Sedimentary Model and Geological Control of the Ganquan Platform in the Xisha Sea Area, South China Sea
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
4. Results
4.1. Interpretation of Multibeam Bathymetry Data
4.2. Interpretation of Multi-Channel Reflection Seismic Data
4.2.1. Seismic Facies
4.2.2. Sequence Stratigraphy Division and Stratigraphic Characteristics
4.3. Stratigraphic Characteristics of the Ganquan Platform
5. Discussion
5.1. Sedimentary Model of Ganquan Platform
5.1.1. Growth Phase (Early Miocene)
5.1.2. Flourishing Phase (Middle Miocene)
5.1.3. Submergence Phase (Late Miocene)
5.2. Factors Controlling the Stratigraphic Evolution of the Ganquan Platform
5.2.1. The Impact of Terrigenous Clastic Input on the Ganquan Platform
5.2.2. The Impact of Tectonic Activity and Sea Level Changes on the Ganquan Platform
5.2.3. The Impact of Paleomonsoons and Paleocurrents on the Ganquan Platform
6. Conclusions
- (1)
- Through high-resolution multibeam and seismic data, we identified key stratigraphic features of the Ganquan Platform, including lagoonal facies, karst formations, and biogenic reefs. The carbonate rock layers, primarily developed since the Miocene, reflect the complex interplay of tectonic stability and sea-level changes that facilitated the platform’s evolution.
- (2)
- We present the sedimentary evolution of the Ganquan Platform, identifying distinct phases: the Early Miocene growth phase, marked by initial carbonate rock deposition; the Middle Miocene flourishing phase, characterized by extensive carbonate accumulation; and the Late Miocene submergence phase, where sedimentation slowed and the platform gradually submerged beneath the photic zone.
- (3)
- The evolution of the Ganquan Platform is significantly influenced by various factors, including terrigenous clastic input, tectonic activity, variations in sea level, and the impact of paleomonsoons and paleocurrents. Specifically, the sea-level decline around 15 Ma, coupled with enhanced paleomonsoon activity, promoted the lateral growth of the platform. In contrast, the rapid rise in sea level at 8 Ma, combined with a notable intensification of paleomonsoon influences, ultimately led to the submergence of the Ganquan Platform, profoundly altering its geomorphological characteristics.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Camoin, G.F.; Davies, P.J. Reefs and Carbonate Platforms in the Pacific and Indian Oceans; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Read, J.F. Carbonate Platform Facies Models. AAPG Bull. 1985, 69, 1–21. [Google Scholar]
- Hendry, J.; Burgess, P.; David, H.; Xavier, J.; Zampetti, V. Seismic characterization of carbonate platforms and reservoirs: An introduction and review. In Seismic Characterization of Carbonate Platforms and Reservoirs; Geological Society of London: London, UK, 2021. [Google Scholar]
- Fauquembergue, K.; Mulder, T.; Reijmer, J.; Hanquiez, V.; Betzler, C.; Ducassou, E.; Recouvreur, A.; Principaud, M.; Borgomano, J.; Wilk, S.; et al. Sedimentology of Modern Bahamian Carbonate Slopes: Summary and Update. Geochem. Geophys. Geosystems 2024, 25, e2023GC011077. [Google Scholar] [CrossRef]
- Alonso-Garcia, M.; Reolid, J.; Jimenez-Espejo, F.J. Sea-level and monsoonal control on the Maldives carbonate platform (Indian Ocean) over the last 1.3 million years. Clim. Past Discuss. 2023, 2023, 547–571. [Google Scholar] [CrossRef]
- Haig, D.W.; Rigaud, S.; McCartain, E. Upper Triassic carbonate-platform facies, Timor-Leste: Foraminiferal indices and regional tectonostratigraphic association. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 570, 110362. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, X.; Yang, Z.; Wu, T.; Gao, J.; Wang, D. Spatial and Temporal Evolution of Cenozoic Carbonate Platforms on the Continental Margins of the South China Sea: Response to Opening of the Ocean Basin. Interpretation 2016, 4, 1–19. [Google Scholar] [CrossRef]
- Wu, S.; Weilin, Z.; Yongsheng, M. Vicissitude of Cenozoic Carbonate Platforms in the South China Sea: Sedimentation in Semi-Closed Marginal Seas. Mar. Geol. Quat. Geol. 2018, 38, 1–17. [Google Scholar]
- Eberli, G.P.; Masaferro, J.L.; Sarg, J.F. Seismic imaging of carbonate reservoirs and systems. AAPG Mem. 2004, 81, 169–183. [Google Scholar]
- Yan, W.; Zhang, G.; Xia, B.; Zhang, L.; Yang, Z.; Lei, Z.; Yao, H. Seismic Characteristics and Development Patterns of Miocene Carbonate Platform in the Beikang Basin, Southern South China Sea. Acta Geol. Sin. Engl. Ed. 2020, 94, 1651–1661. [Google Scholar] [CrossRef]
- Gao, H.; Zeng, X.; Liu, Z.; Bai, Z. Simulating of Subsidence History and Analysis of Tectonic Evolutionary Characteristics of Liyue Basin in South China Sea. Geotecton. Metallog. 2005, 29, 385–390. [Google Scholar]
- Yao, Y.; Liu, H.; Yang, C.; Han, B.; Tian, J.; Yin, Z.; Gong, J.; Xu, Q. Characteristics and Evolution of Cenozoic Sediments in the Liyue Basin, SE South China Sea. J. Asian Earth Sci. 2012, 60, 114–129. [Google Scholar] [CrossRef]
- Fyhn, M.B.; Boldreel, L.O.; Nielsen, L.H.; Giang, T.C.; Nga, L.H.; Hong, N.T.; Nguyen, N.D.; Abatzis, I. Carbonate Platform Growth and Demise Offshore Central Vietnam: Effects of Early Miocene Transgression and Subsequent Onshore Uplift. J. Asian Earth Sci. 2013, 76, 152–168. [Google Scholar] [CrossRef]
- Tyrrell, W., Jr.; Christian, H., Jr. Exploration History of Liuhua 11-1 Field, Pearl River Mouth Basin, China. AAPG Bull. 1992, 76, 1209–1223. [Google Scholar]
- Wu, S.; Yang, Z.; Wang, D.; Lu, F.; Lüdmann, T.; Fulthorpe, C.; Wang, B. Architecture, Development and Geological Control of the Xisha Carbonate Platforms, Northwestern South China Sea. Mar. Geol. 2014, 350, 71–83. [Google Scholar] [CrossRef]
- Yang, Z.; Li, X.; Huang, L.; Wang, L.; Wu, S.; Zhang, X. Development of the Miocene Guangle Carbonate Platform in the South China Sea: Architecture and Controlling Factors. Acta Geol. Sin. Engl. Ed. 2021, 95, 177–191. [Google Scholar] [CrossRef]
- Sattler, U.; Immenhauser, A.; Schlager, W.; Zampetti, V. Drowning History of a Miocene Carbonate Platform (Zhujiang Formation, South China Sea). Sediment. Geol. 2009, 219, 318–331. [Google Scholar] [CrossRef]
- Shixiang, L.; Gongcheng, Z.; Zhigang, Z.; Xiaojun, X.; Long, W.; Shuang, S.; Jia, G.; Shenglan, W.; Yankun, B.; Yibo, W. Control of Tectonic Cycle in South China Sea over Hydrocarbon Accumulation in the Zengmu Basin. China Pet. Explor. 2016, 21, 37. [Google Scholar]
- Yang, Z.; Zhang, G.; Liu, S.; Du, X.; Wang, L.; Yan, W.; Huang, L. Evolution and Controlling Factors of the Reef and Carbonate Platform in Wan’an Basin, South China Sea. Appl. Sci. 2022, 12, 9322. [Google Scholar] [CrossRef]
- Aurelio, M.A.; Forbes, M.T.; Taguibao, K.J.L.; Savella, R.B.; Bacud, J.A.; Franke, D.; Pubellier, M.; Savva, D.; Meresse, F.; Steuer, S. Middle to Late Cenozoic Tectonic Events in South and Central Palawan (Philippines) and Their Implications to the Evolution of the South-Eastern Margin of South China Sea: Evidence from Onshore Structural and Offshore Seismic Data. Mar. Pet. Geol. 2014, 58, 658–673. [Google Scholar] [CrossRef]
- Han, J.; Xu, G.; Li, Y.; Zhuo, H. Evolutionary History and Controlling Factors of the Shelf Breaks in the Pearl River Mouth Basin, Northern South China Sea. Mar. Pet. Geol. 2016, 77, 179–189. [Google Scholar] [CrossRef]
- Zampetti, V.; Schlager, W.; van Konijnenburg, J.-H.; Everts, A.-J. Architecture and Growth History of a Miocene Carbonate Platform from 3D Seismic Reflection Data; Luconia Province, Offshore Sarawak, Malaysia. Mar. Pet. Geol. 2004, 21, 517–534. [Google Scholar] [CrossRef]
- Betzler, C.; Hübscher, C.; Lindhorst, S.; Reijmer, J.J.; Römer, M.; Droxler, A.W.; Fürstenau, J.; Lüdmann, T. Monsoon-Induced Partial Carbonate Platform Drowning (Maldives, Indian Ocean). Geology 2009, 37, 867–870. [Google Scholar] [CrossRef]
- Steuer, S.; Franke, D.; Meresse, F.; Savva, D.; Pubellier, M.; Auxietre, J.-L. Oligocene-Miocene Carbonates and Their Role for Constraining the Rifting and Collision Histroy of the Dangerous Grouds, South China Sea. Mar. Pet. Geol. 2013, 30, 1e14. [Google Scholar]
- Betzler, C.; Eberli, G.P. Miocene Start of Modern Carbonate Platforms. Geology 2019, 47, 771–775. [Google Scholar] [CrossRef]
- Yi, L.; Yuchi, C.; Xinyu, L. Formation Process and Controlling Factors of Carbonate Platform in Xisha Area, South China Sea: Based on Geochemical Evidences from Well Xike-1. J. Palaeogeogr. (Chin. Ed.) 2020, 22, 1197–1208. [Google Scholar]
- Zhang, X.; Wu, S. Characteristics of Miocene Guangle Carbonate Platforms in the Xisha Area and Its Evolution. Mar. Geol. Quat. Geol. 2018, 38, 159–171. [Google Scholar]
- Shao, L.; Li, Q.; Zhu, W.; Zhang, D.; Qiao, P.; Liu, X.; You, L.; Cui, Y.; Dong, X. Neogene Carbonate Platform Development in the NW South China Sea: Litho-, Bio-and Chemo-Stratigraphic Evidence. Mar. Geol. 2017, 385, 233–243. [Google Scholar] [CrossRef]
- Shao, L.; Cui, Y.; Qiao, P.; Zhang, D.; Liu, X.; Zhang, C. Sea-Level Changes and Carbonate Platform Evolution of the Xisha Islands (South China Sea) since the Early Miocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 485, 504–516. [Google Scholar] [CrossRef]
- Yubo, M.; Shiguo, W.; Fuliang, L.; Dongdong, D.; Qiliang, S.; Yintao, L.; Mingfeng, G. Seismic Characteristics and Development of the Xisha Carbonate Platforms, Northern Margin of the South China Sea. J. Asian Earth Sci. 2011, 40, 770–783. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, S.; Li, X.; Chen, W.; Han, X.; Yang, C.; Qin, Y.; Huang, X.; Yang, Z.; Sun, J. Seismic Stratigraphy and Development of a Modern Isolated Carbonate Platform (Xuande Atoll) in the South China Sea. Front. Earth Sci. 2023, 10, 1042371. [Google Scholar] [CrossRef]
- Wu, S.; Chen, W.; Huang, X.; Liu, G.; Li, X.; Betzler, C. Facies Model on the Modern Isolated Carbonate Platform in the Xisha Archipelago, South China Sea. Mar. Geol. 2020, 425, 106203. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, H.; Qin, Y.; Chen, W.; Liu, G.; Han, X. Seismic Imaging and 3D Architecture of Yongle Atoll of the Xisha Archipelago, South China Sea. Acta Geol. Sin.-Engl. Ed. 2022, 96, 1778–1791. [Google Scholar] [CrossRef]
- Li, X.; Guo, X.; Tian, F.; Fang, X. The Effects of Controlling Gas Escape and Bottom Current Activity on the Evolution of Pockmarks in the Northwest of the Xisha Uplift, South China Sea. J. Mar. Sci. Eng. 2024, 12, 1505. [Google Scholar] [CrossRef]
- Briais, A.; Patriat, P.; Tapponnier, P. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. J. Geophys. Res. Solid Earth 1993, 98, 6299–6328. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Ding, W.; Franke, D.; Yao, Y.; Shi, H.; Pang, X.; Cao, Y.; Lin, J.; Kulhanek, D.; et al. Seismic Stratigraphy of the Central South China Sea Basin and Implications for Neotectonics. J. Geophys. Res. Solid Earth 2015, 120, 1377–1399. [Google Scholar] [CrossRef]
- Yan, Q.; Shi, X.; Castillo, P.R. The Late Mesozoic–Cenozoic Tectonic Evolution of the South China Sea: A Petrologic Perspective. J. Asian Earth Sci. 2014, 85, 178–201. [Google Scholar] [CrossRef]
- Sun, Z.; Zhou, D.; Zhong, Z.; Zeng, Z.; Wu, S. Experimental Evidence for the Dynamics of the Formation of the Yinggehai Basin, NW South China Sea. Tectonophysics 2003, 372, 41–58. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Q.; Wu, S.; Wang, D.; Wang, B. Post-Rifting Magmatism and the Drowned Reefs in the Xisha Archipelago Domain. J. Ocean. Univ. China 2018, 17, 195–208. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, D.; Liu, X.; Wang, Z.; Hu, W.; Wang, Y. A Comprehensive Stratigraphic Study of Well XK-1 in the Xisha Area. J. Stratigr. 2018, 42, 485–498. [Google Scholar]
- Sun, J. A Discussion on the Formation Ages of the Bedrock in the Xisha Islands. Mar. Geol. Quat. Geol. 1987, 7, 5–6. [Google Scholar]
- Gao, J.; Bangs, N.; Wu, S.; Cai, G.; Han, S.; Ma, B.; Wang, J.; Xie, Y.; Huang, W.; Dong, D. Post-seafloor Spreading Magmatism and Associated Magmatic Hydrothermal Systems in the Xisha Uplift Region, Northwestern South China Sea. Basin Res. 2019, 31, 688–708. [Google Scholar] [CrossRef]
- Wan, S.; Li, A.; Clift, P.D.; Stuut, J.-B.W. Development of the East Asian Monsoon: Mineralogical and Sedimentologic Records in the Northern South China Sea since 20 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 254, 561–582. [Google Scholar] [CrossRef]
- Xie, X.; Müller, R.D.; Ren, J.; Jiang, T.; Zhang, C. Stratigraphic Architecture and Evolution of the Continental Slope System in Offshore Hainan, Northern South China Sea. Mar. Geol. 2008, 247, 129–144. [Google Scholar] [CrossRef]
- Haq, B.U.; Hardenbol, J.; Vail, P.R. Chronology of Fluctuating Sea Levels since the Triassic. Science 1987, 235, 1156–1167. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.G.; Browning, J.V.; Schmelz, W.J.; Kopp, R.E.; Mountain, G.S.; Wright, J.D. Cenozoic Sea-Level and Cryospheric Evolution from Deep-Sea Geochemical and Continental Margin Records. Sci. Adv. 2020, 6, 1346. [Google Scholar] [CrossRef]
- Chen, W.; Wu, S.; Wang, D.; Betzler, C.; Ma, Y. Stratigraphic Evolution and Drowning Steps of a Submerged Isolated Carbonate Platform in the Northern South China Sea. Front. Mar. Sci. 2023, 10, 1200788. [Google Scholar] [CrossRef]
- Sarg, J.F. The sequence stratigraphy, sedimentology, and economic importance of evaporite–carbonate transitions: A review. Sediment. Geol. 2001, 140, 9–34. [Google Scholar] [CrossRef]
- Du, W.; Yang, C.; Zhang, H.; Gao, J.; Wen, M.; Hu, X.; Xu, Z.; Nie, X.; Zhu, R. First Documentation of Large Submarine Sinkholes on the Ganquan Carbonate Platform in the Xisha Islands, South China Sea. J. Mar. Sci. Eng. 2023, 11, 2171. [Google Scholar] [CrossRef]
- Zhu, W.; Xie, X.; Wang, Z.; Zhang, D.; Zhang, C.; Cao, L.; Shao, L. New Insights on the Origin of the Basement of the Xisha Uplift, South China Sea. Sci. China Eatrh Sci. 2017, 60, 2214–2222. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, S.; Betzler, C. Backstepping Patterns of an Isolated Carbonate Platform in the Northern South China Sea and Its Implication for Paleoceanography and Paleoclimate. Mar. Pet. Geol. 2022, 146, 105927. [Google Scholar] [CrossRef]
- Anselmetti, F.S.; Eberli, G.P.; Ding, Z.-D. From the Great Bahama Bank into the Straits of Florida: A Margin Architecture Controlled by Sea-Level Fluctuations and Ocean Currents. Geol. Soc. Am. Bull. 2000, 112, 829–844. [Google Scholar] [CrossRef]
- Lüdmann, T.; Betzler, C.; Eberli, G.P.; Reolid, J.; Reijmer, J.J.; Sloss, C.R.; Bialik, O.M.; Alvarez-Zarikian, C.A.; Alonso-García, M.; Blättler, C.L. Carbonate Delta Drift: A New Sediment Drift Type. Mar. Geol. 2018, 401, 98–111. [Google Scholar] [CrossRef]
- Betzler, C.; Eberli, G.P.; Kroon, D.; Wright, J.D.; Swart, P.K.; Nath, B.N.; Alvarez-Zarikian, C.A.; Alonso-García, M.; Bialik, O.M.; Blättler, C.L. The Abrupt Onset of the Modern South Asian Monsoon Winds. Sci. Rep. 2016, 6, 29838. [Google Scholar] [CrossRef] [PubMed]
- Shiming, W.; Anchun, L.; Kehui, X.; Xueming, Y. Characteristics of Clay Minerals in the Northern South China Sea and Its Implications for Evolution of East Asian Monsoon since Miocene. J. China Univ. Geosci. 2008, 19, 23–37. [Google Scholar] [CrossRef]
Seismic Facies(s) | Reflection Characteristics | Interpretation |
---|---|---|
Moderately continuous, low to moderate amplitude, wavy-horizontal parallel reflections | Lagoon | |
Moderately continuous, high amplitude, parallel reflections | Karst | |
Onlap, moderate to high amplitude, S-shaped subparallel reflections | Carbonate platform progradation margin | |
Upward convex moderate amplitude reflections with chaotic internal reflections | Biogenic reef | |
Moderate-to-strong amplitude, weak continuity, chaotic reflections | Debris | |
Chaotic reflections, weak continuity, vertical wedge-shaped | Gas chimney | |
Weak amplitude, moderate continuity, convex-up shape | Reef rim |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Huang, L.; Lin, K.; Sun, M.; Zhang, J.; Liu, X.; Tian, L.; Chen, W. Sedimentary Model and Geological Control of the Ganquan Platform in the Xisha Sea Area, South China Sea. Water 2024, 16, 3516. https://doi.org/10.3390/w16233516
Li X, Huang L, Lin K, Sun M, Zhang J, Liu X, Tian L, Chen W. Sedimentary Model and Geological Control of the Ganquan Platform in the Xisha Sea Area, South China Sea. Water. 2024; 16(23):3516. https://doi.org/10.3390/w16233516
Chicago/Turabian StyleLi, Xuelin, Lei Huang, Kang Lin, Mingyuan Sun, Jiangyong Zhang, Xining Liu, Lieyu Tian, and Wei Chen. 2024. "Sedimentary Model and Geological Control of the Ganquan Platform in the Xisha Sea Area, South China Sea" Water 16, no. 23: 3516. https://doi.org/10.3390/w16233516
APA StyleLi, X., Huang, L., Lin, K., Sun, M., Zhang, J., Liu, X., Tian, L., & Chen, W. (2024). Sedimentary Model and Geological Control of the Ganquan Platform in the Xisha Sea Area, South China Sea. Water, 16(23), 3516. https://doi.org/10.3390/w16233516