Urban FEW Nexus Model for the Otun River Watershed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Estimation of Food–Energy–Water Demand in the ORW
2.2.1. WEF 2.0 Nexus Tool
2.2.2. Material and Energy Flow Analysis (MEFA)
2.2.3. Water Footprints
2.2.4. Urban FEW Nexus Model for the Andean Region
Description of Scenarios
2.2.5. Water Quantity in the ORW Under Different Climate Change Scenarios
3. Results and Discussion
3.1. Water and Energy Demand for Food
3.2. Water and Energy Demand in Pereira/Dosquebradas Urban Area
3.3. Grey Water Footprint
3.4. Water Availability Under Future Climate Projections
3.5. General Discussion
3.5.1. Water and Energy
3.5.2. Water and Food
3.5.3. Water Footprints
3.5.4. Recommendations for Water Resources Management for the ORW Under Future Climate Change Scenarios
3.5.5. Operationalization of Food–Energy–Water (FEW) Nexus Analytics: Catalyzing Cross-Sectoral Dialogue and Knowledge to Action
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoff, H. Understanding the Nexus. Background Paper for the Bonn 2011 Nexus Conference: The Water, Energy and Food Security Nexus; Stockholm Environment Institute: Stockholm, Sweden, 2011. [Google Scholar]
- Chen, D.; Zhang, P.; Luo, Z.; Zhang, D.; Bi, B.; Cao, X. Recent Progress on the Water–Energy–Food Nexus using Bibliometric Analysis. Curr. Sci. 2019, 117, 577. [Google Scholar] [CrossRef]
- Endo, A.; Tsurita, I.; Burnett, K.; Orencio, P.M. A review of the current state of research on the water, energy, and food nexus. J. Hydrol. Reg. Stud. 2017, 11, 20–30. [Google Scholar] [CrossRef]
- Newell, J.P.; Goldstein, B.; Foster, A. A 40-year review of food–energy–water nexus literature and its application to the urban scale. Environ. Res. Lett. 2019, 14, 073003. [Google Scholar] [CrossRef]
- Opejin, A.K.; Aggarwal, R.M.; White, D.D.; Jones, J.L.; Maciejewski, R.; Mascaro, G.; Sarjoughian, H.S. A bibliometric analysis of Food-Energy-Water Nexus literature. Sustainability 2020, 12, 1112. [Google Scholar] [CrossRef]
- Zhu, J.; Kang, S.; Zhao, W.; Li, Q.; Xie, X.; Hu, X. A Bibliometric Analysis of Food–Energy–Water Nexus: Progress and Prospects. Land. 2020, 9, 504. [Google Scholar] [CrossRef]
- Albrecht, T.R.; Crootof, A.; Scott, C.A. The Water-Energy-Food Nexus: A systematic review of methods for nexus assessment. Environ. Res. Lett. 2018, 13, 043002. [Google Scholar] [CrossRef]
- Keairns, D.L.; Darton, R.C.; Irabien, A. The Energy-Water-Food Nexus. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 239–262. [Google Scholar] [CrossRef]
- Embid, A.; Martín, L. The Nexus between Water, Energy and Food in Latin America and the Caribbean; German Corporation for International Cooperation (GIZ): Bonn, Germany, 2017; p. 62. [Google Scholar]
- Mahlknecht, J.; González-Bravo, R.; Loge, F.J. Water-energy-food security: A Nexus perspective of the current situation in Latin America and the Caribbean. Energy 2020, 194, 116824. [Google Scholar] [CrossRef]
- Birnbaum, A.; Lamontagne, J.; Wild, T.; Dolan, F.; Yarlagadda, B. Drivers of Future Physical Water Scarcity and Its Economic Impacts in Latin America and the Caribbean. Earths Future 2022, 10, e2022EF002764. [Google Scholar] [CrossRef]
- Naranjo, L.; Willaarts, B.A. Guía Metodológica: Diseño de Acciones Con Enfoque del Nexo Entre Agua, Energía y Alimentación Para Países de América Latina y el Caribe; Comisión Económica para América Latina y el Caribe (CEPAL): Santiago, Chile, 2020. [Google Scholar]
- Instituto de Hidrología, Meteorología y Estudios Ambientales—IDEAM. Estudio Nacional del Agua 2018; Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM): Bogotá, Colombia, 2019; p. 438. [Google Scholar]
- Guan, X.; Mascaro, G.; Sampson, D.; Maciejewski, R. A metropolitan scale water management analysis of the food-energy-water nexus. Sci. Total Environ. 2020, 701, 134478. [Google Scholar] [CrossRef]
- Liang, S.; Qu, S.; Zhao, Q.; Zhang, X.; Daigger, G.T.; Newell, J.P.; Miller, S.A.; Johnson, J.X.; Love, N.G.; Zhang, L.; et al. Quantifying the Urban Food–Energy–Water Nexus: The Case of the Detroit Metropolitan Area. Environ. Sci. Technol. 2019, 53, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Karlberg, L.; Hoff, H.; Amsalu, T.; Andersson, K.; Binnington, T.; Flores-López, F.; de Bruin, A.; Gebrehiwot, S.G.; Gedif, B. Tackling Complexity: Understanding the Food-Energy- Environment Nexus in Ethiopia’s Lake Tana Sub-basin. Water Altern. 2015, 8, 25. [Google Scholar]
- Daher, B.T.; Mohtar, R.H. Water–energy–food (WEF) Nexus Tool 2.0: Guiding integrative resource planning and decision-making. Water Int. 2015, 40, 748–771. [Google Scholar] [CrossRef]
- Howells, M.; Hermann, S.; Welsch, M.; Bazilian, M.; Segerström, R.; Alfstad, T.; Gielen, D.; Rogner, H.; Fischer, G.; van Velthuizen, H.; et al. Integrated analysis of climate change, land-use, energy and water strategies. Nat. Clim. Chang. 2013, 3, 621–626. [Google Scholar] [CrossRef]
- Schull, V.Z.; Daher, B.; Gitau, M.W.; Mehan, S.; Flanagan, D.C. Analyzing FEW nexus modeling tools for water resources decision-making and management applications. Food Bioprod. Process. 2020, 119, 108–124. [Google Scholar] [CrossRef]
- Bellfield, H. Water, Energy and Food Security Nexus in Latin America and the Caribbean; Global Canopy Programme: Oxford, UK, 2015. [Google Scholar]
- Torres, C.; Gitau, M.; Lara-Borrero, J.; Paredes-Cuervo, D. Framework for Water Management in the Food-Energy-Water (FEW) Nexus in Mixed Land-Use Watersheds in Colombia. Sustainability 2020, 12, 10332. [Google Scholar] [CrossRef]
- Departamento Administrativo Nacional de Estadística (DANE). Retroproyecciones y Proyecciones de Población a Nivel Nacional, Departamental y Municipal. 2018. Available online: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacion (accessed on 3 July 2020).
- Cámara de Comercio de Pereira. Series Estadísticas de Risaralda—Segundo Trimestre de. 2019. Available online: https://bit.ly/2MW7SEm (accessed on 9 May 2019).
- Departamento Administrativo Nacional de Estadística (DANE). 3er Censo Nacional Agropecuario. 2016. Available online: https://www.dane.gov.co/files/images/foros/foro-de-entrega-de-resultados-y-cierre-3-censo-nacional-agropecuario/CNATomo2-Resultados.pdf (accessed on 7 March 2019).
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef]
- FAO. Banana, Land & Water, Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/land-water/databases-and-software/crop-information/banana/en/ (accessed on 29 October 2020).
- Cámara de Comercio de Bogotá. Manual: La papa; Cámara de Comercio de: Bogotá, Colombia, 2015. [Google Scholar]
- FENALCE. Aspectos Técnicos de la Producción de Maíz en Colombia; Federación Nacional de Cultivadores de Cereales, Leguminosas y Soya (FENALCE): Bogotá, Colombia, 2011. [Google Scholar]
- Heber Medina, J. Absorción de Nutrientes en Fedearroz Mocari. Rev. Arroz 2009, 58, 32–37. [Google Scholar]
- Herrera, E. Fertilization Programs for Apple Orchards; New Mexico State University: Las Cruces, NM, USA, 2001. [Google Scholar]
- Molina, E. Nutrición y Fertilización de la Naranja. Inf. Agronómicas 2000, 16, 6–12. [Google Scholar]
- Sadeghian, S. Fertilidad del Suelo y Nutrición del Café en Colombia; CENICAFE: Manizales, Colombia, 2008. [Google Scholar]
- Ministerio de Transporte. Mercado y Tecnologías Vehiculares en el Transporte de Carga; Ministerio de Transporte: Bogotá, Colombia, 2019; p. 18. [Google Scholar]
- Downs, H.; Hansen, R. Estimating Farm Fuel Requirements. 1998. Available online: https://static1.squarespace.com/static/63ed8dee044aa1407bd904ef/t/64bf22f882cb192884e54c23/1690247931512/Estimatiing+Farm+Fuel+Requirements.pdf (accessed on 4 May 2020).
- Helsel, Z.R. Energy and Alternatives for Fertilizer and Pesticide Use. In Energy in Farm Production; Elsevier B.V: Amsterdam, The Netherlands, 1992; p. 25. [Google Scholar]
- Brunner, P.H.; Rechberger, H. Handbook of Material Flow Analysis: For Environmental, Resource, and Waste Engineers, 2nd ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2017; ISBN 978-1-4987-2134-9. [Google Scholar]
- Bakken, T.H.; Killingtveit, Å.; Alfredsen, K. The Water Footprint of Hydropower Production—State of the Art and Methodological Challenges. Glob. Chall. 2017, 1, 1600018. [Google Scholar] [CrossRef]
- Empresa de Acueducto y Alcantarillado de Pereira. Registro del Control de Captación de Agua Cruda y Producción de Agua Potable en los Sistemas de Potabilización del Área Urbana del Municipio de Pereira y del Corregimiento de Puerto Caldas; Empresa de Acueducto y Alcantarillado de Pereira: Pereira, Colombia, 2019. [Google Scholar]
- Secretaría de Planeación—Gobernación de Risaralda SIETE. Available online: http://siete.risaralda.gov.co/SIETE/ (accessed on 29 October 2020).
- Santana, M.; Bonilla Tovar, J.F.; Castillo Sotomayor, C. Rango de Consumo Básico; Comisión de Regulación de Agua Potable y Saneamiento Básico: Bogotá, Colombia, 2015. [Google Scholar]
- Empresa de Energía de Pereira. Informe de Gestión. 2018. Available online: https://old.eep.com.co/images/stories/informes/Informe_de_gestion_2018.pdf (accessed on 18 May 2019).
- Ministerio de Minas y Energía. Transacción de Volúmenes de Combustibles Líquidos Derivados del Petróleo, Bogotá. 2018. Available online: https://www.sicom.gov.co/images/boletines_anteriores/BOLETIN_ESTADISTICO_1_JULIO_2017_30_JUNIO_2018.pdf (accessed on 15 March 2020).
- Hoekstra, A.Y. Virtual water trade: Proceedings of the International Expert Meeting on Virtual Water Trade; UNESCO-IHE: Delft, The Netherlands, 2003; Available online: https://waterfootprint.org/media/downloads/Report12.pdf (accessed on 25 February 2021).
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard, 1st ed.; Routledge: London, UK, 2012; ISBN 978-1-84977-552-6. [Google Scholar]
- Asociación Colombiana de Petróleo (ACP). Informe de Desempeño Ambiental 2015; Asociación Colombiana de Petróleo (ACP): Bogotá, Colombia, 2016; p. 68. [Google Scholar]
- Ding, N.; Liu, J.; Yang, J.; Lu, B. Water footprints of energy sources in China: Exploring options to improve water efficiency. J. Clean. Prod. 2018, 174, 1021–1031. [Google Scholar] [CrossRef]
- Gobernación de Risaralda. Visión de Desarrollo Territorial Departamental—Risaralda Futuro Posible Visión 2032; Gobernación de Risaralda: Risaralda, Colombia, 2011. [Google Scholar]
- IDEAM; PNUD; MADS; DNP. Cancilleria Escenarios de Cambio Climático Para Precipitación y Temperatura Para Colombia 2011–2100 Herramientas Científicas Para la Toma de Decisiones—Estudio Técnico Completo: Tercera Comunicación Nacional de Cambio Climático; IDEAM: Bogotá, Colombia, 2015. [Google Scholar]
- UPME. Proyección de Demanda de Combustibles en el Sector Transporte en Colombia; Unidad de Planeación Minero Energética (UPME): Bogotá, Colombia, 2015. [Google Scholar]
- Texas A&M University. Soil and Water Assessment Tool (SWAT+). 2022. Available online: https://swat.tamu.edu/software/plus/ (accessed on 21 March 2021).
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- FAO. Digital Soil Map of the World, Rome, Italy. 2007. Available online: https://data.review.fao.org/map/catalog/srv/api/records/446ed430-8383-11db-b9b2-000d939bc5d8 (accessed on 15 July 2021).
- Semenov, M. LARS-WG Weather Generator; Harpenden, UK. 2022. Available online: https://sites.google.com/view/lars-wg/ (accessed on 3 June 2021).
- Borgonovo, E. A new uncertainty importance measure. Reliab. Eng. Syst. Saf. 2007, 92, 771–784. [Google Scholar] [CrossRef]
- Khorashadi Zadeh, F.; Nossent, J.; Sarrazin, F.; Pianosi, F.; van Griensven, A.; Wagener, T.; Bauwens, W. Comparison of variance-based and moment-independent global sensitivity analysis approaches by application to the SWAT model. Environ. Model. Softw. 2017, 91, 210–222. [Google Scholar] [CrossRef]
- Chawanda, C. SWAT+ Toolbox; Ixelles, Belgium; GitHub: San Francisco, CA, USA, 2021. [Google Scholar]
- Tolson, B.A.; Shoemaker, C.A. Dynamically dimensioned search algorithm for computationally efficient watershed model calibration: DYNAMICALLY DIMENSIONED SEARCH ALGORITHM. Water Resour. Res. 2007, 43, W01413. [Google Scholar] [CrossRef]
- Enayati, M.; Bozorg-Haddad, O.; Bazrafshan, J.; Hejabi, S.; Chu, X. Bias correction capabilities of quantile mapping methods for rainfall and temperature variables. J. Water Clim. Change 2021, 12, 401–419. [Google Scholar] [CrossRef]
- Garibay, V.M.; Gitau, M.W.; Kiggundu, N.; Moriasi, D.; Mishili, F. Evaluation of Reanalysis Precipitation Data and Potential Bias Correction Methods for Use in Data-Scarce Areas. Water Resour. Manag. 2021, 35, 1587–1602. [Google Scholar] [CrossRef]
- Caracol Radio. Alerta en Risaralda Por Posible Desabastecimiento de Agua. Available online: https://caracol.com.co/emisora/2020/02/10/pereira/1581328214_096801.html (accessed on 22 March 2022).
- CARDER. Gobernación de Risaralda, and Universidad Tecnológica de Pereira (UTP); Plan Departamental de Gestión de Cambio Climático: Pereira, Colombia, 2019. [Google Scholar]
- UPME. Distribución del Consumo y Producción de Energía. Balance Energetico Colombiano—BECO. Available online: https://www1.upme.gov.co/InformacionCifras/Paginas/PETROLEO.aspx (accessed on 5 May 2020).
- Empresa de Energía de Pereira. Energía de Pereira Inauguró la Primera Granja Solar del Eje Cafetero Junto al Ministro de Minas y Energía, Diego Mesa. Available online: https://old.eep.com.co/inversiones-2019/1128-energia-de-pereira-inauguro-la-primera-granja-solar-del-eje-cafetero-junto-al-ministro-de-minas-y-energia-diego-mesa (accessed on 23 March 2022).
- Anderson, D.; Moggridge, H.; Warren, P.; Shucksmith, J. The impacts of ‘run-of-river’ hydropower on the physical and ecological condition of rivers. Water Environ. J. 2015, 29, 268–276. [Google Scholar] [CrossRef]
- Cámara de Comercio de Pereira. Exportaciones de Risaralda Año 2020; Cámara de Comercio de Pereira: Pereira, Colombia, 2021; p. 18. [Google Scholar]
- Grüter, R.; Trachsel, T.; Laube, P.; Jaisli, I. Expected global suitability of coffee, cashew and avocado due to climate change. PLoS ONE 2022, 17, e0261976. [Google Scholar] [CrossRef]
- Borrego, A.; Allende, T.C. Principales detonantes y efectos socioambientales del boom del aguacate en México. J. Lat. Am. Geogr. 2021, 20, 154–184. [Google Scholar] [CrossRef]
- Erazo-Mesa, E.; Ramírez-Gil, J.G.; Sánchez, A.E. Avocado cv. Hass Needs Water Irrigation in Tropical Precipitation Regime: Evidence from Colombia. Water 2021, 13, 1942. [Google Scholar] [CrossRef]
- Hazen; Fichtner; Conhydra. Evaluación Ambiental del Vertimiento—PTAR El Paraiso; Aguas y Aguas de Pereira; Hazen: Holyoke, MA, USA; Fichtner: Singapore; Conhydra: Medellín, Colombia, 2020. [Google Scholar]
- SSPD. Estudio Sectorial de los Servicios Públicos Domiciliarios de Acueducto y Alcantarillado—2019; Superintendencia de Servicios Publicos Domiciliarios (SSPD): Bogotá, Colombia, 2020. Available online: https://www.superservicios.gov.co/sites/default/files/inline-files/informe_sectorial_aa_30-12-21_vf%20%281%29.pdf (accessed on 24 February 2021).
- Ministerio de Vivienda, Ciudad y Territorio, Resolución 330. 2017. Available online: https://minvivienda.gov.co/sites/default/files/normativa/resolucion-0330-2017.pdf (accessed on 30 August 2022).
- Bello, O.; Abu-Mahfouz, A.; Hamam, Y.; Page, P.; Adedeji, K.; Piller, O. Solving Management Problems in Water Distribution Networks: A Survey of Approaches and Mathematical Models. Water 2019, 11, 562. [Google Scholar] [CrossRef]
- Adedeji, K.; Hamam, Y.; Abe, B.; Abu-Mahfouz, A. Leakage Detection and Estimation Algorithm for Loss Reduction in Water Piping Networks. Water 2017, 9, 773. [Google Scholar] [CrossRef]
- Ali, H.; Choi, J. A Review of Underground Pipeline Leakage and Sinkhole Monitoring Methods Based on Wireless Sensor Networking. Sustainability 2019, 11, 4007. [Google Scholar] [CrossRef]
- Tabassum, R.; Arsalan, M.H.; Mumtaz, F.; Imam, N. Sustainable urban water conservation strategy for a planned city of a developing country: A perspective from DHA City Karachi. Arab. J. Geosci. 2020, 13, 1203. [Google Scholar] [CrossRef]
- Custódio, D.A.; Ghisi, E. Assessing the Potential for Potable Water Savings in the Residential Sector of a City: A Case Study of Joinville City. Water 2019, 11, 2074. [Google Scholar] [CrossRef]
- World Bank Group. World Bank Climate Change Knowledge Portal. Available online: https://climateknowledgeportal.worldbank.org/ (accessed on 11 April 2022).
- Poveda, G.; Espinoza, J.C.; Zuluaga, M.D.; Solman, S.A.; Garreaud, R.; van Oevelen, P.J. High Impact Weather Events in the Andes. Front. Earth Sci. 2020, 8, 162. [Google Scholar] [CrossRef]
- Drumond, P.d.P.; Ball, J.E.; Moura, P.; Pinto Coelho, M.M.L. Are the current On-site Stormwater Detention (OSD) policies the best solution for source control stormwater management? A case study of Australian and Brazilian cities. Urban Water J. 2020, 17, 273–281. [Google Scholar] [CrossRef]
- Karnatz, C.; Thompson, J.R.; Logsdon, S. Capture of stormwater runoff and pollutants by three types of urban best management practices. J. Soil. Water Conserv. 2019, 74, 487–499. [Google Scholar] [CrossRef]
- Lintern, A.; McPhillips, L.; Winfrey, B.; Duncan, J.; Grady, C. Best Management Practices for Diffuse Nutrient Pollution: Wicked Problems Across Urban and Agricultural Watersheds. Environ. Sci. Technol. 2020, 54, 9159–9174. [Google Scholar] [CrossRef]
- Galindo López, A.; Rojas Portilla, L.Y. Evaluación de Impactos Financieros de las Acciones de Reducción del Riesgo y la Atención de Desastres en el Municipio de Pereira; Graduate Certificate Capstone Project, School of Economic and Administrative Sciences, Universidad Católica de Pereira: Pereira, Colombia, 2017. [Google Scholar]
- Leng, L.; Mao, X.; Jia, H.; Xu, T.; Chen, A.S.; Yin, D.; Fu, G. Performance assessment of coupled green-grey-blue systems for Sponge City construction. Sci. Total Environ. 2020, 728, 138608. [Google Scholar] [CrossRef]
- BNamericas—Planta de Tratamiento de Aguas Residuales pa. Available online: https://www.bnamericas.com/es/perfil-proyecto/planta-de-tratamiento-de-aguas-residuales-para-pereira-y-dosquebradas-ptar-el-paraiso-planta-de-tratamiento-de-aguas-residuales-para-pereira-y-dosquebradas-ptar-el-paraiso (accessed on 11 December 2020).
- Nie, L.; Lindholm, O.; Lindholm, G.; Syversen, E. Impacts of climate change on urban drainage systems—A case study in Fredrikstad, Norway. Urban Water J. 2009, 6, 323–332. [Google Scholar] [CrossRef]
- Smith, B.R. Re-thinking wastewater landscapes: Combining innovative strategies to address tomorrow’s urban wastewater treatment challenges. Water Sci. Technol. 2009, 60, 1465–1473. [Google Scholar] [CrossRef]
- Abrahams, J.; Coupe, S.; Sañudo-Fontaneda, L.; Schmutz, U. The Brookside Farm Wetland Ecosystem Treatment (WET) System: A Low-Energy Methodology for Sewage Purification, Biomass Production (Yield), Flood Resilience and Biodiversity Enhancement. Sustainability 2017, 9, 147. [Google Scholar] [CrossRef]
- Dubbeling, M.; van Veenhuizen, R.; Halliday, J. Urban agriculture as a climate change and disaster risk reduction strategy. Field Actions Sci. Rep. 2019, 27, 32–39. [Google Scholar]
- Attwater, R.; Derry, C. Achieving Resilience through Water Recycling in Peri-Urban Agriculture. Water 2017, 9, 223. [Google Scholar] [CrossRef]
- Langemeyer, J. Urban agriculture—A necessary pathway towards urban resilience and global sustainability? Landsc. Urban Plan. 2021, 8, 104055. [Google Scholar] [CrossRef]
- Daher, B.; Hannibal, B.; Mohtar, R.H.; Portney, K. Toward understanding the convergence of researcher and stakeholder perspectives related to water-energy-food (WEF) challenges: The case of San Antonio, Texas. Environ. Sci. Policy 2020, 104, 20–35. [Google Scholar] [CrossRef]
- Daher, B.; Hannibal, B.; Portney, K.E.; Mohtar, R.H. Toward creating an environment of cooperation between water, energy, and food stakeholders in San Antonio. Sci. Total Environ. 2019, 651, 2913–2926. [Google Scholar] [CrossRef]
- Tye, M.R. The food water energy nexus in an urban context: Connecting theory and practice for nexus governance. Earth Syst. Gov. 2022, 13, 100143. [Google Scholar] [CrossRef]
- Srigiri, S.R.; Dombrowsky, I. Analysing the Water-Energy-Food Nexus from a Polycentric Governance Perspective: Conceptual and Methodological Framework. Front. Environ. Sci. 2022, 10, 13. [Google Scholar] [CrossRef]
Food Product | Water Requirement (m3/kg) | Source |
---|---|---|
Apple | 0.561 | [25] |
Banana | 3.25 | [26] |
Coffee | 15.249 | [25] |
Corn (white and yellow) | 0.947 | [25] |
Onion | 0.176 | [25] |
Orange | 0.401 | [25] |
Plantain | 3.25 | [26] |
Potato (parda pastusa, unica, and yellow) | 0.191 | [25] |
Rice | 1.146 | [25] |
Sugar cane | 0.139 | [25] |
Tomato | 0.108 | [25] |
Process | Energy Requirement (kJ/kg) | Source |
---|---|---|
Tillage | 29,851 * | [34] |
Production, packaging, transporting, and application of nitrogen | 78,230 | [35] |
Production, packaging, transporting, and application of phosphorus | 17,500 | [35] |
Production, packaging, transporting, and application of potassium | 13,800 | [35] |
Harvesting | 39,802 * | [34] |
Parameter | Period of Comparison | Expected Change |
---|---|---|
Temp. (°C) | 2011–2040 | 0.83–0.97 |
Precip. (%) | 2011–2040 | 16.31–23.60 |
Population (%) | 2017–2035 | 17 |
Energy demand for liquid fuels (%) | 2017–2035 | 26–36 |
Nexus Component | Scenario | |||
---|---|---|---|---|
Base Scenario | Scenario 1 | Scenario 2 | Scenario 3 | |
Food | Data from 2017 | 17% ↑ sc. 1 | Total food demand: 17% ↑ sc. 1 Food locally produced: 21% ↓ sc. 1 | 17% sc. 1 ↑ |
Energy | Data from 2017 | 17% ↑ sc. 1 | 17% ↑ sc. 1 | Total energy demand: 17% ↑ sc. 1 Electricity generated locally: 880% ↑ sc. 1 |
Water | Data from 2017 | 17% ↑ sc. 1 | 17% ↑ sc. 1 | 17% ↑ sc. 1 |
Product | Domestic (DOM) | Imported (IMP) | Total (ton) (DOM + IMP) | Domestic Production (%) | Imported (%) | ||||
---|---|---|---|---|---|---|---|---|---|
DOMi (ton) | WPi (m3/Ton) | DWU (Mm3) | IMPi (ton) | Wpi (m3/ton) | VWI (m3) | ||||
Coffee | 3842 | 15,249 | 58.6 | -- | 15,249 | -- | 3842 | 100% | 0% |
Plantain | 8138 | 1570 | 12.8 | 971 | 211 | 0.20 | 9109 | 89% | 11% |
Banana | 6397 | 660 | 4.22 | 406 | 211 | 0.09 | 6802 | 94% | 6% |
White corn | 2096 | 947 | 1.99 | 511 | 947 | 0.48 | 2607 | 80% | 20% |
Yellow corn | 1921 | 947 | 1.82 | 17,364 | 947 | 16.4 | 19,285 | 10% | 90% |
Sugar cane | 2625 | 139 | 0.37 | -- | 139 | -- | 2625 | 100% | 0% |
Rice | -- | 1146 | -- | 6984 | 1146 | 8.00 | 6984 | 0% | 100% |
Onion | 149 | 176 | 0.026 | 2870 | 176 | 0.51 | 3018 | 5% | 95% |
Apple | 0 | 561 | 0 | 2217 | 561 | 1.24 | 2217 | 0% | 100% |
Orange | 1758 | 401 | 0.71 | 3625 | 401 | 1.45 | 5383 | 33% | 67% |
Yellow potato | -- | 191 | -- | 1768 | 191 | 0.34 | 1768 | 0% | 100% |
Potato (parda pastusa) | -- | 191 | -- | 2068 | 191 | 0.40 | 2068 | 0% | 100% |
Potato (unica) | 366 | 191 | 0.070 | 6813 | 191 | 1.30 | 7179 | 5% | 95% |
Tomato | 2143 | 108 | 0.23 | 2108 | 108 | 0.23 | 4250 | 50% | 50% |
Total | 29,434 | 80.8 | 47,703 | 30.7 |
Product | Domestic (DOM) | Imported (IMP) | Total (GJ/Year) (DOM + IMP) | |||
---|---|---|---|---|---|---|
Etill (GJ/Year) | Eharv (GJ/Year) | Efert (GJ/Year) | Elocal tr (GJ/Year) | Eimp (GJ/Year) | ||
Coffee | 103.32 | 137.76 | 184,534 | 121 | 0 | 184,896 |
Plantain | 38.26 | 51.01 | 37,622 | 256 | 357 | 38,324 |
Banana | 12.63 | 16.84 | 12,422 | 201 | 149 | 12,802 |
White corn | 15.61 | 20.81 | 24,950 | 66 | 188 | 25,240 |
Yellow corn | 17.38 | 23.17 | 22,861 | 60 | 6387 | 29,349 |
Sugar cane | 15.83 | 21.11 | 21,256 | 83 | --- | 21,375 |
Rice | --- | --- | --- | --- | 2569 | 2569 |
Onion | 0.53 | 0.71 | 2650 | 5 | 1056 | 3712 |
Apple | --- | --- | --- | --- | 815 | 815 |
Orange | 3.24 | 4.32 | 29,468 | 55 | 1333 | 30,864 |
Yellow potato | --- | --- | --- | --- | 650 | 650 |
Potato (parda pastusa) | --- | --- | --- | --- | 761 | 761 |
Potato (unica) | 0.78 | 1.04 | 6037 | 11 | 2506 | 8557 |
Tomato | 4.02 | 5.36 | 61,572 | 67 | 775 | 62,424 |
Total | 211.60 | 282.13 | 403,372 | 926 | 17,547 | 422,339 |
Water Quality Parameter | Scenario | ||||||
---|---|---|---|---|---|---|---|
Baseline | Normal Operation | Primary Treatment Only | Non-Treatment | ||||
Grey Water Footprint (Mm3) | Grey Water Footprint (Mm3) | Rel. Change (%) | Grey Water Footprint (Mm3) | Rel. Change (%) | Grey Water Footprint (Mm3) | Rel. Change (%) | |
TSS | 43.5 | 12.0 | −73 | 68.9 | 58 | 141.6 | 225 |
BOD5 | 43.7 | 8.65 | −83 | 113.1 | 159 | 155.8 | 256 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, C.; Gitau, M.W.; Lara-Borrero, J.; Paredes-Cuervo, D.; Daher, B. Urban FEW Nexus Model for the Otun River Watershed. Water 2024, 16, 3405. https://doi.org/10.3390/w16233405
Torres C, Gitau MW, Lara-Borrero J, Paredes-Cuervo D, Daher B. Urban FEW Nexus Model for the Otun River Watershed. Water. 2024; 16(23):3405. https://doi.org/10.3390/w16233405
Chicago/Turabian StyleTorres, Camilo, Margaret W. Gitau, Jaime Lara-Borrero, Diego Paredes-Cuervo, and Bassel Daher. 2024. "Urban FEW Nexus Model for the Otun River Watershed" Water 16, no. 23: 3405. https://doi.org/10.3390/w16233405
APA StyleTorres, C., Gitau, M. W., Lara-Borrero, J., Paredes-Cuervo, D., & Daher, B. (2024). Urban FEW Nexus Model for the Otun River Watershed. Water, 16(23), 3405. https://doi.org/10.3390/w16233405