ma, L.; Kroeze, C. Accounting for interactions between Sustainable Development Goals is essential for water pollution control in China. Nat. Commun. 2022, 13, 730. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Yang, H.; Xu, X. Effects of water pollution on human health and disease heterogeneity: A review. Front. Environ. Sci. 2022, 10, 880246. [Google Scholar] [CrossRef]
- Rahmatpour, A.; Alijani, N.; Alizadeh, A.H. Preparation of chitosan-based ternary nanocomposite hydrogel film by loading graphene oxide nanosheets as adsorbent for enhanced methylene blue dye removal. Int. J. Biol. Macromol. 2023, 253, 126585. [Google Scholar] [CrossRef] [PubMed]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Li, Y.; Wang, H.; Du, Q.; Li, M.; Sun, Y.; Cui, M.; Li, L. Study on the adsorption performance of casein/graphene oxide aerogel for methylene blue. ACS Omega 2021, 6, 29243–29253. [Google Scholar] [CrossRef]
- Zeng, G.; He, Z.; Wan, T.; Wang, T.; Yang, Z.; Liu, Y.; Lin, Q.; Wang, Y.; Sengupta, A.; Pu, S. A self-cleaning photocatalytic composite membrane based on g-C3N4@MXene nanosheets for the removal of dyes and antibiotics from wastewater. Sep. Purif. Technol. 2022, 292, 121037. [Google Scholar] [CrossRef]
- Wang, T.; Zheng, J.; Cai, J.; Liu, Q.; Zhang, X. Visible-light-driven photocatalytic degradation of dye and antibiotics by activated biochar composited with K+ doped g-C3N4: Effects, mechanisms, actual wastewater treatment and disinfection. Sci. Total Environ. 2022, 839, 155955. [Google Scholar] [CrossRef]
- Yin, Z.; Chen, X.; Zhou, T.; Xue, M.; Li, M.; Liu, K.; Zhou, D.P.; Ou, J.; Xie, Y.; Ren, Z.; et al. Mussel-inspired fabrication of superior superhydrophobic cellulose-based composite membrane for efficient oil emulsions separation, excellent anti-microbial property and simultaneous photocatalytic dye degradation. Sep. Purif. Technol. 2022, 286, 120504. [Google Scholar] [CrossRef]
- Chen, L.; Hu, X.; Cai, T.; Yang, Y.; Zhao, R.; Liu, C.; Li, A.; Jiang, C. Degradation of Triclosan in soils by thermally activated persulfate under conditions representative of in situ chemical oxidation (ISCO). Chem. Eng. J. 2019, 369, 344–352. [Google Scholar] [CrossRef]
- Atallah, C.; Mosadeghsedghi, S.; Kenari, S.L.D.; Hudder, M.; Morin, L.; Volchek, K.; Mortazavi, S.; Ben Salah, I. Removal of heavy metals from mine water using a hybrid electrocoagulation-ceramic membrane filtration process. Desalin. Water Treat. 2024, 320, 100730. [Google Scholar] [CrossRef]
- Sefiddashti, F.T.; Homayoonfal, M. Nanostructure-manipulated filtration performance in nanocomposite membranes: A comprehensive investigation for water and wastewater treatment. Heliyon 2024, 10, e36874. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Jiang, X.; Liu, X.; Zhou, W.; Garba, Z.N.; Lawan, I.; Wang, L.; Yuan, Z. Adsorption of organic dyes from wastewater by metal-doped porous carbon materials. J. Clean. Prod. 2021, 284, 124773. [Google Scholar] [CrossRef]
- Xue, H.; Wang, X.; Xu, Q.; Dhaouadi, F.; Sellaoui, L.; Seliem, M.K.; Ben Lamine, A.; Belmabrouk, H.; Bajahzar, A.; Bonilla-Petriciolet, A.; et al. Adsorption of methylene blue from aqueous solution on activated carbons and composite prepared from an agricultural waste biomass: A comparative study by experimental and advanced modeling analysis. Chem. Eng. J. 2021, 430, 132801. [Google Scholar] [CrossRef]
- Zhao, R.; Shi, X.; Ma, T.; Rong, H.; Wang, Z.; Cui, F.; Zhu, G.; Wang, C. Constructing mesoporous adsorption channels and MOF-polymer interfaces in electrospun composite fibers for effective removal of emerging organic contaminants. ACS Appl. Mater. Interfaces 2021, 13, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Asthana, A.; Singh, A.K.; Chakraborty, R.; Vidya, S.S.; Susan, M.A.B.H.; Carabineiro, S.A.C. Adsorption of cationic dyes, drugs and metal from aqueous solutions using a polymer composite of magnetic/β-cyclodextrin/activated charcoal/Na alginate: Isotherm, kinetics and regeneration studies. J. Hazard. Mater. 2021, 409, 124840. [Google Scholar] [CrossRef]
- Dai, H.; Yuan, X.; Jiang, L.; Wang, H.; Zhang, J.; Zhang, J.; Xiong, T. Recent advances on ZIF-8 composites for adsorption and photocatalytic wastewater pollutant removal: Fabrication, applications and perspective. Coord. Chem. Rev. 2021, 441, 213985. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, X.; Lou, T. Preparation of fibrous chitosan/sodium alginate composite foams for the adsorption of cationic and anionic dyes. J. Hazard. Mater. 2021, 403, 124054. [Google Scholar] [CrossRef]
- Kalidhasan, S.; Lim, Y.S.; Chu, E.A.; Choi, J.; Lee, H.Y. Phospholipid-derived Au and Au-Cu suspensions as efficient peroxide and borohydride activators for organic molecules degradation: Performance and sustainable catalytic mechanism. Chemosphere 2024, 346, 140567. [Google Scholar] [CrossRef]
- Zhang, Z.; Tran, P.; Rumi, S.; Bergfeld, N.; Reid, T.W.; Abidi, N. Alginate/organo-selenium composite hydrogel beads: Dye adsorption and bacterial deactivation. Int. J. Biol. Macromol. 2024, 280, 135908. [Google Scholar] [CrossRef]
- Yang, J.; Nie, J.; Bian, L.; Zhang, J.; Song, M.; Wang, F.; Lv, G.; Zeng, L.; Gu, X.; Xie, X.; et al. Clay minerals/sodium alginate/polyethylene hydrogel adsorbents control the selective adsorption and reduction of uranium: Experimental optimization and Monte Carlo simulation study. J. Hazard. Mater. 2024, 468, 133725. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, T.; Jiang, H.; Liu, J.; Wang, E.; Zhang, M.; Liu, X. pH-induced egg white protein foaming properties enhancement: Insight into protein structure and quantitative proteomic analysis at protein adsorption layer. Food Hydrocoll. 2023, 144, 109060. [Google Scholar] [CrossRef]
- Chen, Y.S.; Ooi, C.W.; Show, P.L.; Hoe, B.C.; Chai, W.S.; Chiu, C.Y.; Wang, S.S.S.; Chang, Y.K. Removal of ionic dyes by nanofiber membrane functionalized with chitosan and egg white proteins: Membrane preparation and adsorption efficiency. Membranes 2022, 12, 63. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Wang, Y.; McClements, D.J.; Lu, C.; Chang, C.; Li, J.; Gu, L.; Yang, Y. Selective adsorption of egg white hydrolysates onto activated carbon: Establishment of physicochemical mechanisms for removing phenylalanine. Food Chem. 2021, 364, 130285. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Du, Q.; Li, Y.; Zhang, Y.; Chen, B.; Wang, M.; Chen, K.; Sun, Y.; Zhao, S.; Jing, Z. Removal of methylene blue by crosslinked egg white protein/graphene oxide bionanocomposite aerogels. Nanomaterials 2022, 12, 2659. [Google Scholar] [CrossRef] [PubMed]
- Farjami, T.; Babaei, J.; Nau, F.; Dupont, D.; Madadlou, A. Effects of thermal, non-thermal and emulsification processes on the gastrointestinal digestibility of egg white proteins. Rends Food Sci. Technol. 2021, 107, 45–56. [Google Scholar] [CrossRef]
- Gharbi, N.; Labbafi, M. Effect of processing on aggregation mechanism of egg white proteins. Food Chem. 2018, 252, 126–133. [Google Scholar] [CrossRef]
- Sun, S.; Xu, Y.; Maimaitiyiming, X. Egg white/gelatin/carboxymethylcellulose superbly bonded and biocompatible flexible self-adhesive multifunctional sensor. Cellulose 2024, 31, 6779–6795. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, S.; Deng, L.; Duan, Y.; Huang, Z.; Gong, D.; Zhang, G. Construction and characterization of egg white protein-gallic acid-xanthan gum-based emulsion and oleogel. Food Hydrocoll. 2024, 150, 109720. [Google Scholar] [CrossRef]
- Revadekar, C.C.; Godiya, C.B.; Park, B.J. Novel soy protein isolate/sodium alginate-based functional aerogel for efficient uptake of organic dye from effluents. J. Environ. Manag. 2024, 352, 120011. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, C.; Li, Y.; Qin, Z.; Li, X.; Li, Y.; Zhang, K. Double cross-linked chitosan sponge encapsulated with ZrO2/soy protein isolate amyloid fibrils nanoparticles for the fluoride ion removal from water. Int. J. Biol. Macromol. 2024, 279, 135520. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Chen, B.; Wang, M.; Zhang, Y.; Chen, K.; Du, Q.; Wang, Y.; Pi, X. Methylene blue removed from aqueous solution by encapsulation of bentonite aerogel beads with cobalt alginate. ACS Omega 2022, 7, 41246–41255. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Zhang, H.; Bai, Z.; Jiang, J.; Wang, Y.; Quan, F. Efficient and rapid adsorption of methylene blue dyes by novel metal-organic frameworks and organic/inorganic hybrid alginate-based dual network gel composites. Int. J. Biol. Macromol. 2023, 253, 127034. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Deng, T.; Qiu, W.; Hu, T.; Zheng, X.; Peng, K.; Zhang, Y.; Zhao, Y.; Xu, Z.; Lei, H.; et al. One stone, two birds: An eco-friendly aerogel based on waste pomelo peel cellulose for the efficient adsorption of dyes and heavy metal ions. Int. J. Biol. Macromol. 2024, 273, 132875. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Yang, M.; Xiao, G.; Jiang, X. Preparation of strong, tough and conductive soy protein isolate/poly(vinyl alcohol)-based hydrogel via the synergy of biomineralization and salting out. Int. J. Biol. Macromol. 2024, 257, 128566. [Google Scholar] [CrossRef] [PubMed]
- Pasban, A.; Mousavi, S.F.; Abdollahi, S.; Hesarinejad, M.A. Evaluating the potential of soy protein isolate/alginate hydrogel as polyphenolic liposome carrier during gastrointestinal tract: A case study on sumac extract. LWT Food Sci. Technol. 2024, 211, 116883. [Google Scholar] [CrossRef]
- Wang, Z.; Song, L.; Wang, Y.; Zhang, X.; Hao, D.; Feng, Y.; Yao, J. Lightweight UiO-66/cellulose aerogels constructed through self-crosslinking strategy for adsorption applications. Chem. Eng. J. 2019, 371, 138–144. [Google Scholar] [CrossRef]
- Ma, J.; Yu, F.; Zhou, L.; Jin, L.; Yang, M.; Luan, J.; Tang, Y.; Fan, H.; Yuan, Z.; Chen, J. Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS Appl. Mater. Interfaces 2012, 4, 5749–5760. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, Y.; Cui, Y.; Dai, R.; Shan, Z.; Chen, H. Fabrication of starch-based high-performance adsorptive hydrogels using a novel effective pretreatment and adsorption for cationic methylene blue dye: Behavior and mechanism. Chem. Eng. J. 2021, 405, 126953. [Google Scholar] [CrossRef]
- Aljar, M.A.A.; Rashdan, S.; Abd El-Fattah, A. Environmentally friendly polyvinyl alcohol-alginate/bentonite semi-interpenetrating polymer network nanocomposite hydrogel beads as an efficient adsorbent for the removal of methylene blue from aqueous solution. Polymers 2021, 13, 4000. [Google Scholar] [CrossRef]
- Jiang, R.; Yao, J.; Yao, Y. Optimization of the modified soybean straw activated carbon for adsorption of methylene blue dye by response surface methodology. Pol. J. Environ. Stud. 2023, 32, 4073–4082. [Google Scholar] [CrossRef]
- Shah, S.S.; Ramos, B.; Teixeira, A.C.S.C. Adsorptive removal of methylene blue dye using biodegradable superabsorbent hydrogel polymer composite incorporated with activated charcoal. Water 2022, 14, 3313. [Google Scholar] [CrossRef]
Kinetic Model | Parameter | Values |
---|---|---|
Pseudo-first-order kinetic model | k1 (min−1) | 0.0546 |
qe (mg·g−1) | 187.495 | |
R2 | 0.985 | |
Pseudo-second-order kinetic model | k2 × 104 (g·mg−1·g−1) | 4.212 |
qe (mg·g−1) | 198.417 | |
R2 | 0.95293 | |
Elovich kinetic model | α (mg·g−1·min−1) | 190.590 |
β (g·mg−1) | 0.04051 | |
R2 | 0.875 | |
Intraparticle diffusion model | ki,1 (mg·g−1·min−1/2) | 19.561 |
ci,1 (mg·g−1) | 1.0883 | |
R2 | 0.908 | |
ki,2 (mg·g−1·min−1/2) | 0.337 | |
ci,2 (mg·g−1) | 180.952 | |
R2 | 0.904 |
Isotherm Models | Parameter | Values |
---|---|---|
Langmuir | qm (mg·g−1) | 336.265 |
KL (L·mg−1) | 0.183 | |
R2 | 0.989 | |
Freundlich | Kf (mg1−1/n·L1/n·g1) | 107.353 |
n | 3.909 | |
R2 | 0.910 | |
Temkin | BT (J·mol−1) | 61.083 |
AT (L·mg−1) | 2.677 | |
R2 | 0.949 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Wang, X. Egg White Protein–Soybean Protein Isolate Hierarchical Network Hydrogel for Enhanced Adsorption of Methylene Blue. Water 2024, 16, 3357. https://doi.org/10.3390/w16233357
Zhang M, Wang X. Egg White Protein–Soybean Protein Isolate Hierarchical Network Hydrogel for Enhanced Adsorption of Methylene Blue. Water. 2024; 16(23):3357. https://doi.org/10.3390/w16233357
Chicago/Turabian StyleZhang, Mei, and Xu Wang. 2024. "Egg White Protein–Soybean Protein Isolate Hierarchical Network Hydrogel for Enhanced Adsorption of Methylene Blue" Water 16, no. 23: 3357. https://doi.org/10.3390/w16233357
APA StyleZhang, M., & Wang, X. (2024). Egg White Protein–Soybean Protein Isolate Hierarchical Network Hydrogel for Enhanced Adsorption of Methylene Blue. Water, 16(23), 3357. https://doi.org/10.3390/w16233357