Occurrence, Risks, and Removal Methods of Antibiotics in Urban Wastewater Treatment Systems: A Review
Abstract
:1. Introduction
2. The Occurrence and Potential Risks of Antibiotics in Urban Wastewater Treatment Systems
2.1. Antibiotic Consumption and Concentrations in Wastewater Treatment Systems
2.2. Potential Ecological and Human Health Risks Posed by Antibiotics
3. Detection Methods for Antibiotics in Urban Wastewater
3.1. Enrichment and Extraction Methods for Antibiotics in Water
3.2. Immunoassay Methods
3.3. Instrumental Analysis Methods
3.4. Sensor Detection Methods
4. Treatment Technologies for Antibiotics in Urban Wastewater
4.1. Physical Methods
4.2. Chemical Methods
4.3. Biological Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Song, W.; Lin, H.; Wang, W.; Du, L.; Xing, W. Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis. Environ. Int. 2018, 116, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ying, G.; Pan, C.; Liu, Y.; Zhao, J. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef]
- Khan, F.A.; Söderquist, B.; Jass, J. Prevalence and diversity of antibiotic resistance genes in Swedish aquatic environments impacted by household and hospital wastewater. Front. Microbiol. 2019, 10, 688. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, P.; Yang, Q. Occurrence and diversity of antibiotic resistance in untreated hospital wastewater. Sci. Total Environ. 2018, 621, 990–999. [Google Scholar] [CrossRef]
- Vidovic, N.; Vidovic, S. Antimicrobial resistance and food animals: Influence of livestock environment on the emergence and dissemination of antimicrobial resistance. Antibiotics 2020, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Petrin, S.; Patuzzi, I.; Di Cesare, A.; Tiengo, A.; Sette, G.; Biancotto, G.; Corno, G.; Drigo, M.; Losasso, C.; Cibin, V. Evaluation and quantification of antimicrobial residues and antimicrobial resistance genes in two Italian swine farms. Environ. Pollut. 2019, 255, 113183. [Google Scholar] [CrossRef]
- Saravanane, R.; Sundararaman, S. Effect of loading rate and HRT on the removal of cephalosporin and their intermediates during the operation of a membrane bioreactor treating pharmaceutical wastewater. Environ. Technol. 2009, 30, 1017–1022. [Google Scholar] [CrossRef]
- Bielen, A.; Šimatović, A.; Kosić-Vukšić, J.; Senta, I.; Ahel, M.; Babić, S.; Jurina, T.; González Plaza, J.J.; Milaković, M.; Udiković-Kolić, N. Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries. Water Res. 2017, 126, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Larsson, D.G.J.; de Pedro, C.; Paxeus, N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J. Hazard. Mater. 2007, 148, 751–755. [Google Scholar] [CrossRef]
- Bilal, M.; Ashraf, S.S.; Barceló, D.; Iqbal, H.M.N. Biocatalytic degradation/redefining “removal” fate of pharmaceutically active compounds and antibiotics in the aquatic environment. Sci. Total Environ. 2019, 691, 1190–1211. [Google Scholar] [CrossRef]
- Peng, X.; Tang, C.; Yu, Y.; Tan, J.; Huang, Q.; Wu, J.; Chen, S.; Mai, B. Concentrations, transport, fate, and releases of polybrominated diphenyl ethers in sewage treatment plants in the Pearl River Delta, South China. Environ. Int. 2009, 35, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Yu, Y.; Tang, C.; Tan, J.; Huang, Q.; Wang, Z. Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Sci. Total Environ. 2008, 397, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Valcárcel, Y.; González Alonso, S.; Rodríguez-Gil, J.L.; Gil, A.; Catalá, M. Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid Region (Spain) and potential ecotoxicological risk. Chemosphere 2011, 84, 1336–1348. [Google Scholar] [CrossRef]
- López-Serna, R.; Jurado, A.; Vázquez-Suñé, E.; Carrera, J.; Petrović, M.; Barceló, D. Occurrence of 95 pharmaceuticals and transformation products in urban groundwaters underlying the metropolis of Barcelona, Spain. Environ. Pollut. 2013, 174, 305–315. [Google Scholar] [CrossRef]
- Mahmood, A.R.; Hassan, F.M.; Al-Haideri, H.H.; Khubchandani, J. Detection of antibiotics in drinking water treatment plants in Baghdad City, Iraq. Adv. Public. Health 2019, 2019, 7851354. [Google Scholar] [CrossRef]
- Zhao, H.; Zhou, J.L.; Zhang, J. Tidal impact on the dynamic behavior of dissolved pharmaceuticals in the Yangtze Estuary, China. Sci. Total Environ. 2015, 536, 946–954. [Google Scholar] [CrossRef]
- Zou, S.; Xu, W.; Zhang, R.; Tang, J.; Chen, Y.; Zhang, G. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities. Environ. Pollut. 2011, 159, 2913–2920. [Google Scholar] [CrossRef]
- Polianciuc, S.I.; Gurzău, A.E.; Kiss, B.; Ștefan, M.G.; Loghin, F. Antibiotics in the environment: Causes and consequences. Med. Pharm. Rep. 2020, 93, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Saidulu, D.; Gupta, B.; Gupta, A.K.; Ghosal, P.S. A review on occurrences, eco-toxic effects, and remediation of emerging contaminants from wastewater: Special emphasis on biological treatment based hybrid systems. J. Environ. Chem. Eng. 2021, 9, 105282. [Google Scholar] [CrossRef]
- Zhao, F.; Yu, Q.; Zhang, X. A Mini-Review of antibiotic resistance drivers in urban wastewater treatment plants: Environmental concentrations, mechanism and perspectives. Water 2023, 15, 3165. [Google Scholar] [CrossRef]
- Kostich, M.S.; Batt, A.L.; Lazorchak, J.M. Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation. Environ. Pollut. 2014, 184, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, B.; Yue, Q.; Guan, Y.; Wang, Y.; Huang, L. Influences of two antibiotic contaminants on the production, release and toxicity of microcystins. Ecotox Environ. Safe 2012, 77, 79–87. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S.; Show, P. A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research. J. Hazard. Mater. 2021, 409, 124413. [Google Scholar] [CrossRef]
- Kulik, K.; Lenart-Boroń, A.; Wyrzykowska, K. Impact of antibiotic pollution on the bacterial population within surface water with special focus on mountain Rivers. Water 2023, 15, 975. [Google Scholar] [CrossRef]
- Wang, M.; Shen, W.; Yan, L.; Wang, X.; Xu, H. Stepwise impact of urban wastewater treatment on the bacterial community structure, antibiotic contents, and prevalence of antimicrobial resistance. Environ. Pollut. 2017, 231, 1578–1585. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Milakovic, M.; Švecová, H.; Ganjto, M.; Jonsson, V.; Grabic, R.; Udikovic-Kolic, N. Industrial wastewater treatment plant enriches antibiotic resistance genes and alters the structure of microbial communities. Water Res. 2019, 162, 437–445. [Google Scholar] [CrossRef]
- Harada, A.; Komori, K.; Nakada, N.; Kitamura, K.; Suzuki, Y. Biological effects of PPCPs on aquatic lives and evaluation of river waters affected by different wastewater treatment levels. Water Sci. Technol. 2008, 58, 1541–1546. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Che, B.; Duan, A.; Mao, J.; Dahlgren, R.A.; Zhang, M.; Zhang, H.; Zeng, A.; Wang, X. Toxicity evaluation of β-diketone antibiotics on the development of embryo-larval zebrafish (Danio rerio). Environ. Toxicol. 2014, 29, 1134–1146. [Google Scholar] [CrossRef]
- Caldwell, D.J.; Mertens, B.; Kappler, K.; Senac, T.; Journel, R.; Wilson, P.; Meyerhoff, R.D.; Parke, N.J.; Mastrocco, F.; Mattson, B.; et al. risk-based approach to managing active pharmaceutical ingredients in manufacturing effluent. Environ. Toxicol. Chem. 2016, 35, 813–822. [Google Scholar] [CrossRef]
- Spurgeon, D.J.; Jones, O.A.H.; Dorne, J.C.M.; Svendsen, C.; Swain, S.; Stürzenbaum, S.R. Systems toxicology approaches for understanding the joint effects of environmental chemical mixtures. Sci. Total Environ. 2010, 408, 3725–3734. [Google Scholar] [CrossRef] [PubMed]
- Michael, I.; Rizzo, L.; McArdell, C.S.; Manaia, C.M.; Merlin, C.; Schwartz, T.; Dagot, C.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Res. 2013, 47, 957–995. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ. 2013, 447, 345–360. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Sun, Y.; Wei, X.; He, Y.; Wang, H.; Cui, Z.; Ma, J.; Liu, X.; Shu, R.; Lin, H.; et al. Detection methods for antibiotics in wastewater: A review. Bioproc. Biosyst. Eng. 2024, 47, 1433–1451. [Google Scholar] [CrossRef] [PubMed]
- Prakashan, D.; Kolhe, P.; Gandhi, S. Design and fabrication of a competitive lateral flow assay using gold nanoparticle as capture probe for the rapid and on-site detection of penicillin antibiotic in food samples. Food Chem. 2024, 439, 138120. [Google Scholar] [CrossRef]
- Kumar Mehata, A.; Lakshmi Suseela, M.N.; Gokul, P.; Kumar Malik, A.; Kasi Viswanadh, M.; Singh, C.; Selvin, J.; Muthu, M.S. Fast and highly efficient liquid chromatographic methods for qualification and quantification of antibiotic residues from environmental waste. Microchem. J. 2022, 179, 107573. [Google Scholar] [CrossRef]
- Manjunath, S.V.; Kumar, M. Simultaneous removal of antibiotic and nutrients via Prosopis juliflora activated carbon column: Performance evaluation, effect of operational parameters and breakthrough modeling. Chemosphere 2021, 262, 127820. [Google Scholar] [CrossRef]
- Pan, S.; Zhu, M.; Chen, J.P.; Yuan, Z.; Zhong, L.; Zheng, Y. Separation of tetracycline from wastewater using forward osmosis process with thin film composite membrane—Implications for antibiotics recovery. Sep. Purif. Technol. 2015, 153, 76–83. [Google Scholar] [CrossRef]
- Kim, S.; Eichhorn, P.; Jensen, J.N.; Weber, A.S.; Aga, D.S. Removal of antibiotics in wastewater: Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process. Environ. Sci. Technol. 2005, 39, 5816–5823. [Google Scholar] [CrossRef]
- Hyland, K.C.; Dickenson, E.R.; Drewes, J.E.; Higgins, C.P. Sorption of ionized and neutral emerging trace organic compounds onto activated sludge from different wastewater treatment configurations. Water Res. 2012, 46, 1958–1968. [Google Scholar] [CrossRef]
- Oberoi, A.S.; Jia, Y.; Zhang, H.; Khanal, S.K.; Lu, H. Insights into the fate and removal of antibiotics in engineered biological treatment systems: A critical review. Environ. Sci. Technol. 2019, 53, 7234–7264. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Pro. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef]
- ECDC. Antimicrobial consumption and resistance in bacteria from humans and food-producing animals. EFSA J. 2024, 22, e8589. [Google Scholar]
- Zeng, Y.; Chang, F.; Liu, Q.; Duan, L.; Li, D.; Zhang, H. Recent advances and perspectives on the sources and detection of antibiotics in aquatic environments. J. Anal. Methods Chem. 2022, 2022, 5091181. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.; Shi, D.; Yang, D.; Yang, Z.; Qiu, Z.; Liu, W.; Shen, Z.; Yin, J.; Wang, H.; Li, J.; et al. Profiling of intracellular and extracellular antibiotic resistance genes in tap water. J. Hazard. Mater. 2019, 365, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Chow, L.K.M.; Ghaly, T.M.; Gillings, M.R. A survey of sub-inhibitory concentrations of antibiotics in the environment. J. Environ. Sci. 2021, 99, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Zarei-Baygi, A.; Smith, A.L. Intracellular versus extracellular antibiotic resistance genes in the environment: Prevalence, horizontal transfer, and mitigation strategies. Bioresour. Technol. 2021, 319, 124181. [Google Scholar] [CrossRef]
- Huijbers, P.M.C.; Blaak, H.; de Jong, M.C.M.; Graat, E.A.M.; Vandenbroucke-Grauls, C.M.J.E.; de Roda Husman, A.M. Role of the environment in the transmission of antimicrobial resistance to humans: A Review. Environ. Sci. Technol. 2015, 49, 11993–12004. [Google Scholar] [CrossRef]
- Arora-Williams, K.; Olesen, S.W.; Scandella, B.P.; Delwiche, K.; Spencer, S.J.; Myers, E.M.; Abraham, S.; Sooklal, A.; Preheim, S.P. Dynamics of microbial populations mediating biogeochemical cycling in a freshwater lake. Microbiome 2018, 6, 165. [Google Scholar] [CrossRef]
- Ding, C.; He, J. Effect of antibiotics in the environment on microbial populations. Appl. Microbiol. Biotechnol. 2010, 87, 925–941. [Google Scholar] [CrossRef]
- Aminov, R.I. The role of antibiotics and antibiotic resistance in nature. Environ. Microbiol. 2009, 11, 2970–2988. [Google Scholar] [CrossRef] [PubMed]
- Qin, T.T.; Kang, H.Q.; Ma, P.; Li, P.P.; Huang, L.Y.; Gu, B. SOS response and its regulation on the fluoroquinolone resistance. Ann. Transl. Med. 2015, 3, 358. [Google Scholar] [CrossRef] [PubMed]
- Knapp, C.W.; Engemann, C.A.; Hanson, M.L.; Keen, P.L.; Hall, K.J.; Graham, D.W. Indirect evidence of transposon-mediated selection of antibiotic resistance genes in aquatic systems at low-level oxytetracycline exposures. Environ. Sci. Technol. 2008, 42, 5348–5353. [Google Scholar] [CrossRef]
- Cairns, J.; Ruokolainen, L.; Hultman, J.; Tamminen, M.; Virta, M.; Hiltunen, T. Ecology determines how low antibiotic concentration impacts community composition and horizontal transfer of resistance genes. Commun. Biol. 2018, 1, 35. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhang, Z.; Feng, L.; Zhang, J.; Li, Y.; Lu, T.; Qian, H. Adverse effects of levofloxacin and oxytetracycline on aquatic microbial communities. Sci. Total Environ. 2020, 734, 139499. [Google Scholar] [CrossRef] [PubMed]
- Klaver, A.L.; Matthews, R.A. Effects of oxytetracycline on nitrification in a model aquatic system. Aquaculture 1994, 123, 237–247. [Google Scholar] [CrossRef]
- Magdaleno, A.; Saenz, M.E.; Juarez, A.B.; Moretton, J. Effects of six antibiotics and their binary mixtures on growth of Pseudokirchneriella subcapitata. Ecotox Environ. Safe 2015, 113, 72–78. [Google Scholar] [CrossRef]
- Välitalo, P.; Kruglova, A.; Mikola, A.; Vahala, R. Toxicological impacts of antibiotics on aquatic micro-organisms: A mini-review. Int. J. Hyg. Environ. Health 2017, 220, 558–569. [Google Scholar] [CrossRef]
- Fountoulakis, M.S.; Stamatelatou, K.; Lyberatos, G. The effect of pharmaceuticals on the kinetics of methanogenesis and acetogenesis. Bioresour. Technol. 2008, 99, 7083–7090. [Google Scholar] [CrossRef]
- Halling-Sorensen, B. Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 2000, 40, 731–739. [Google Scholar] [CrossRef]
- Pomati, F.; Netting, A.G.; Calamari, D.; Neilan, B.A. Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Aquat. Toxicol. 2004, 67, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Ebert, I.; Bachmann, J.; Kuhnen, U.; Kuster, A.; Kussatz, C.; Maletzki, D.; Schluter, C. Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms. Environ. Toxicol. Chem. 2011, 30, 2786–2792. [Google Scholar] [CrossRef] [PubMed]
- Bagge, N.; Schuster, M.; Hentzer, M.; Ciofu, O.; Givskov, M.; Greenberg, E.P.; Høiby, N. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and β-Lactamase and alginate production. Antimicrob. Agents Chemother. 2004, 48, 1175–1187. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, L.R.; D’Argenio, D.A.; MacCoss, M.J.; Zhang, Z.; Jones, R.A.; Miller, S.I. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 2005, 436, 1171–1175. [Google Scholar] [CrossRef] [PubMed]
- Linares, J.F.; Gustafsson, I.; Baquero, F.; Martinez, J.L. Antibiotics as intermicrobial signaling agents instead of weapons. Proc. Natl. Acad. Sci. USA 2006, 103, 19484–19489. [Google Scholar] [CrossRef]
- Sanderson, H.; Brain, R.A.; Johnson, D.J.; Wilson, C.J.; Solomon, K.R. Toxicity classification and evaluation of four pharmaceuticals classes: Antibiotics, antineoplastics, cardiovascular, and sex hormones. Toxicology 2004, 203, 27–40. [Google Scholar] [CrossRef]
- Gros, M.; Petrović, M.; Ginebreda, A.; Barceló, D. Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ. Int. 2010, 36, 15–26. [Google Scholar] [CrossRef]
- Baumann, M.; Weiss, K.; Maletzki, D.; Schüssler, W.; Schudoma, D.; Kopf, W.; Kühnen, U. Aquatic toxicity of the macrolide antibiotic clarithromycin and its metabolites. Chemosphere 2015, 120, 192–198. [Google Scholar] [CrossRef]
- Yin, X.; Wang, H.; Zhang, Y.; Dahlgren, R.A.; Zhang, H.; Shi, M.; Gao, M.; Wang, X. Toxicological assessment of trace beta-diketone antibiotic mixtures on zebrafish (Danio rerio) by proteomic analysis. PLoS ONE 2014, 9, e102731. [Google Scholar] [CrossRef]
- Iftikhar, N.; Konig, I.; English, C.; Ivantsova, E.; Souders, C.L.; Hashmi, I.; Martyniuk, C.J. Sulfamethoxazole (SMX) Alters Immune and Apoptotic Endpoints in Developing Zebrafish (Danio rerio). Toxics 2023, 11, 178. [Google Scholar] [CrossRef]
- Wei, H.; Hashmi, M.Z.; Wang, Z. The interactions between aquatic plants and antibiotics: Progress and prospects. Environ. Pollut. 2024, 341, 123004. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Chu, L.M. Fate of antibiotics in soil and their uptake by edible crops. Sci. Total Environ. 2017, 599–600, 500–512. [Google Scholar] [CrossRef] [PubMed]
- Jernberg, C.; Lofmark, S.; Edlund, C.; Jansson, J.K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007, 1, 56–66. [Google Scholar] [CrossRef]
- Ben, Y.; Fu, C.; Hu, M.; Liu, L.; Wong, M.H.; Zheng, C. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environ. Res. 2019, 169, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Mehmood, S.; Rasheed, T.; Iqbal, H.M.N. Antibiotics traces in the aquatic environment: Persistence and adverse environmental impact. Curr. Opin. Environ. Sci. Health 2020, 13, 68–74. [Google Scholar] [CrossRef]
- Blaser, M.J. Antibiotic use and its consequences for the normal microbiome. Science 2016, 352, 544–545. [Google Scholar] [CrossRef]
- EFSA. Monitoring Antimicrobial Resistance; EFSA: Parma, Italy, 2024.
- Suseela, M.; Viswanadh, M.K.; Mehata, A.K.; Priya, V.; Vikas; Setia, A.; Malik, A.K.; Gokul, P.; Selvin, J.; Muthu, M.S. Advances in solid-phase extraction techniques: Role of nanosorbents for the enrichment of antibiotics for analytical quantification. J. Chromatogr. A 2023, 1695, 463937. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Huynh, T.T.T.; Nguyen, N.H.; Nguyen, T.H.; Tran, P.H. Recent advances in the application of ionic liquid-modified silica gel in solid-phase extraction. J. Mol. Liq. 2022, 368, 120623. [Google Scholar] [CrossRef]
- Dias, F.D.S.; Meira, L.A.; Carneiro, C.N.; Dos Santos, L.F.M.; Guimarães, L.B.; Coelho, N.M.M.; Coelho, L.M.; Alves, V.N. Lignocellulosic materials as adsorbents in solid phase extraction for trace elements preconcentration. TrAC Trends Anal. Chem. 2023, 158, 116891. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Guo, Y.; Yang, X.; Wu, Q.; Wang, Z. Effective solid-phase extraction of chlorophenols with covalent organic framework material as adsorbent. J. Chromatogr. A 2022, 1673, 463077. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Li, J.; Chang, Q.; Zang, X.; Zhang, S.; Wang, C.; Wang, Z. Molecularly imprinted conjugated microporous polymer composite as solid phase extraction adsorbent for the extraction of phenolic endocrine disrupting chemicals in beverages. Microchem. J. 2023, 191, 108752. [Google Scholar] [CrossRef]
- Kardani, F.; Mirzajani, R. Electrospun polyacrylonitrile /MIL-53(Al) MOF@ SBA-15/ 4, 4′-bipyridine nanofibers for headspace solid-phase microextraction of benzene homologues in environmental water samples with GC-FID detection. Microchem. J. 2022, 180, 107591. [Google Scholar] [CrossRef]
- Gong, X.; Xu, L.; Kou, X.; Zheng, J.; Kuang, Y.; Zhou, S.; Huang, S.; Zheng, Y.; Ke, W.; Chen, G.; et al. Amino-functionalized metal–organic frameworks for efficient solid-phase microextraction of perfluoroalkyl acids in environmental water. Microchem. J. 2022, 179, 107661. [Google Scholar] [CrossRef]
- Fu, Q.; Xia, Z.; Sun, X.; Jiang, H.; Wang, L.; Ai, S.; Zhao, R. Recent advance and applications of covalent organic frameworks based on magnetic solid-phase extraction technology for food safety analysis. TrAC Trends Anal. Chem. 2023, 162, 117054. [Google Scholar] [CrossRef]
- Sereshti, H.; Karami, F.; Nouri, N. A green dispersive liquid-liquid microextraction based on deep eutectic solvents doped with β-cyclodextrin: Application for determination of tetracyclines in water samples. Microchem. J. 2021, 163, 105914. [Google Scholar] [CrossRef]
- Hoffmann, H.; Baldofski, S.; Hoffmann, K.; Flemig, S.; Silva, C.P.; Esteves, V.I.; Emmerling, F.; Panne, U.; Schneider, R.J. Structural considerations on the selectivity of an immunoassay for sulfamethoxazole. Talanta 2016, 158, 198–207. [Google Scholar] [CrossRef]
- Mei, Q.; Ma, B.; Li, J.; Deng, X.; Shuai, J.; Zhou, Y.; Zhang, M. Simultaneous detection of three nitrofuran antibiotics by the lateral flow immunoassay based on europium nanoparticles in aquatic products. Food Chem. 2024, 439, 138171. [Google Scholar] [CrossRef]
- Alhammadi, M.; Aliya, S.; Umapathi, R.; Oh, M.; Huh, Y.S. A simultaneous qualitative and quantitative lateral flow immunoassay for on-site and rapid detection of streptomycin in pig blood serum and urine. Microchem. J. 2023, 195, 109427. [Google Scholar] [CrossRef]
- Chen, D.; Xu, W.; Lu, Y.; Zhuo, Y.; Ji, T.; Long, F. Rapid and sensitive parallel on-site detection of antibiotics and resistance genes in aquatic environments using evanescent wave dual-color fluorescence fiber-embedded optofluidic nanochip. Biosens. Bioelectron. 2024, 257, 116281. [Google Scholar] [CrossRef] [PubMed]
- Zafar, R.; Bashir, S.; Nabi, D.; Arshad, M. Occurrence and quantification of prevalent antibiotics in wastewater samples from Rawalpindi and Islamabad, Pakistan. Sci. Total Environ. 2021, 764, 142596. [Google Scholar] [CrossRef]
- Mahmoud, R.A.; Hadad, G.M.; Abdel Salam, R.A.; Mokhtar, H.I. Optimization of a solid-phase extraction coupled with a high-performance liquid chromatography and diode array ultraviolet detection method for monitoring of different antibiotic class residues in water samples. J. AOAC Int. 2024, 107, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, X.; Yang, M.; Zhu, M.; Chen, W.; Li, Q.; Sun, D.; Bi, X.; Maletskyi, Z.; Ratnaweera, H. Detection Limits of Antibiotics in Wastewater by Real-Time UV–VIS Spectrometry at Different Optical Path Length. Processes 2022, 10, 2614. [Google Scholar] [CrossRef]
- Pei, J.; Tian, Z.; Yu, X.; Zhang, S.; Ma, S.; Sun, Y.; Boukherroub, R. Highly-sensitive SERS detection of tetracycline: Sub-enhancement brought by light scattering of nano-diamond. Appl. Surf. Sci. 2023, 608, 155270. [Google Scholar] [CrossRef]
- Fabregat-Safont, D.; Gracia-Marín, E.; Ibáñez, M.; Pitarch, E.; Hernández, F. Analytical key issues and challenges in the LC-MS/MS determination of antibiotics in wastewater. Anal. Chim. Acta 2023, 1239, 340739. [Google Scholar] [CrossRef] [PubMed]
- Ikizoglu, B.; Turkdogan, F.I.; Kanat, G.; Aydiner, C. Seasonal analysis of commonly prescribed antibiotics in Istanbul city. Environ. Monit. Assess. 2023, 195, 566. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, F.; Ibanez, M.; Portoles, T.; Hidalgo-Troya, A.; Ramirez, J.D.; Paredes, M.A.; Hidalgo, A.F.; Garcia, A.M.; Galeano, L.A. High resolution mass spectrometry-based screening for the comprehensive investigation of organic micropollutants in surface water and wastewater from Pasto city, Colombian Andean highlands. Sci. Total Environ. 2024, 922, 171293. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.R.G.; Carvalho, J.H.S.; Stefano, J.S.; Oliveira, G.G.; Prakash, J.; Janegitz, B.C. Electrochemical sensors and biosensors based on nanodiamonds: A review. Mater. Today Commun. 2023, 35, 106142. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J. Detection and removal technologies for ammonium and antibiotics in agricultural wastewater: Recent advances and prospective. Chemosphere 2023, 334, 139027. [Google Scholar] [CrossRef]
- Pan, Y.; Shan, D.; Ding, L.L.; Yang, X.D.; Xu, K.; Huang, H.; Wang, J.F.; Ren, H.Q. Developing a generally applicable electrochemical sensor for detecting macrolides in water with thiophene-based molecularly imprinted polymers. Water Res. 2021, 205, 117670. [Google Scholar] [CrossRef]
- Adane, W.D.; Chandravanshi, B.S.; Getachew, N.; Tessema, M. A cutting-edge electrochemical sensing platform for the simultaneous determination of the residues of antimicrobial drugs, rifampicin and norfloxacin, in water samples. Anal. Chim. Acta 2024, 1312, 342746. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Hu, H.; Qu, K.; Cui, Z. A low-cost electrochemical method for the determination of sulfadiazine in aquaculture wastewater. Int. J. Environ. Res. Public. Health 2022, 19, 16945. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, H.; Tian, D.; Phan, A.; Seididamyeh, M.; Alanazi, M.; Ping Xu, Z.; Sultanbawa, Y.; Zhang, R. Luminescent sensors for residual antibiotics detection in food: Recent advances and perspectives. Coordin Chem. Rev. 2024, 498, 215455. [Google Scholar] [CrossRef]
- Raja Lakshmi, P.; Nanjan, P.; Kannan, S.; Shanmugaraju, S. Recent advances in luminescent metal–organic frameworks (LMOFs) based fluorescent sensors for antibiotics. Coord. Chem. Rev. 2021, 435, 213793. [Google Scholar] [CrossRef]
- Sankhla, L.; Kushwaha, H.S. Development of optical sensor for detection of tetracycline using manganese Metal–Organic Framework (Mn-MOF). J. Electron. Mater. 2024, 53, 1896–1902. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.J.; Wang, N.; Zheng, P.; Fu, H.R.; Han, M.L.; Ma, L.F.; Wang, L.Y. Tetraphenylethylene-Decorated Metal-Organic Frameworks as Energy-Transfer Platform for the Detection of Nitro-Antibiotics and White-Light Emission. Inorg. Chem. 2019, 58, 12700–12706. [Google Scholar] [CrossRef]
- Lei, M.; Ge, F.; Ren, S.; Gao, X.; Zheng, H. A water-stable Cd-MOF and corresponding MOF@melamine foam composite for detection and removal of antibiotics, explosives, and anions. Sep. Purif. Technol. 2022, 286, 120433. [Google Scholar] [CrossRef]
- Yang, Q.; Hong, H.; Luo, Y. Heterogeneous nucleation and synthesis of carbon dots hybrid Zr-based MOFs for simultaneous recognition and effective removal of tetracycline. Chem. Eng. J. 2020, 392, 123680. [Google Scholar] [CrossRef]
- Mao, K.; Zhang, H.; Pan, Y.; Yang, Z. Biosensors for wastewater-based epidemiology for monitoring public health. Water Res. 2021, 191, 116787. [Google Scholar] [CrossRef] [PubMed]
- Kramat, J.; Kraus, L.; Gunawan, V.J.; Smyej, E.; Froehlich, P.; Weber, T.E.; Spiehl, D.; Koeppl, H.; Blaeser, A.; Suess, B. Sensing Levofloxacin with an RNA Aptamer as a Bioreceptor. Biosensors 2024, 14, 56. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Liu, L.; Zhang, H.; Wang, Z.; Chen, K.; Wu, B.; Hu, L.; Zhou, X.; Liu, L. A group-targeting biosensor for sensitive and rapid detection of quinolones in water samples. Anal. Chim. Acta 2024, 1301, 342475. [Google Scholar] [CrossRef]
- Vera-Candioti, L.; Olivieri, A.C.; Goicoechea, H.C. Development of a novel strategy for preconcentration of antibiotic residues in milk and their quantitation by capillary electrophoresis. Talanta 2010, 82, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; He, P.; Hu, H.; Qi, M.; Li, T.; Zhang, X.; Guo, Y.; Wu, W.; Lan, Q.; Yang, C.; et al. Determination of quinolone antibiotics in environmental water using automatic solid-phase extraction and isotope dilution ultra-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2022, 1208, 123390. [Google Scholar] [CrossRef] [PubMed]
- Košutić, K.; Dolar, D.; Ašperger, D.; Kunst, B. Removal of antibiotics from a model wastewater by RO/NF membranes. Sep. Purif. Technol. 2007, 53, 244–249. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, Y.; Pan, Y.; Li, J.; Xie, A.; Xue, C.; Pan, J. Preparation of antifouling zwitterion PVDF-imprinted composite membranes for selective antibiotic and oil/water emulsion separation. React. Funct. Polym. 2023, 187, 105580. [Google Scholar] [CrossRef]
- Cheng, N.; Wang, B.; Wu, P.; Lee, X.; Xing, Y.; Chen, M.; Gao, B. Adsorption of emerging contaminants from water and wastewater by modified biochar: A review. Environ. Pollut. 2021, 273, 116448. [Google Scholar] [CrossRef]
- Yang, S.; Lin, C.; Wu, C.; Ng, K.; Yu-Chen Lin, A.; Andy Hong, P. Fate of sulfonamide antibiotics in contact with activated sludge—Sorption and biodegradation. Water Res. 2012, 46, 1301–1308. [Google Scholar] [CrossRef]
- Ben, W.; Qiang, Z.; Yin, X.; Qu, J.; Pan, X. Adsorption behavior of sulfamethazine in an activated sludge process treating swine wastewater. J. Environ. Sci. 2014, 26, 1623–1629. [Google Scholar] [CrossRef]
- Lakshminarasimman, N.; Quinones, O.; Vanderford, B.J.; Campo-Moreno, P.; Dickenson, E.V.; McAvoy, D.C. Biotransformation and sorption of trace organic compounds in biological nutrient removal treatment systems. Sci. Total Environ. 2018, 640–641, 62–72. [Google Scholar] [CrossRef]
- Gupta, A.; Vyas, R.K.; Vyas, S. A review on antibiotics pervasiveness in the environment and their removal from wastewater. Sep. Sci. Technol. 2023, 58, 326–344. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X.; Xue, J. Biofilm-developed microplastics as vectors of pollutants in aquatic environments. Environ. Sci. Technol. 2021, 55, 12780–12790. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Z.; Liang, Y.; Wu, T.; Chen, Y.; Yan, J.; Zhu, Y.; Ding, D. Adsorptive decontamination of antibiotics from livestock wastewater by using alkaline-modified biochar. Environ. Res. 2023, 226, 115676. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Yang, L.; Liu, J.; Logan, B.E. Electrochemical technologies for wastewater treatment and resource reclamation. Environ. Sci. Water Res. 2016, 2, 800–831. [Google Scholar] [CrossRef]
- Yuan, Q.; Qu, S.; Li, R.; Huo, Z.; Gao, Y.; Luo, Y. Degradation of antibiotics by electrochemical advanced oxidation processes (EAOPs): Performance, mechanisms, and perspectives. Sci. Total Environ. 2023, 856, 159092. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhuan, R. Degradation of antibiotics by advanced oxidation processes: An overview. Sci. Total Environ. 2020, 701, 135023. [Google Scholar] [CrossRef] [PubMed]
- Frontistis, Z.; Mantzavinos, D.; Meriç, S. Degradation of antibiotic ampicillin on boron-doped diamond anode using the combined electrochemical oxidation—Sodium persulfate process. J. Environ. Manag. 2018, 223, 878–887. [Google Scholar] [CrossRef]
- Yao, B.; Luo, Z.; Yang, J.; Zhi, D.; Zhou, Y. Fe(II)Fe(III) layered double hydroxide modified carbon felt cathode for removal of ciprofloxacin in electro-Fenton process. Environ. Res. 2021, 197, 111144. [Google Scholar] [CrossRef]
- Miyata, M.; Ihara, I.; Yoshid, G.; Toyod, K.; Umetsu, K. Electrochemical oxidation of tetracycline antibiotics using a Ti/IrO2 anode for wastewater treatment of animal husbandry. Water Sci. Technol. 2011, 63, 456–461. [Google Scholar] [CrossRef]
- Hu, J.; Bian, X.; Xia, Y.; Weng, M.; Zhou, W.; Dai, Q. Application of response surface methodology in electrochemical degradation of amoxicillin with Cu-PbO2 electrode: Optimization and mechanism. Sep. Purif. Technol. 2020, 250, 117109. [Google Scholar] [CrossRef]
- Nabgan, W.; Saeed, M.; Jalil, A.A.; Nabgan, B.; Gambo, Y.; Ali, M.W.; Ikram, M.; Fauzi, A.A.; Owgi, A.; Hussain, I.; et al. A state of the art review on electrochemical technique for the remediation of pharmaceuticals containing wastewater. Environ. Res. 2022, 210, 112975. [Google Scholar] [CrossRef]
- Ma, J.; Wang, X.; Sun, H.; Tang, W.; Wang, Q. A review on three-dimensional electrochemical technology for the antibiotic wastewater treatment. Environ. Sci. Pollut. Res. 2023, 30, 73150–73173. [Google Scholar] [CrossRef]
- Vignati, D.; Lofrano, G.; Libralato, G.; Guida, M.; Siciliano, A.; Carraturo, F.; Carotenuto, M. Photocatalytic ZnO-Assisted degradation of spiramycin in urban wastewater: Degradation kinetics and toxicity. Water 2021, 13, 1051. [Google Scholar] [CrossRef]
- Nasuhoglu, D.; Rodayan, A.; Berk, D.; Yargeau, V. Removal of the antibiotic levofloxacin (LEVO) in water by ozonation and TiO2 photocatalysis. Chem. Eng. J. 2012, 189–190, 41–48. [Google Scholar] [CrossRef]
- Sneha, Y.; Yashas, S.R.; Thinley, T.; Prabagar, J.S.; Puttaiah, S.H. Photocatalytic degradation of lomefloxacin antibiotics using hydrothermally synthesized magnesium titanate under visible light-driven energy sources. Environ. Sci. Pollut. Res. Int. 2022, 29, 67969–67980. [Google Scholar] [CrossRef]
- Singh, M.; Rugma, T.P.; Golda, A.S.; Neppolian, B.; Naushad, M.; Lakhera, S.K. Selective vanadium etching and in-situ formation of δ-Bi2O3 on m-BiVO4 with g-C3N4 nanosheets for photocatalytic degradation of antibiotic tetracycline. J. Clean. Prod. 2024, 442, 140921. [Google Scholar] [CrossRef]
- Saadati, F.; Keramati, N.; Ghazi, M.M. Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: A review. Crit. Rev. Environ. Sci. Technol. 2016, 46, 757–782. [Google Scholar] [CrossRef]
- Dimitrakopoulou, D.; Rethemiotaki, I.; Frontistis, Z.; Xekoukoulotakis, N.P.; Venieri, D.; Mantzavinos, D. Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis. J. Environ. Manag. 2012, 98, 168–174. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ramezani Motlagh, H.; Jaafarzadeh, N.; Mostoufi, A.; Saeedi, R.; Barzegar, G.; Jorfi, S. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite. J. Environ. Manag. 2017, 186, 55–63. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Microbial degradation of sulfamethoxazole in the environment. Appl. Microbiol. Biotechnol. 2018, 102, 3573–3582. [Google Scholar] [CrossRef]
- Verlicchi, P.; Galletti, A.; Petrovic, M.; Barceló, D.; Al Aukidy, M.; Zambello, E. Removal of selected pharmaceuticals from domestic wastewater in an activated sludge system followed by a horizontal subsurface flow bed—Analysis of their respective contributions. Sci. Total Environ. 2013, 454–455, 411–425. [Google Scholar] [CrossRef]
- Alvarino, T.; Suarez, S.; Lema, J.M.; Omil, F. Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors. J. Hazard. Mater. 2014, 278, 506–513. [Google Scholar] [CrossRef]
- Nguyen, P.Y.; Carvalho, G.; Reis, A.C.; Nunes, O.C.; Reis, M.A.M.; Oehmen, A. Impact of biogenic substrates on sulfamethoxazole biodegradation kinetics by Achromobacter denitrificans strain PR1. Biodegradation 2017, 28, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.X.; Aris, A.; Yong, E.L.; Noor, Z.Z. A review of antibiotic removal from domestic wastewater using the activated sludge process: Removal routes, kinetics and operational parameters. Environ. Sci. Pollut. Res. 2022, 29, 4787–4802. [Google Scholar] [CrossRef] [PubMed]
- Tambosi, J.L.; de Sena, R.F.; Favier, M.; Gebhardt, W.; José, H.J.; Schröder, H.F.; Moreira, R.D.F.P. Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes. Desalination 2010, 261, 148–156. [Google Scholar] [CrossRef]
- Radjenovic, J.; Petrovic, M.; Barceló, D. Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Anal. Bioanal. Chem. 2007, 387, 1365–1377. [Google Scholar] [CrossRef] [PubMed]
- Sahar, E.; Ernst, M.; Godehardt, M.; Hein, A.; Herr, J.; Kazner, C.; Melin, T.; Cikurel, H.; Aharoni, A.; Messalem, R.; et al. Comparison of two treatments for the removal of selected organic micropollutants and bulk organic matter: Conventional activated sludge followed by ultrafiltration versus membrane bioreactor. Water Sci. Technol. 2011, 63, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Hamjinda, N.S.; Chiemchaisri, W.; Chiemchaisri, C. Upgrading two-stage membrane bioreactor by bioaugmentation of Pseudomonas putida entrapment in PVA/SA gel beads in treatment of ciprofloxacin. Int. Biodeter. Biodegr. 2017, 119, 595–604. [Google Scholar] [CrossRef]
- Shi, B.; Wang, Y.; Geng, Y.; Liu, R.; Pan, X.; Li, W.; Sheng, G. Application of membrane bioreactor for sulfamethazine-contained wastewater treatment. Chemosphere 2018, 193, 840–846. [Google Scholar] [CrossRef]
- Balu, S.; Chuaicham, C.; Balakumar, V.; Rajendran, S.; Sasaki, K.; Sekar, K.; Maruthapillai, A. Recent development on core-shell photo(electro)catalysts for elimination of organic compounds from pharmaceutical wastewater. Chemosphere 2022, 298, 134311. [Google Scholar] [CrossRef]
- Sun, J.; Yang, P.; Huang, S.; Li, N.; Zhang, Y.; Yuan, Y.; Lu, X. Enhanced removal of veterinary antibiotic from wastewater by photoelectroactive biofilm of purple anoxygenic phototroph through photosynthetic electron uptake. Sci. Total Environ. 2020, 713, 136605. [Google Scholar] [CrossRef] [PubMed]
- Chiemchaisri, W.; Chiemchaisri, C.; Witthayaphirom, C.; Saengam, C.; Mahavee, K. Reduction of antibiotic-resistant-E. coli, -K. pneumoniae, -A. baumannii in aged-sludge of membrane bioreactor treating hospital wastewater. Sci. Total Environ. 2022, 812, 152470. [Google Scholar] [CrossRef]
- Polesel, F.; Andersen, H.R.; Trapp, S.; Plosz, B.G. Removal of antibiotics in biological wastewater treatment systems-A critical assessment using the activated sludge modeling framework for Xenobiotics (ASM-X). Environ. Sci. Technol. 2016, 50, 10316–10334. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zhou, Y.; Sun, X.; Fu, L. The recent development of advanced wastewater treatment by ozone and biological aerated filter. Environ. Sci. Pollut. Res. 2018, 25, 8315–8329. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Sun, X.; Ren, H.; Huang, H. Biological filtration for wastewater treatment in the 21st century: A data-driven analysis of hotspots, challenges and prospects. Sci. Total Environ. 2023, 855, 158951. [Google Scholar] [CrossRef] [PubMed]
Antimicrobial Group | WHO Categorization a | AMEG Categorization b | Antimicrobial Consumption (mg/kg Estimated Biomass) | ||||||
---|---|---|---|---|---|---|---|---|---|
Humans | Food-Producing Animals | ||||||||
Range | Median | Mean | Range | Median | Mean | ||||
1 | Third-and fourth-generation cephalosporins | Highest priority CIA | Category B | 0.4–18.3 | 3.0 | 5.1 | <0.01–0.5 | 0.2 | 0.2 |
2 | Fluoroquinolones and other quinolones | Highest priority CIA | Category B | 1.0–19.0 | 4.6 | 6.3 | <0.01–14.8 | 0.9 | 2.9 |
3 | Polymyxins | Highest priority CIA | Category B | 0–3.7 | 0.4 | 0.7 | 0–12.7 | 0.5 | 2.5 |
4 | Aminopenicillins | HIA | Category C (with inhibitors) and D (without inhibitors) | 6.5–101.0 | 47.2 | 64.1 | 0.05–59.6 | 8.8 | 25.8 |
5 | Macrolides | CIA | Category C | 0.5–11.1 | 5.0 | 6.2 | 0–22.6 | 5.0 | 7.8 |
6 | Tetracyclines | HIA | Category D | 0.3–6.0 | 1.7 | 1.9 | 0.04–113.4 | 16.2 | 23.6 |
Total consumption | 44.3–160.1 | 108.9 | 125.0 | 2.5–296.5 | 50.0 | 92.6 |
Detection Method | Metal | Detection of Antibiotics | LOD | Reference | |
---|---|---|---|---|---|
Immunoassay | ELISA | — | Sulfamethoxazole | 0.82 | [87] |
LFIA | EuNPs | Nitrofuran | 0.013–0.023 | [88] | |
LFIA | AuNPs | Streptomycin | 5 | [89] | |
Fluorescence immunoassay | Evanescent wave dual-color fluorescence fiber-embedded optofluidic nanochip (EDFON) | Sulfamerazine | 0.032 | [90] | |
Instrumental analysis | HPLC | — | Ciprofloxacin, Levofloxacin, Ofloxacin, Ampicillin and Sulfamethoxazole | 162–598 | [91] |
UPLC-MS/MS | — | Quinolones | 0.5 × 10−5–0.5 × 10−4 | [113] | |
UPLC-MS/MS | — | 14 classes of antibiotics | 0.07–2.72 | [96] | |
SERS | Au/ND/C3N4 | Tetracycline | nanomolar level | [94] | |
UV-Vis | — | Tetracycline, Ofloxacin, and Chloramphenicol | 94–264 | [93] | |
Sensor | Electrochemical sensor | Molecularly imprinted polymer (MIP) | Azithromycin | 89.88 | [100] |
Electrochemical sensor | Au–Ag-ANCCs/f-MWCNTs-CPE/ChCl | Rifampicin and Norfloxacin | 0.0022–0.044 | [101] | |
Electrochemical sensor | Glassy carbon electrode | Sulfadiazine | 1535 | [102] | |
Optical sensor | Mn-MOF | Tetracycline | 1.4208–190.92 | [105] | |
Biosensor | RNA Aptamer | Levofloxacin | 23,100 | [110] | |
Group-targeting biosensor | — | Quinolones | <0.15 | [111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Lin, X.; Di, Z.; Cheng, F.; Xu, J. Occurrence, Risks, and Removal Methods of Antibiotics in Urban Wastewater Treatment Systems: A Review. Water 2024, 16, 3428. https://doi.org/10.3390/w16233428
Zhu L, Lin X, Di Z, Cheng F, Xu J. Occurrence, Risks, and Removal Methods of Antibiotics in Urban Wastewater Treatment Systems: A Review. Water. 2024; 16(23):3428. https://doi.org/10.3390/w16233428
Chicago/Turabian StyleZhu, Liping, Xiaohu Lin, Zichen Di, Fangqin Cheng, and Jingcheng Xu. 2024. "Occurrence, Risks, and Removal Methods of Antibiotics in Urban Wastewater Treatment Systems: A Review" Water 16, no. 23: 3428. https://doi.org/10.3390/w16233428
APA StyleZhu, L., Lin, X., Di, Z., Cheng, F., & Xu, J. (2024). Occurrence, Risks, and Removal Methods of Antibiotics in Urban Wastewater Treatment Systems: A Review. Water, 16(23), 3428. https://doi.org/10.3390/w16233428