Combining Physical Hydrological Model with Explainable Machine Learning Methods to Enhance Water Balance Assessment in Glacial River Basins
Abstract
:1. Introduction
2. Materials and Methods
2.1. SEGSWAT+
2.2. Machine Learning Models
2.3. STL and SHAP
2.4. Hybrid Modeling Framework
2.5. Study Area
2.6. Data and Preprocessing
3. Results
3.1. Model Evaluation
3.2. Comparison of Runoff Prediction
3.3. Water Balance Correction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
SWAT+ | GSWAT+ | SEGWAT+ | |
---|---|---|---|
Glacier dynamics simulation | No | Yes | Yes |
Additional data requirements | No | Yes (glacier inventory) | Yes (glacier inventory) |
Glacier/Snow sublimation Calculator | Snow: Evaporation residual subtraction Glacier: No | Snow: Evaporation residual subtraction Glacier: Additional parameters | Snow/Glacier: Empirical formula |
Additional water balance elements | No | Glacial melt | Glacial melt |
ANN | LSTM | RF | XGBoost | |
---|---|---|---|---|
Type | Machine learning | Deep learning | Ensemble learning | Ensemble learning |
Modeling method | Scikit-learn | Pytorch | Scikit-learn | XGBoost |
Parameter optimization | Bayesian optimization | Bayesian optimization | Bayesian optimization | Bayesian optimization |
Hyperparameters | learning_rate: 0.01 num_hidden_layers: 2 num_units: 128 dropout: 0.2 batch_size: 64 | learning_rate: 0.01 hidden_units: 2 time_steps: 12 dropout: 0.2 optimizer: Adam batch_size: 64 | n_estimators: 20, max_depth: 3 max_features: 7 | learning_rate: 0.01 n_estimators: 20 max_depth: 3 |
Number of parameters | 1.8 × 105 | 5.2 × 105 | Tree-based: 4 × 102 | Tree-based: 4 × 102 |
References
- Yang, H.; Zhang, Z.; Liu, X.; Jing, P. Monthly-Scale Hydro-Climatic Forecasting and Climate Change Impact Evaluation Based on a Novel DCNN-Transformer Network. Environ. Res. 2023, 236, 116821. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Govindaraju, R.S. Uncertainty Quantification in Watershed Hydrology: Which Method to Use? J. Hydrol. 2023, 616, 128749. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Fang, G.; Li, Z. Review Article: Hydrological Modeling in Glacierized Catchments of Central Asia—Status and Challenges. Hydrol. Earth Syst. Sci. 2017, 21, 669–684. [Google Scholar] [CrossRef]
- Uncertainties in Prediction of Streamflows Using SWAT Model—Role of Remote Sensing and Precipitation Sources. Available online: https://www.mdpi.com/2072-4292/14/21/5385 (accessed on 18 November 2024).
- Beniston, M. Climatic Change in Mountain Regions: A Review of Possible Impacts. Clim. Chang. 2003, 59, 5–31. [Google Scholar] [CrossRef]
- Ren, W.W.; Yang, T.; Huang, C.S.; Xu, C.Y.; Shao, Q.X. Improving Monthly Streamflow Prediction in Alpine Regions: Integrating HBV Model with Bayesian Neural Network. Stoch. Environ. Res. Risk Assess. 2018, 32, 3381–3396. [Google Scholar] [CrossRef]
- Uusitalo, L.; Lehikoinen, A.; Helle, I.; Myrberg, K. An Overview of Methods to Evaluate Uncertainty of Deterministic Models in Decision Support. Environ. Modell. Softw. 2015, 63, 24–31. [Google Scholar] [CrossRef]
- Adnan, M.; Kang, S.; Zhang, G.; Anjum, M.N.; Zaman, M.; Zhang, Y. Evaluation of SWAT Model Performance on Glaciated and Non-Glaciated Subbasins of Nam Co Lake, Southern Tibetan Plateau, China. J. Mt. Sci. 2019, 16, 1075–1097. [Google Scholar] [CrossRef]
- Luo, Y.; Arnold, J.; Liu, S.; Wang, X.; Chen, X. Inclusion of Glacier Processes for Distributed Hydrological Modeling at Basin Scale with Application to a Watershed in Tianshan Mountains, Northwest China. J. Hydrol. 2013, 477, 72–85. [Google Scholar] [CrossRef]
- Zhang, L.; Su, F.; Yang, D.; Hao, Z.; Tong, K. Discharge Regime and Simulation for the Upstream of Major Rivers over Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 8500–8518. [Google Scholar] [CrossRef]
- Chan, H.-C.; Chen, P.-A.; Lee, J.-T. Rainfall-Induced Landslide Susceptibility Using a Rainfall–Runoff Model and Logistic Regression. Water 2018, 10, 1354. [Google Scholar] [CrossRef]
- Bray, M.; Han, D. Identification of Support Vector Machines for Runoff Modelling. J. Hydroinf. 2004, 6, 265–280. [Google Scholar] [CrossRef]
- Srinivasulu, S.; Jain, A. A Comparative Analysis of Training Methods for Artificial Neural Network Rainfall–Runoff Models. Appl. Soft Comput. 2006, 6, 295–306. [Google Scholar] [CrossRef]
- Behrouz, M.S.; Yazdi, M.N.; Sample, D.J. Using Random Forest, a Machine Learning Approach to Predict Nitrogen, Phosphorus, and Sediment Event Mean Concentrations in Urban Runoff. J. Environ. Manag. 2022, 317, 115412. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Peng, H. Multiple Spatio-Temporal Scale Runoff Forecasting and Driving Mechanism Exploration by K-Means Optimized XGBoost and SHAP. J. Hydrol. 2024, 630, 130650. [Google Scholar] [CrossRef]
- Rahimzad, M.; Moghaddam Nia, A.; Zolfonoon, H.; Soltani, J.; Danandeh Mehr, A.; Kwon, H.-H. Performance Comparison of an LSTM-Based Deep Learning Model versus Conventional Machine Learning Algorithms for Streamflow Forecasting. Water Resour. Manag. 2021, 35, 4167–4187. [Google Scholar] [CrossRef]
- Yang, C.; Xu, M.; Kang, S.; Fu, C.; Hu, D. Improvement of Streamflow Simulation by Combining Physically Hydrological Model with Deep Learning Methods in Data-Scarce Glacial River Basin. J. Hydrol. 2023, 625, 129990. [Google Scholar] [CrossRef]
- Yang, R.; Zheng, G.; Hu, P.; Liu, Y.; Xu, W.; Bao, A. Snowmelt Flood Susceptibility Assessment in Kunlun Mountains Based on the Swin Transformer Deep Learning Method. Remote Sens. 2022, 14, 6360. [Google Scholar] [CrossRef]
- Lu, X.; Tang, G.; Wang, X.; Liu, Y.; Jia, L.; Xie, G.; Li, S.; Zhang, Y. Correcting GPM IMERG Precipitation Data over the Tianshan Mountains in China. J. Hydrol. 2019, 575, 1239–1252. [Google Scholar] [CrossRef]
- Xu, T.; Longyang, Q.; Tyson, C.; Zeng, R.; Neilson, B.T. Hybrid Physically Based and Deep Learning Modeling of a Snow Dominated, Mountainous, Karst Watershed. Water Resour. Res. 2022, 58, e2021WR030993. [Google Scholar] [CrossRef]
- Wang, S.; Peng, H.; Hu, Q.; Jiang, M. Analysis of Runoff Generation Driving Factors Based on Hydrological Model and Interpretable Machine Learning Method. J. Hydrol. Reg. Stud. 2022, 42, 101139. [Google Scholar] [CrossRef]
- Li, B.; Sun, T.; Tian, F.; Tudaji, M.; Qin, L.; Ni, G. Hybrid Hydrological Modeling for Large Alpine Basins: A Semi-Distributed Approach. Hydrol. Earth Syst. Sci. 2024, 28, 4521–4538. [Google Scholar] [CrossRef]
- Jin, C.; Wang, B.; Cheng, T.F.; Dai, L.; Wang, T. How Much We Know about Precipitation Climatology over Tianshan Mountains––the Central Asian Water Tower. NPJ Clim. Atmos. Sci. 2024, 7, 1–10. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Bieger, K.; Arnold, J.G.; Rathjens, H.; White, M.J.; Bosch, D.D.; Allen, P.M.; Volk, M.; Srinivasan, R. Introduction to SWAT+, a Completely Restructured Version of the Soil and Water Assessment Tool. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 115–130. [Google Scholar] [CrossRef]
- Yang, C.; Xu, M.; Fu, C.; Kang, S.; Luo, Y. The Coupling of Glacier Melt Module in SWAT+ Model Based on Multi-Source Remote Sensing Data: A Case Study in the Upper Yarkant River Basin. Remote Sens. 2022, 14, 6080. [Google Scholar] [CrossRef]
- Du, X.; Silwal, G.; Faramarzi, M. Investigating the Impacts of Glacier Melt on Stream Temperature in a Cold-Region Watershed: Coupling a Glacier Melt Model with a Hydrological Model. J. Hydrol. 2022, 605, 127303. [Google Scholar] [CrossRef]
- Zhang, Y.; Ohata, T.; Ersi, K.; Tandong, Y. Observation and Estimation of Evaporation from the Ground Surface of the Cryosphere in Eastern Asia. Hydrol. Process. 2003, 17, 1135–1147. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, L.; Zhang, Y.; Guo, Y.; Li, X.; Liu, W. Exploring the Water Storage Changes in the Largest Lake (Selin Co) over the Tibetan Plateau during 2003–2012 from a Basin-Wide Hydrological Modeling. Water Resour. Res. 2015, 51, 8060–8086. [Google Scholar] [CrossRef]
- Wang, W.; Gu, M.; Hong, Y.; Hu, X.; Zang, H.; Chen, X.; Jin, Y. SMGformer: Integrating STL and Multi-Head Self-Attention in Deep Learning Model for Multi-Step Runoff Forecasting. Sci. Rep. 2024, 14, 23550. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Chadalawada, J.; Babovic, V. Review and Comparison of Performance Indices for Automatic Model Induction. J. Hydroinf. 2017, 21, 13–31. [Google Scholar] [CrossRef]
- Shrestha, M.K.; Recknagel, F.; Frizenschaf, J.; Meyer, W. Assessing SWAT Models Based on Single and Multi-Site Calibration for the Simulation of Flow and Nutrient Loads in the Semi-Arid Onkaparinga Catchment in South Australia. Agric. Water Manag. 2016, 175, 61–71. [Google Scholar] [CrossRef]
- Wang, N.; Liu, W.; Wang, H.; Sun, F.; Duan, W.; Li, Z.; Li, Z.; Chen, Y. Improving Streamflow and Flood Simulations in Three Headwater Catchments of the Tarim River Based on a Coupled Glacier-Hydrological Model. J. Hydrol. 2021, 603, 127048. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, Y.; Li, W.; Fu, A.; Ma, X.; Gui, D.; Chen, Y. Distribution Pattern of Plant Species Diversity in the Mountainous Region of Ili River Valley, Xinjiang. Environ. Monit. Assess. 2011, 177, 681–694. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Sabater, J.; Dutra, E.; Agusti-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The First High-Resolution Meteorological Forcing Dataset for Land Process Studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef]
- Elnashar, A.; Wang, L.; Wu, B.; Zhu, W.; Zeng, H. Synthesis of Global Actual Evapotranspiration from 1982 to 2019. Earth Syst. Sci. Data 2021, 13, 447–480. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for Improved Earth System Understanding: State-of-the Art and Future Directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Franks, S.; Rengarajan, R. Evaluation of Copernicus DEM and Comparison to the DEM Used for Landsat Collection-2 Processing. Remote Sens. 2023, 15, 2509. [Google Scholar] [CrossRef]
- Lopez-Ballesteros, A.; Nielsen, A.; Castellanos-Osorio, G.; Trolle, D.; Senent-Aparicio, J. DSOLMap, a Novel High-Resolution Global Digital Soil Property Map for the SWAT plus Model: Development and Hydrological Evaluation. Catena 2023, 231, 107339. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global Land-Cover Product with Fine Classification System at 30m Using Time-Series Landsat Imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Dietrich, J.; Dang, T.D.; Tran, D.A.; Van Doan, B.; Sarrazin, F.J.; Abbaspour, K.; Srinivasan, R. An Interactive Graphical Interface Tool for Parameter Calibration, Sensitivity Analysis, Uncertainty Analysis, and Visualization for the Soil and Water Assessment Tool. Environ. Model. Softw. 2022, 156, 105497. [Google Scholar] [CrossRef]
- Lyu, Y.; Yong, B. A Novel Double Machine Learning Strategy for Producing High-Precision Multi-Source Merging Precipitation Estimates over the Tibetan Plateau. Water Resour. Res. 2024, 60, e2023WR035643. [Google Scholar] [CrossRef]
- Guo, S.; Wen, Y.; Zhang, X.; Chen, H. Monthly Runoff Prediction Using the VMD-LSTM-Transformer Hybrid Model: A Case Study of the Miyun Reservoir in Beijing. J. Water Clim. Chang. 2023, 14, 3221–3236. [Google Scholar] [CrossRef]
- Gan, G.; Wu, J.; Hori, M.; Fan, X.; Liu, Y. Attribution of Decadal Runoff Changes by Considering Remotely Sensed Snow/Ice Melt and Actual Evapotranspiration in Two Contrasting Watersheds in the Tienshan Mountains. J. Hydrol. 2022, 610, 127810. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Huang, G.; Ma, Y.; Zhang, Q.; Li, Y. Analyzing Variation of Water Inflow to Inland Lakes under Climate Change: Integrating Deep Learning and Time Series Data Mining. Environ. Res. 2024, 259, 119478. [Google Scholar] [CrossRef]
- Cui, T.; Li, Y.; Yang, L.; Nan, Y.; Li, K.; Tudaji, M.; Hu, H.; Long, D.; Shahid, M.; Mubeen, A.; et al. Non-Monotonic Changes in Asian Water Towers’ Streamflow at Increasing Warming Levels. Nat. Commun. 2023, 14, 1176. [Google Scholar] [CrossRef]
- Melaku, N.D.; Wang, J. A Modified SWAT Module for Estimating Groundwater Table at Lethbridge and Barons, Alberta, Canada. J. Hydrol. 2019, 575, 420–431. [Google Scholar] [CrossRef]
- Hassija, V.; Chamola, V.; Mahapatra, A.; Singal, A.; Goel, D.; Huang, K.; Scardapane, S.; Spinelli, I.; Mahmud, M.; Hussain, A. Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence. Cogn. Comput. 2024, 16, 45–74. [Google Scholar] [CrossRef]
- Arel-Bundock, V.; Greifer, N.; Heiss, A. How to Interpret Statistical Models Using Marginaleffects for R and Python. J. Stat. Softw. 2024, 111, 1–32. [Google Scholar] [CrossRef]
Hydrological Station | Previous Period | Subsequent Period |
---|---|---|
Yamadu | 1961–1979 | 2000–2008 |
Tuohai | 1961–1979 | - |
Wulasitai | 1961–1979 | 2000–2005 |
Qiafuqihai | 1961–1979 | 2000–2008 |
Jiefangdaqiao | - | 2006–2008 |
Indicators | SEGSWAT+ | GSWAT+ | ||||||
---|---|---|---|---|---|---|---|---|
Previous Period | Subsequent Period | Previous Period | Subsequent Period | |||||
Calibration | Validation | Calibration | Validation | Calibration | Validation | Calibration | Validation | |
r | 0.87 | 0.80 | 0.88 | 0.78 | 0.83 | 0.7 | 0.90 | 0.61 |
NSE | 0.79 | 0.77 | 0.88 | 0.83 | 0.87 | 0.71 | 0.84 | 0.77 |
KGE | 0.77 | 0.70 | 0.79 | 0.67 | 0.81 | 0.67 | 0.77 | 0.71 |
NRMSE | 0.21 | 0.24 | 0.17 | 0.28 | 0.19 | 0.27 | 0.20 | 0.31 |
APBIAS | 10.28 | 10.57 | 10.10 | 11.65 | 11.32 | 13.57 | 12.90 | 10.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Wu, J.; Gan, G.; Guo, R.; Zhang, H. Combining Physical Hydrological Model with Explainable Machine Learning Methods to Enhance Water Balance Assessment in Glacial River Basins. Water 2024, 16, 3699. https://doi.org/10.3390/w16243699
Yang R, Wu J, Gan G, Guo R, Zhang H. Combining Physical Hydrological Model with Explainable Machine Learning Methods to Enhance Water Balance Assessment in Glacial River Basins. Water. 2024; 16(24):3699. https://doi.org/10.3390/w16243699
Chicago/Turabian StyleYang, Ruibiao, Jinglu Wu, Guojing Gan, Ru Guo, and Hongliang Zhang. 2024. "Combining Physical Hydrological Model with Explainable Machine Learning Methods to Enhance Water Balance Assessment in Glacial River Basins" Water 16, no. 24: 3699. https://doi.org/10.3390/w16243699
APA StyleYang, R., Wu, J., Gan, G., Guo, R., & Zhang, H. (2024). Combining Physical Hydrological Model with Explainable Machine Learning Methods to Enhance Water Balance Assessment in Glacial River Basins. Water, 16(24), 3699. https://doi.org/10.3390/w16243699