Determinants of Irrigation Technology Adoption and Acreage Allocation in Crop Production in Louisiana, USA
Abstract
:1. Introduction
2. Survey and Data Description
3. Method
3.1. Irrigation Technology Adoption
3.2. Determinants of Acreage Allocation
4. Results and Discussion
4.1. Determinants of Irrigation Technology Adoption
4.2. Acreage Allocation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Soybean Irrigation Technology | ||
---|---|---|
Variable | Coefficient | Marginal Effect |
EDU | −1.011 ** | −0.231 *** |
(0.409) | (0.0882) | |
FARMREV | 0.0142 | 0.00324 |
(0.105) | (0.0239) | |
RISKD2 | −1.297 *** | −0.292 *** |
(0.403) | (0.0804) | |
RISKD3 | −0.913 ** | −0.198 ** |
(0.440) | (0.0906) | |
ENGC | 1.35 × 10−05 | 0.0000031 |
(1.58 × 10−05) | (0.0000035) | |
EXT | 0.465 | 0.106 |
(0.299) | (0.0683) | |
NBR | 0.635 ** | 0.145 ** |
(0.323) | (0.0701) | |
DISTEQP | −0.0228 | −0.00521 |
(0.0196) | (0.00429) | |
LASER | 0.685 ** | 0.156 ** |
(0.328) | (0.0700) | |
EDSP | 0.238 | 0.0543 |
(0.150) | (0.0350) | |
ACRE | 0.000247 * | 0.0000565 ** |
(0.00013) | (0.000030) | |
RENT | 0.714 ** | 0.163 ** |
(0.358) | (0.0803) | |
DISTOWN | −0.0373 * | −0.00853 * |
(0.0212) | (0.00490) | |
Constant | 0.920 | |
(1.160) |
Variable | Soybean Irrigation |
---|---|
Laser Leveling | First-Stage Coefficient |
EDU | 0.221 *** |
(0.0829) | |
FARMREV | 0.0294 |
(0.0237) | |
RISKD2 | −0.0409 |
(0.0991) | |
ENERGYC | 4.17 × 10−06 ** |
(1.79 × 10−06) | |
NBR | 0.0947 |
(0.0817) | |
EXT | 0.197 ** |
(0.0844) | |
ACRE | −2.28 × 10−05 |
(2.68 × 10−05) | |
RENT | 0.133 |
(0.0933) | |
DISTEQP | −0.00813 ** |
(0.00368) | |
Constant | 0.216 |
(0.287) |
References
- Brantly, J.A.; Seanor, R.C.; McCoy, K.L. Louisiana Ground-Water Map No. 13. Water-Resour. Investig. Rep. 2002, 2, 4053. [Google Scholar]
- Kasmarek, M.C.; Reece, B.D.; Houston, N.A. Evaluation of Groundwater Flow and Land-Surface Subsidence Caused by Hypothetical Withdrawals in the Northern Part of the Gulf Coast Aquifer System, Texas (No. 2005-5024); U.S. Geological Survey: Reston, VA, USA, 2005. [Google Scholar]
- Barlow, J.R.; Clark, B.R. Simulation of Water-Use Conservation Scenarios for the Mississippi Delta Using an Existing Regional Groundwater Flow Model; U.S. Department of the Interior, U.S. Geological Survey: Liston, VA, USA, 2011. [Google Scholar]
- Sargent, B.P. Water Use in Louisiana, 2010, Department of Transportation and Development, Water Resources Special Report No 17 (Revised). 2011. Available online: https://wise.er.usgs.gov/dp/pdfs/WaterUse2010.pdf (accessed on 8 January 2021).
- USDA. 2018 Irrigation and Water Management Survey. Volume 3, Special Studies, Part 1. 2018. Available online: https://www.nass.usda.gov/Publications/AgCensus/2017/Online_Resources/Farm_and_Ranch_Irrigation_Survey/fris.pdf (accessed on 8 January 2021).
- Amosson, S.; Almas, L.; Girase, J.R.; Kenny, N.; Guerrero, B.; Vimlesh, K.; Marek, T. Economics of Irrigation Systems. Texas A&M Agrilife Extension, College Station, TX, B-6113. 2011. Available online: https://aglifesciences.tamu.edu/baen/wp-content/uploads/sites/24/2017/01/B-6113-Economics-of-Irrigation-Systems.pdf (accessed on 8 January 2021).
- He, X.F.; Cao, H.; Li, F.M. Econometric analysis of the determinants of adoption of rainwater harvesting and supplementary irrigation technology (RHSIT) in the semiarid Loess Plateau of China. Agric. Water Manag. 2007, 89, 243–250. [Google Scholar] [CrossRef]
- Namara, R.E.; Nagar, R.K.; Upadhyay, B. Economics, adoption determinants, and impacts of micro-irrigation technologies: Empirical results from India. Irrig. Sci. 2007, 25, 283–297. [Google Scholar] [CrossRef]
- Feike, T.; Khor, L.Y.; Mamitimin, Y.; Ha, N.; Li, L.; Abdusalih, N.; Xio, H.; Doluschitz, R. Determinants of cotton farmers’ irrigation water management in arid Northwestern China. Agric. Water Manag. 2017, 187, 1–10. [Google Scholar] [CrossRef]
- Dai, X.; Chen, J.; Chen, D.; Han, Y. Factors affecting adoption of agricultural water-saving technologies in Heilongjiang Province, China. Water Policy 2015, 17, 581–594. [Google Scholar] [CrossRef]
- Song, J.; Guo, Y.; Wu, P.; Sun, S. The agricultural water rebound effect in China. Ecol. Econ. 2018, 146, 497–506. [Google Scholar] [CrossRef]
- Li, H.; Zhao, J. Rebound effects of new irrigation technologies: The role of water rights. Am. J. Agric. Econ. 2018, 100, 786–808. [Google Scholar] [CrossRef]
- Hunecke, C.; Engler, A.; Jara-Rojas, R.; Poortvliet, P.M. Understanding the role of social capital in adoption decisions: An application to irrigation technology. Agric. Syst. 2017, 153, 221–231. [Google Scholar] [CrossRef]
- Krishnan, P.; Patnam, M. Neighbors and extension agents in Ethiopia: Who matters more for technology adoption? Am. J. Agric. Econ. 2013, 96, 308–327. [Google Scholar] [CrossRef]
- Genius, M.; Koundouri, P.; Nauges, C.; Tzouvelekas, V. Information transmission in irrigation technology adoption and diffusion: Social learning, extension services, and spatial effects. Am. J. Agric. Econ. 2013, 96, 328–344. [Google Scholar] [CrossRef]
- Pfeiffer, L.; Lin, C.Y.C. Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence. J. Environ. Econ. Manag. 2014, 67, 189–208. [Google Scholar] [CrossRef]
- Segarra, E.; Feng, Y. Irrigation technology adoption in the Texas High Plains. Tex. J. Agric. Nat. Resour. 1994, 7, 71–84. [Google Scholar]
- Olen, B.; Wu, J.; Langpap, C. Irrigation decisions for major west coast crops: Water scarcity and climatic determinants. Am. J. Agric. Econ. 2016, 98, 254–275. [Google Scholar] [CrossRef]
- Ward, F.A. Economic impacts on irrigated agriculture of water conservation programs in drought. J. Hydrol. 2014, 508, 114–127. [Google Scholar] [CrossRef]
- Caswell, M.; Zilberman, D. The choices of irrigation technologies in California. Am. J. Agric. Econ. 1985, 67, 224–234. [Google Scholar] [CrossRef]
- Dridi, C.; Khanna, M. Irrigation technology adoption and gains from water trading under asymmetric information. Am. J. Agric. Econ. 2005, 87, 289–301. [Google Scholar] [CrossRef]
- Tolhurst, T.N.; Ker, A.P. On technological change in crop yields. Am. J. Agric. Econ. 2014, 97, 137–158. [Google Scholar] [CrossRef]
- Damania, R.; Berg, C.; Russ, J.; Federico Barra, A.; Nash, J.; Ali, R. Agricultural technology choice and transport. Am. J. Agric. Econ. 2016, 99, 265–284. [Google Scholar] [CrossRef]
- Koundouri, P.; Nauges, C.; Tzouvelekas, V. Technology adoption under production uncertainty: Theory and application to irrigation technology. Am. J. Agric. Econ. 2006, 88, 657–670. [Google Scholar] [CrossRef]
- Bryant, C.J.; Krutz, L.J.; Falconer, L.; Irby, J.T.; Henry, C.G.; Pringle, H.C.; Henry, M.E.; Roach, D.P.; Pickelmann, D.M.; Atwill, R.L.; et al. Irrigation Water Management Practices that Reduce Water Requirements for Mid-South Furrow-Irrigated Soybean. Crop. Forage Turfgrass Manag. 2017, 3, 1–7. [Google Scholar] [CrossRef]
- Huang, Q.; Xu, Y.; Kovacs, K.; West, G. Analysis of Factors that Influence the Use of Irrigation Technologies and Water Management Practices in Arkansas. J. Agric. Appl. Econ. 2017, 49, 159–185. [Google Scholar] [CrossRef]
- Dillman, D.A. Mail and Internet Surveys: The Tailored Design Method—2007 Update with New Internet, Visual, and Mixed-Mode Guide; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Greene, W.H. Econometric Analysis; Stern School of Business, New York University: New York, NY, USA, 2012. [Google Scholar]
- Papke, L.E.; Wooldridge, J.M. Econometric methods for fractional response variables with an application to 401 (k) plan participation rates. J. Appl. Econom. 1996, 11, 619–632. [Google Scholar] [CrossRef]
- Mullahy, J. Multivariate fractional regression estimation of econometric share models. J. Econom. Methods 2015, 4, 71–100. [Google Scholar] [CrossRef] [PubMed]
- Murteira, J.M.; Ramalho, J.J. Regression analysis of multivariate fractional data. Econom. Rev. 2016, 35, 515–552. [Google Scholar] [CrossRef]
- Paudel, K.P.; Pandit, M.; Hinson, R. Irrigation water sources and irrigation application methods used by U.S. plant nursery producers. Water Resour. Res. 2016, 52, 698–712. [Google Scholar] [CrossRef]
- Stock, J.H.; Wright, J.H.; Yogo, M. A survey of weak instruments and weak identification in generalized method of moments. J. Bus. Econ. Stat. 2002, 20, 518–529. [Google Scholar] [CrossRef]
- Toma, L.; Barnes, A.P.; Sutherland, L.A.; Thomson, S.; Burnett, F.; Mathews, K. Impact of information transfer on farmers’ uptake of innovative crop technologies: A structural equation model applied to survey data. J. Technol. Transf. 2018, 43, 864–881. [Google Scholar] [CrossRef]
- Angrist, J.D.; Pischke, J.S. Mostly Harmless Econometrics: An Empiricist’s Companion; Princeton University Press: Princeton, NJ, USA, 2008; p. 261. [Google Scholar]
- USDA Crop Acreage Data. Report. 2018. Available online: https://www.fsa.usda.gov/news-room/efoia/electronic-reading-room/frequently-requested-information/crop-acreage-data/index (accessed on 11 February 2021).
- Gautam, T.K.; Watkins, K.B. Irrigated Acreage Change and Groundwater Status in Eastern Arkansas. J. ASFMRA 2021, 17–28. [Google Scholar]
- Gautam, T.K. Three Essays on Irrigation Water Management in Louisiana Crop Production. LSU Doctoral Dissertations. 4893. 2019. Available online: https://digitalcommons.lsu.edu/gradschool_dissertations/4893 (accessed on 11 February 2021).
- Gautam, T.K.; Paudel, K.P.; Guidry, K.M. An evaluation of irrigation water use efficiency in crop production using a data envelopment analysis approach: A case of Louisiana, USA. Water 2020, 12, 3193. [Google Scholar] [CrossRef]
Variable | Variable Definition | Obs | Mean | SD |
---|---|---|---|---|
IRSOY | Soybean irrigation (furrow = 1, other = 0) | 242 | 0.455 | |
FRFLD | Fraction of flood irrigation | 242 | 0.092 | 0.675 |
FRFUR | Fraction of furrow irrigation | 242 | 0.392 | 0.915 |
FRCPV | Fraction of center-pivot irrigation | 242 | 0.066 | 0.136 |
FRNIR | Fraction of non-irrigated acres | 242 | 0.451 | 0.414 |
EDU2 | Farmers’ education (high school) | 232 | 0.328 | 0.470 |
EDU3 | Farmers’ education (some college degree) | 232 | 0.233 | 0.424 |
EDU4 | Farmers’ education (college degree) | 232 | 0.306 | 0.462 |
EDU5 | Farmers’ education (grad. or professional degree) | 232 | 0.091 | 0.288 |
FARMREV1 | Total farm revenue fraction (USD 0–100,000) | 226 | 0.518 | 0.501 |
FARMREV2 | Total farm revenue fraction (USD 100,000–500,000) | 226 | 0.261 | 0.440 |
RISKD2 | Risk aversion | 172 | 0.390 | 0.489 |
RISKD3 | Risk neutral | 172 | 0.378 | 0.486 |
ENGC | Total energy cost (in U.S. dollars) | 242 | 6218.66 | 14,793.62 |
EXPNC | Farming experience (in years) | 204 | 31.343 | 14.229 |
EXTS | Extension as information source (1,0) | 242 | 0.450 | |
NBRS | Neighbors as information source (1,0) | 242 | 0.240 | |
DSTED | Distance to equipment dealer (in miles) | 217 | 14.677 | 9.871 |
LASER | Laser leveling (1,0) | 221 | 0.407 | |
EDSP2 | Spouse education (high school) | 188 | 0.319 | 0.467 |
EDSP3 | Spouse education (some college degree) | 188 | 0.170 | 0.377 |
EDSP4 | Spouse education (college degree) | 188 | 0.324 | 0.469 |
EDSP5 | Spouse education (grad. or professional degree) | 188 | 0.165 | 0.372 |
ACRE | Total acres of land (land holding in acres) | 235 | 1395.85 | 2494.12 |
RENT | Status of rent (1,0) | 242 | 0.583 | |
DSTON | Distance to town (in miles) | 216 | 8.428 | 8.265 |
Dep. Variable | Soybean Irrigation Technology | |
---|---|---|
Furrow Irri. and Other (1,0) | Coefficient | Marginal Effect |
EDU | −0.447 ** | −0.4560 ** |
(0.231) | (0.242) | |
ENGC | 1.40 | − |
(1.07) | () | |
EXT | −0.165 | −0.1648 |
(0.284) | (0.2841) | |
NBR | 0.0949 | 0.0878 |
(0.254) | (0.260) | |
LASER | 2.149 *** | 2.1280 *** |
(0.267) | (0.260) | |
ACRE | * | 0.00012 * |
(7.5) | (0.00007) | |
RENT | 0.116 | 0.1160 |
(0.306) | (0.3060) | |
RISKD2 | −0.241 | −0.2414 |
(0.319) | (0.3180) | |
Observation | 162 |
Variable | Marginal Effect | Marginal Effect | Marginal Effect | Marginal Effect |
---|---|---|---|---|
Flood | Furrow | Center-Pivot | No Irrigation | |
EDU | 0.0292 | −0.0393 | −0.0709 ** | 0.0809 |
(0.0491) | (0.0687) | (0.0319) | (0.0710) | |
FARMREV | −0.0237 * | 0.0339 * | 0.0035 | −0.0137 |
(0.0139) | (0.0179) | (0.0088) | (0.0201) | |
RISKD2 | 0.0815 * | −0.2964 *** | −0.0440 | 0.2588 *** |
(0.0501) | (0.0837) | (0.0521) | (0.0770) | |
RISKD3 | 0.0623 | −0.2861 *** | −0.0603 * | 0.2841 *** |
(0.053) | (0.0821) | (0.0472) | (0.0769) | |
EXT | 0.0736 | 0.0925 | 0.0278 | −0.1940 *** |
(0.0525) | (0.0626) | (0.0331) | (0.0644) | |
NBR | 0.0381 | −0.0622 | 0.0253 | −0.0012 |
(0.0422) | (0.0663) | (0.0296) | (0.0647) | |
ELASER | −0.0118 | 1.0593 *** | −0.2098 * | −0.8376 *** |
(0.2264) | (0.2838) | (0.1169) | (0.3125) | |
EXPNC | −0.0037 ** | 0.0037 | 0.0020 | −0.0020 |
(0.0017) | (0.0027) | (0.0017) | (0.0028) | |
EDSP | 0.0481 ** | 0.0212 | 0.0025 | −0.0719 *** |
(0.0191) | (0.0272) | (0.0122) | (0.0277) | |
ACRE | −0.000007 | −0.00004 *** | 0.00002 *** | 0.00002 |
(0.00001) | (0.00002) | (0.00002) | (0.000015) | |
RENT | −0.1147 *** | 0.2288 *** | −0.0140 | 0.0703 |
(0.0429) | (0.0609) | (0.0286) | (0.0772) | |
Observation | 119 | 119 | 119 | 119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gautam, T.K.; Paudel, K.P.; Guidry, K.M. Determinants of Irrigation Technology Adoption and Acreage Allocation in Crop Production in Louisiana, USA. Water 2024, 16, 392. https://doi.org/10.3390/w16030392
Gautam TK, Paudel KP, Guidry KM. Determinants of Irrigation Technology Adoption and Acreage Allocation in Crop Production in Louisiana, USA. Water. 2024; 16(3):392. https://doi.org/10.3390/w16030392
Chicago/Turabian StyleGautam, Tej K., Krishna P. Paudel, and Kurt M. Guidry. 2024. "Determinants of Irrigation Technology Adoption and Acreage Allocation in Crop Production in Louisiana, USA" Water 16, no. 3: 392. https://doi.org/10.3390/w16030392
APA StyleGautam, T. K., Paudel, K. P., & Guidry, K. M. (2024). Determinants of Irrigation Technology Adoption and Acreage Allocation in Crop Production in Louisiana, USA. Water, 16(3), 392. https://doi.org/10.3390/w16030392