Chemodiversity and Molecular Mechanism Between Per-/Polyfluoroalkyl Substance Complexation Behavior of Humic Substances in Landfill Leachate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Sample Collection
2.3. Solution Preparation
2.3.1. Humic Acid Solution
2.3.2. Fulvic Acid Solution
2.4. Quenching Titration
2.4.1. HA Titration
2.4.2. FA Titration
2.5. Spectroscopic Analysis
2.5.1. UV-Vis Spectroscopy
2.5.2. Three-Dimensional Fluorescence Spectroscopy
2.5.3. FTIR Spectroscopy
2.6. Complexation Models
2.7. Data Analysis
3. Results and Discussion
3.1. Analysis of Organic Matter Chemical Properties in Complexation and Adsorption Reactions
3.1.1. UV-Vis Spectral Characteristics
3.1.2. Fluorescence Component Characteristics
3.1.3. FTIR Spectral Characteristics
3.2. Analysis of Complexation and Adsorption Between Humic Substances and PFASs
3.2.1. Analysis of Organic Matter Complexation and Adsorption Activity
3.2.2. Identification of Organic Components in Complexation and Adsorption Reactions
3.2.3. Molecular-Level Analysis of Complexation and Adsorption Mechanisms
4. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ackerman Grunfeld, D.; Gilbert, D.; Hou, J.; Jones, A.M.; Lee, M.J.; Kibbey, T.C.; O’Carroll, D.M. Underestimated burden of per-and polyfluoroalkyl substances in global surface waters and groundwaters. Nat. Geosci. 2024, 17, 340–346. [Google Scholar] [CrossRef]
- Evich, M.G.; Davis, M.J.B.; Mccord, J.P.; Acrey, B.; Awkerman, J.A.; Knappe, D.R.U.; Lindstrom, A.B.; Speth, T.F.; Tebes-Stevens, C.; Strynar, M.J.; et al. Per-and polyfluoroalkyl substances in the environment. Science 2022, 375, eabg9065. [Google Scholar] [CrossRef]
- Hamid, H.; Li, L.Y.; Grace, J.R. Review of the fate and transformation of per- and polyfluoroalkyl substances (PFASs) in landfills. Environ. Pollut. 2018, 235, 74–84. [Google Scholar] [CrossRef]
- Liu, T.; Hu, L.-X.; Han, Y.; Dong, L.-L.; Wang, Y.-Q.; Zhao, J.-H.; Liu, Y.-S.; Zhao, J.-L.; Ying, G.-G. Non-target and target screening of per- and polyfluoroalkyl substances in landfill leachate and impact on groundwater in Guangzhou, China. Sci. Total Environ. 2022, 844, 157021. [Google Scholar] [CrossRef]
- Wang, F.; Liu, W.; Jin, Y.; Dai, J.; Zhao, H.; Xie, Q.; Liu, X.; Yu, W.; Ma, J. Interaction of PFOS and BDE-47 Co-exposure on Thyroid Hormone Levels and TH-Related Gene and Protein Expression in Developing Rat Brains. Toxicol. Sci. 2011, 121, 279. [Google Scholar] [CrossRef]
- Whitacre, D.M.; Giesy, J.P.; Naile, J.E.; Khim, J.S.; Jones, P.D.; Newsted, J.L. Aquatic Toxicology of Perfluorinated Chemicals; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Qazi, M.R.; Abedi, M.R.; Nelson, B.D.; DePierre, J.W.; Abedi-Valugerdi, M. Dietary exposure to perfluorooctanoate or perfluorooctane sulfonate induces hypertrophy in centrilobular hepatocytes and alters the hepatic immune status in mice. Int. Immunopharmacol. 2010, 10, 1420–1427. [Google Scholar] [CrossRef]
- Kim, M.; Son, J.; Park, M.S.; Ji, Y.; Chae, S.; Jun, C.; Bae, J.-S.; Kwon, T.K.; Choo, Y.-S.; Yoon, H.; et al. In vivo evaluation and comparison of developmental toxicity and teratogenicity of perfluoroalkyl compounds using Xenopus embryos. Chemosphere 2013, 93, 1153–1160. [Google Scholar] [CrossRef]
- Eggen, T.; Moeder, M.; Arukwe, A. Municipal landfill leachates: A significant source for new and emerging pollutants. Sci. Total Environ. 2010, 408, 5147–5157. [Google Scholar] [CrossRef]
- Lang, J.R.; Allred, B.M.; Field, J.A.; Levis, J.W.; Barlaz, M.A. National Estimate of Per- and Polyfluoroalkyl Substance (PFAS) Release to U.S. Municipal Landfill Leachate. Environ. Sci. Technol. 2017, 51, 2197–2205. [Google Scholar] [CrossRef]
- Slack, R.J.; Gronow, J.R.; Voulvoulis, N. Household hazardous waste in municipal landfills: Contaminants in leachate. Sci. Total Environ. 2005, 337, 119–137. [Google Scholar] [CrossRef]
- Matejczyk, M.; Płaza, G.A.; Nałęcz-Jawecki, G.; Ulfig, K.; Markowska-Szczupak, A. Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates. Chemosphere 2011, 82, 1017–1023. [Google Scholar] [CrossRef]
- He, P.J.; Xue, J.F.; Shao, L.M.; Li, G.J.; Lee, D.J. Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill. Water Res. 2006, 40, 1465–1473. [Google Scholar] [CrossRef]
- Guo, X.; Tu, B.; Ge, J.; Yang, C.; Song, X.; Dang, Z. Sorption of tylosin and sulfamethazine on solid humic acid. J. Environ. Sci. 2016, 43, 208–215. [Google Scholar] [CrossRef]
- Mei, W.; Sun, H.; Song, M.; Jiang, L.; Li, Y.; Lu, W.; Ying, G.-G.; Luo, C.; Zhang, G. Per- and polyfluoroalkyl substances (PFASs) in the soil–plant system: Sorption, root uptake, and translocation. Environ. Int. 2021, 156, 106642. [Google Scholar] [CrossRef]
- Park MinKyu, P.M.; Wu ShiMin, W.S.; Lopez, I.J.; Chang, J.Y.; Karanfil, T.; Snyder, S.A. Adsorption of perfluoroalkyl substances (PFAS) in groundwater by granular activated carbons: Roles of hydrophobicity of PFAS and carbon characteristics. Water Res. 2020, 170, 115364. [Google Scholar] [CrossRef]
- Patterson, H.H.; Cronan, C.S.; Lakshman, S.; Plankey, B.J.; Taylor, T.A. Comparison of soil fulvic acids using synchronous scan fluorescence spectroscopy, FTIR, titration and metal complexation kinetics. Sci. Total Environ. 1992, 113, 179–196. [Google Scholar] [CrossRef]
- Amirbahman, A.; Olson, T.M. Transport of humic matter-coated hematite in packed beds. Environ. Sci. Technol. 1993, 27, 2807–2813. [Google Scholar] [CrossRef]
- Su, Y.; Hu, E.; Feng, M.; Zhang, Y.; Chen, F.; Liu, Z. Comparison of bacterial growth in response to photodegraded terrestrial chromophoric dissolved organic matter in two lakes. Sci. Total Environ. 2017, 579, 1203–1214. [Google Scholar] [CrossRef]
- Rodr Guez, F.J.; Schlenger, P.; Garc A-Valverde, M. A comprehensive structural evaluation of humic substances using several fluorescence techniques before and after ozonation. Part I: Structural characterization of humic substances. Sci. Total Environ. 2014, 476, 718–730. [Google Scholar] [CrossRef]
- Miano, T.; Senesi, N. Synchronous excitation fluorescence spectroscopy applied to soil humic substances chemistry. Sci. Total Environ. 1992, 117, 41–51. [Google Scholar] [CrossRef]
- Teng, Y.; Zhou, Q. Adsorption behavior of Sudan I-IV on a coastal soil and their forecasted biogeochemical cycles. Environ. Sci. Pollut. Res. Int. 2017, 24, 10749–10758. [Google Scholar] [CrossRef]
- Reemtsma, T.; These, A.; Springer, A.; Linscheid, M. Fulvic acids as transition state of organic matter: Indications from high resolution mass spectrometry. Environ. Sci. Technol. 2006, 40, 5839–5845. [Google Scholar] [CrossRef]
- Lee, S.C.; Shin, Y.; Jeon, Y.J.; Lee, E.J.; Eom, J.S.; Kim, B.; Oh, N.H. Optical properties and 14C ages of stream DOM from agricultural and forest watersheds during storms. Environ. Pollut. 2021, 272, 116412. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Y. Generation and characterization of DOM in wastewater treatment processes. Chemosphere 2018, 201, 96–109. [Google Scholar] [CrossRef]
- Ren, G.; Wang, X.; Zhang, Z.; Zhong, B.; Yang, L.; Xu, D.; Yang, X. Facile synthesis of maghemite nanoparticle from waste green vitriol as adsorbent for adsorption of arsenite. J. Mol. Liq. 2018, 259, 32–39. [Google Scholar] [CrossRef]
- Wu, D.; Ren, D.; Li, Q.; Zhu, A.; Song, Y.; Yin, W.; Wu, C. Molecular linkages between chemodiversity and MCPA complexation behavior of dissolved organic matter in paddy soil: Effects of land conversion. Environ. Pollut. 2022, 311, 119949. [Google Scholar] [CrossRef]
- Guo, F.; Qin, S.; Xu, L.; Bai, Y.; Xing, B. Thermal degradation features of soil humic acid sub-fractions in pyrolytic treatment and their relation to molecular signatures. Sci. Total Environ. 2020, 749, 142318. [Google Scholar] [CrossRef]
- Zhu, L.-J.; Zhao, Y.; Chen, Y.-N.; Cui, H.-Y.; Wei, Y.-Q.; Liu, H.-L.; Chen, X.-M.; Wei, Z.-M. Characterization of atrazine binding to dissolved organic matter of soil under different types of land use. Ecotoxicol. Environ. Saf. 2018, 147, 1065–1072. [Google Scholar] [CrossRef]
- Polubesova, T.; Sherman-Nakache, M.; Chefetz, B. Binding of pyrene to hydrophobic fractions of dissolved organic matter: Effect of polyvalent metal complexation. Environ. Sci. Technol. 2007, 41, 5389–5394. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y. Mechanisms of interaction between polycyclic aromatic hydrocarbons and dissolved organic matter. J. Environ. Sci Health A Tox Hazard. Subst. Environ. Eng. 2014, 49, 78–84. [Google Scholar] [CrossRef]
- Wang, L.; Wu, X.; Zhao, Z.; Fan, F.; Zhu, M.; Wang, Y.; Na, R.; Li, Q.X. Interactions between imidacloprid and thiamethoxam and dissolved organic matter characterized by two-dimensional correlation spectroscopy analysis, molecular modeling, and density functional theory calculations. J. Agric. Food Chem. 2020, 68, 2329–2339. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Cao, H.; Pan, W.; Wang, C.; Liang, Y. The role of dissolved organic matter during Per- and Polyfluorinated Substance (PFAS) adsorption, degradation, and plant uptake: A review. J. Hazard. Mater. 2022, 436, 129139. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Sha, H.; Ye, R.; Zhang, P.; Chen, S.; Zhu, G.; Tan, W. Chemodiversity and Molecular Mechanism Between Per-/Polyfluoroalkyl Substance Complexation Behavior of Humic Substances in Landfill Leachate. Water 2024, 16, 3527. https://doi.org/10.3390/w16233527
Li J, Sha H, Ye R, Zhang P, Chen S, Zhu G, Tan W. Chemodiversity and Molecular Mechanism Between Per-/Polyfluoroalkyl Substance Complexation Behavior of Humic Substances in Landfill Leachate. Water. 2024; 16(23):3527. https://doi.org/10.3390/w16233527
Chicago/Turabian StyleLi, Jia, Haoqun Sha, Rongchuan Ye, Peipei Zhang, Shuhe Chen, Ganghui Zhu, and Wenbing Tan. 2024. "Chemodiversity and Molecular Mechanism Between Per-/Polyfluoroalkyl Substance Complexation Behavior of Humic Substances in Landfill Leachate" Water 16, no. 23: 3527. https://doi.org/10.3390/w16233527
APA StyleLi, J., Sha, H., Ye, R., Zhang, P., Chen, S., Zhu, G., & Tan, W. (2024). Chemodiversity and Molecular Mechanism Between Per-/Polyfluoroalkyl Substance Complexation Behavior of Humic Substances in Landfill Leachate. Water, 16(23), 3527. https://doi.org/10.3390/w16233527