Short-Term Sediment Dispersal on a Large Retreating Coastal River Delta via 234Th and 7Be Sediment Geochronology: The Mississippi River Delta Front
Abstract
:1. Introduction
2. Methodology
2.1. Study Site
2.2. Evidence of Mass Failures and Triggering Mechanisms
2.3. Fieldwork and Core Sampling/Processing
2.3.1. Radionuclide Analysis
2.3.2. Grain Size Analysis
2.3.3. X-Radiography
2.4. Bed Shear Stress Estimation
3. Results
3.1. Radionuclide Analysis
3.2. Grain Size Analysis
3.3. X-Radiography
3.4. Bed Shear Stress Analysis
4. Discussion
- (1)
- Gullies and lobes receive more sediment because gravity flows develop during sediment deposition;
- (2)
- Wave-enhanced sediment gravity flows (WESGFs) occur with the resuspension of river-borne sediment [6];
- (3)
- The resuspension of sediment from undisturbed seafloor and ridges occurs due to higher bed shear stresses from waves, followed by preferential sediment deposition in gullies and deeper water sites with lower bed shear stresses.
5. Conclusions
- (1)
- Despite substantial reductions in the MR sediment load, our 7Be analysis shows the active sediment deposition of fluvially sourced sediment offshore from all three major outlets;
- (2)
- Our 7Be analysis shows that the core sites proximal to the river-mouth received the greatest amount of sediment and decreased offshore. SW Pass experienced the highest sediment deposition rates (0.2 cm/day on average), followed by PAL and S Pass;
- (3)
- The mudflow gully locations exhibit the highest sediment deposition rates, derived from our 7Be analysis, out of all of the environments studied (undisturbed upper foresets, mudflow gully, mudflow lobe and prodelta) across the entire sampling area;
- (4)
- Sediment focusing was determined at five core locations (one lobe and two gully sites off of SW Pass; one gully site off of S Pass; and one gully site off of PAL) based on theoretical 7Be inventories used by Corbett et al. (2004) [24];
- (5)
- The sediment deposition rates determined from the excess 234Th for sites PS17-02, PS17-03 and PS17-91 were double those determined from 7Be, suggesting a strong influence from waves and/or currents on the redistribution of sediment;
- (6)
- The X-radiograph analysis of the cores shows a general trend of increasing bioturbation present as the distance offshore increases, with core sites proximal to the river-mouth more likely to preserve bedding layers.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hampton, M.A.; Lee, H.J.; Locat, J. Submarine Landslides. Rev. Geophys. 1996, 34, 33–59. [Google Scholar] [CrossRef]
- Maloney, J.M.; Bentley, S.J.; Xu, K.; Obelcz, J.; Georgiou, I.Y.; Jafari, N.H.; Miner, M.D. Mass Wasting on the Mississippi River Subaqueous Delta. Earth-Sci. Rev. 2020, 200, 103001. [Google Scholar] [CrossRef]
- Henkel, D. The Role of Waves in Causing Submarine Landslides. Geotechnique 1970, 20, 75–80. [Google Scholar] [CrossRef]
- Wright, L.; Friedrichs, C.; Kim, S.; Scully, M. Effects of Ambient Currents and Waves on Gravity-Driven Sediment Transport on Continental Shelves. Mar. Geol. 2001, 175, 25–45. [Google Scholar] [CrossRef]
- Walsh, J.; Nittrouer, C. Understanding Fine-Grained River-Sediment Dispersal on Continental Margins. Mar. Geol. 2009, 263, 34–45. [Google Scholar] [CrossRef]
- Macquaker, J.H.S.; Bentley, S.J.; Bohacs, K.M. Wave-Enhanced Sediment-Gravity Flows and Mud Dispersal across Continental Shelves: Reappraising Sediment Transport Processes Operating in Ancient Mudstone Successions. Geology 2010, 38, 947–950. [Google Scholar] [CrossRef]
- Falcini, F.; Fagherazzi, S.; Jerolmack, D. Wave-Supported Sediment Gravity Flows Currents: Effects of Fluid-Induced Pressure Gradients and Flow Width Spreading. Cont. Shelf Res. 2012, 33, 37–50. [Google Scholar] [CrossRef]
- Puig, P.; Ogston, A.S.; Mullenbach, B.; Nittrouer, C.; Parsons, J.; Sternberg, R. Storm-induced Sediment Gravity Flows at the Head of the Eel Submarine Canyon, Northern California Margin. J. Geophys. Res. Oceans 2004, 109. [Google Scholar] [CrossRef]
- Coleman, J.M.; Prior, D.B. Subaqueous Sediment Instabilities in the Offshore Mississippi River Delta: Section 5. In CN 18: Offshore Geologic Hazards; Bureau of Land Management: New Orleans, LA, USA, 1981; Volume 87, pp. 1–53. [Google Scholar]
- Day, J.W.; Kemp, G.P.; Freeman, A.M.; Muth, D.P. Perspectives on the Restoration of the Mississippi Delta: The Once and Future Delta; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-94-017-8733-8. [Google Scholar]
- Coleman, J.M.; Suhayda, J.N.; Whelan, T.; Wright, L.D. Mass Movement of Mississippi River Delta Sediments. Gulf Coast Assoc. Geol. Soc. Trans. 1974, 24, 49–68. [Google Scholar]
- Prior, D.B.; Suhayda, J.N. Submarine Mudslide Morphology and Development Mechanisms, Mississippi Delta. In Proceedings of the Offshore Technology Conference, OnePetro, Houston, TX, USA, 30 April 1979. [Google Scholar]
- Coleman, J.M.; Prior, D.B. (Eds.) Characteristics of Deltaic Depositional Environments. In Deltaic Sand Bodies; American Association of Petroleum Geologists: Tulsa, OK, USA, 1980; Volume 15, ISBN 978-1-62981-182-6. [Google Scholar]
- Obelcz, J.; Xu, K.; Georgiou, I.Y.; Maloney, J.; Bentley, S.J.; Miner, M.D. Sub-Decadal Submarine Landslides Are Important Drivers of Deltaic Sediment Flux: Insights from the Mississippi River Delta Front. Geology 2017, 45, 703–706. [Google Scholar] [CrossRef]
- Maloney, J.M.; Bentley, S.J.; Xu, K.; Obelcz, J.; Georgiou, I.Y.; Miner, M.D. Mississippi River Subaqueous Delta Is Entering a Stage of Retrogradation. Mar. Geol. 2018, 400, 12–23. [Google Scholar] [CrossRef]
- Blum, M.D.; Roberts, H.H. Drowning of the Mississippi Delta Due to Insufficient Sediment Supply and Global Sea-Level Rise. Nat. Geosci. 2009, 2, 488–491. [Google Scholar] [CrossRef]
- Chaytor, J.D.; Baldwin, W.E.; Bentley, S.J.; Damour, M.; Jones, D.; Maloney, J.; Miner, M.D.; Obelcz, J.; Xu, K. Short- and Long-Term Movement of Mudflows of the Mississippi River Delta Front and Their Known and Potential Impacts on Oil and Gas Infrastructure. Geol. Soc. Lond. Spec. Publ. 2020, 500, 587–604. [Google Scholar] [CrossRef]
- Keller, G.; Bentley, S.J.; Georgiou, I.Y.; Maloney, J.; Miner, M.D.; Xu, K. River-Plume Sedimentation and 210Pb/7Be Seabed Delivery on the Mississippi River Delta Front. Geo-Mar. Lett. 2017, 37, 259–272. [Google Scholar] [CrossRef]
- BOEM Offshore Analysis of Seafloor Instability and Sediments (OASIS Partnership) with Applications to Offshore Safety and Marine Archaeology (GM-21-01). Available online: https://www.boem.gov/environment/gm-21-01 (accessed on 3 December 2023).
- Sterling, G.H.; Strohbeck, E. The Failure of the South Pass 70 “B” Platform Hurricane Camille. In Proceedings of the 5th Offshore Technology Conference OTC, Houston, TX, USA, 29 April–2 May 1973; p. OTC-1898. [Google Scholar]
- Bea, R.G. How Sea-Floor Slides Affect Offshore Structures. Oil Gas J. 1971, 69, 88–93. [Google Scholar]
- Murawski, S.A.; Hollander, D.J.; Gilbert, S.; Gracia, A. Deepwater Oil and Gas Production in the Gulf of Mexico and Related Global Trends. In Scenarios and Responses to Future Deep Oil Spills: Fighting the Next War; Murawski, S.A., Ainsworth, C.H., Gilbert, S., Hollander, D.J., Paris, C.B., Schlüter, M., Wetzel, D.L., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 16–32. ISBN 978-3-030-12963-7. [Google Scholar]
- Coleman, J.M. Dynamic Changes and Processes in the Mississippi River Delta. GSA Bull. 1988, 100, 999–1015. [Google Scholar] [CrossRef]
- Corbett, D.R.; McKee, B.; Duncan, D. An Evaluation of Mobile Mud Dynamics in the Mississippi River Deltaic Region. Mar. Geol. 2004, 209, 91–112. [Google Scholar] [CrossRef]
- Corbett, D.R.; Dail, M.; McKee, B. High-Frequency Time-Series of the Dynamic Sedimentation Processes on the Western Shelf of the Mississippi River Delta. Cont. Shelf Res. 2007, 27, 1600–1615. [Google Scholar] [CrossRef]
- Baldwin, W.E.; Ackerman, S.D.; Worley, C.R.; Danforth, W.W.; Chaytor, J.D. High-Resolution Geophysical Data Collected along the Mississippi River Delta Front Offshore of Southeastern Louisiana, U.S. Geological Survey Field Activity 2017-003-FA: U.S. Geological Survey Data Release, 2018. Available online: https://www.sciencebase.gov/catalog/item/5a8c4bcbe4b00f54eb44044c (accessed on 3 December 2023).
- Wright, L.; Nittrouer, C. Dispersal of River Sediments in Coastal Seas: Six Contrasting Cases. Estuaries 1995, 18, 494–508. [Google Scholar] [CrossRef]
- Puig, P.; Ogston, A.; Mullenbach, B.; Nittrouer, C.; Sternberg, R. Shelf-to-Canyon Sediment-Transport Processes on the Eel Continental Margin (Northern California). Mar. Geol. 2003, 193, 129–149. [Google Scholar] [CrossRef]
- Bentley, S.J.; Sheremet, A.; Jaeger, J.M. Event Sedimentation, Bioturbation, and Preserved Sedimentary Fabric: Field and Model Comparisons in Three Contrasting Marine Settings. Cont. Shelf Res. 2006, 26, 2108–2124. [Google Scholar] [CrossRef]
- Hitchcock, C.; Givler, R.; Angell, M.; Hooper, J. GIS-Based Assessment of Submarine Mudflow Hazard Offshore of the Mississippi Delta, Gulf of Mexico. In Submarine Mass Movements and Their Consequences; Mosher, D.C., Shipp, R.C., Moscardelli, L., Chaytor, J.D., Baxter, C.D.P., Lee, H.J., Urgeles, R., Eds.; Advances in Natural and Technological Hazards Research; Springer: Dordrecht, The Netherlands, 2010; pp. 353–364. ISBN 978-90-481-3071-9. [Google Scholar]
- Galloway, W.E. Process Framework for Describing the Morphologic and Stratigraphic Evolution of Deltaic Depositional Systems; Houston Geological Society: Houston, TX, USA, 1975; pp. 87–98. [Google Scholar]
- Blum, M.; Rahn, D.; Frederick, B.; Polanco, S. Land Loss in the Mississippi River Delta: Role of Subsidence, Global Sea-Level Rise, and Coupled Atmospheric and Oceanographic Processes. Glob. Planet. Chang. 2023, 222, 104048. [Google Scholar] [CrossRef]
- Meade, R.H.; Moody, J.A. Causes for the Decline of Suspended-sediment Discharge in the Mississippi River System, 1940–2007. Hydrol. Process. Int. J. 2010, 24, 35–49. [Google Scholar] [CrossRef]
- Allison, M.A.; Demas, C.R.; Ebersole, B.A.; Kleiss, B.A.; Little, C.D.; Meselhe, E.A.; Powell, N.J.; Pratt, T.C.; Vosburg, B.M. A Water and Sediment Budget for the Lower Mississippi–Atchafalaya River in Flood Years 2008–2010: Implications for Sediment Discharge to the Oceans and Coastal Restoration in Louisiana. J. Hydrol. 2012, 432–433, 84–97. [Google Scholar] [CrossRef]
- Milliman, J.D.; Meade, R.H. World-Wide Delivery of River Sediment to the Oceans. J. Geol. 1983, 91, 1–21. [Google Scholar] [CrossRef]
- Usace Beneficial Use of Dredged Material Disposal History Mississippi River, Baton Rouge to the Gulf of Mexico, LA Head of Passes Hopper Dredge Disposal Area. Available online: https://www.mvn.usace.army.mil/Portals/56/HDDA%20BU%20History%202015-2020.pdf (accessed on 3 December 2023).
- Allison, M.A.; Meselhe, E.A.; Kleiss, B.A.; Duffy, S.M. Impact of Water Loss on Sustainability of the Mississippi River Channel in Its Deltaic Reach. Hydrol. Process. 2023, 37, e15004. [Google Scholar] [CrossRef]
- Coleman, J.M.; Roberts, H.H.; Stone, G.W. Mississippi River Delta: An Overview. J. Coast Res. 1998, 14, 698–716. [Google Scholar]
- Patruno, S.; Helland-Hansen, W. Clinoforms and Clinoform Systems: Review and Dynamic Classification Scheme for Shorelines, Subaqueous Deltas, Shelf Edges and Continental Margins. Earth-Sci. Rev. 2018, 185, 202–233. [Google Scholar] [CrossRef]
- Nodine, M.C.; Cheon, J.Y.; Wright, S.G.; Gilbert, R.B. Mudslides during Hurricane Ivan and an Assessment of the Potential for Future Mudslides in the Gulf of Mexico; MMS Project Number 552; Offshore Technology Research Center: Austin, TX, USA, 2007. [Google Scholar]
- Courtois, A.J. A Regional Survey of River-Plume Sedimentation on the Mississippi River Delta Front. Master’s Thesis, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA, USA, 2018. [Google Scholar]
- Olsen, C.; Larsen, I.; Lowry, P.; Cutshall, N.; Nichols, M. Geochemistry and Deposition of 7Be in River-estuarine and Coastal Waters. J. Geophys. Res. Oceans 1986, 91, 896–908. [Google Scholar] [CrossRef]
- Young, D.R. Examination of the 2011 Mississippi River Flood Deposit on the Louisiana Continental Shelf; East Carolina University: Greenville, NC, USA, 2014; ISBN 1-321-18924-9. [Google Scholar]
- Cochran, J.K.; Masqué, P. Short-Lived U/Th Series Radionuclides in the Ocean: Tracers for Scavenging Rates, Export Fluxes and Particle Dynamics. Rev. Mineral. Geochem. 2003, 52, 461–492. [Google Scholar] [CrossRef]
- Muhammad, Z.; Bentley, S.J.; Febo, L.A.; Droxler, A.W.; Dickens, G.R.; Peterson, L.C.; Opdyke, B.N. Excess 210Pb Inventories and Fluxes along the Continental Slope and Basins of the Gulf of Papua. J. Geophys. Res. Earth Surf. 2008, 113. [Google Scholar] [CrossRef]
- Baskaran, M.; Coleman, C.H.; Santschi, P.H. Atmospheric Depositional Fluxes of 7Be and 210Pb at Galveston and College Station, Texas. J. Geophys. Res. Atmos. 1993, 98, 20555–20571. [Google Scholar] [CrossRef]
- Owens, S.; Buesseler, K.; Sims, K. Re-Evaluating the 238U-Salinity Relationship in Seawater: Implications for the 238U–234Th Disequilibrium Method. Mar. Chem. 2011, 127, 31–39. [Google Scholar] [CrossRef]
- Adhikari, P.L.; Maiti, K.; Overton, E.B.; Rosenheim, B.E.; Marx, B.D. Distributions and Accumulation Rates of Polycyclic Aromatic Hydrocarbons in the Northern Gulf of Mexico Sediments. Environ. Pollut. 2016, 212, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Lo, E.L.; Bentley, S.J.; Xu, K. Experimental Study of Cohesive Sediment Consolidation and Resuspension Identifies Approaches for Coastal Restoration: Lake Lery, Louisiana. Geo-Mar. Lett. 2014, 34, 499–509. [Google Scholar] [CrossRef]
- Xu, K.; Corbett, D.R.; Walsh, J.P.; Young, D.; Briggs, K.B.; Cartwright, G.M.; Friedrichs, C.T.; Harris, C.K.; Mickey, R.C.; Mitra, S. Seabed Erodibility Variations on the Louisiana Continental Shelf before and after the 2011 Mississippi River Flood. Estuar. Coast. Shelf Sci. 2014, 149, 283–293. [Google Scholar] [CrossRef]
- Soulsby, R. Dynamics of Marine Sands; Thomas Telford: Telford, UK, 1997. [Google Scholar]
- Wright, L.D. Morphodynamics of Inner Continental Shelves; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Xu, K.; Harris, C.K.; Hetland, R.D.; Kaihatu, J.M. Dispersal of Mississippi and Atchafalaya Sediment on the Texas–Louisiana Shelf: Model Estimates for the Year 1993. Cont. Shelf Res. 2011, 31, 1558–1575. [Google Scholar] [CrossRef]
- Sadler, P.M. Sediment Accumulation Rates and the Completeness of Stratigraphic Sections. J. Geol. 1981, 89, 569–584. [Google Scholar] [CrossRef]
- Wheatcroft, R.A. Preservation Potential of Sedimentary Event Layers. Geology 1990, 18, 843–845. [Google Scholar] [CrossRef]
- Moore, D.G.; Scruton, P.C. Minor Internal Structures of Some Recent Unconsolidated Sediments. AAPG Bull. 1957, 41, 2723–2751. [Google Scholar] [CrossRef]
- Coastal Protection and Restoration Authority of Louisiana. Louisiana’s Comprehensive Master Plan for a Sustainable Coast; Coastal Protection and Restoration Authority of Louisiana: Baton Rouge, LA, USA, 2023.
Core ID | Water Depth (m) | Distance from Pass (km) | Facies | 234Th Theoretical Inventory (dpm/cm2) | 234Thxs Core Inventory (dpm/cm2) | 234Thxs Penetration Depth (cm) | 234Thxs SDR (cm/Day) | SDR R2 |
---|---|---|---|---|---|---|---|---|
PS17-02 | 51 | 11 | gul | 5.78 | 33.7 | 12 ± 1 | 0.11 ± 0.01 | 0.98 |
PS17-03 | 60 | 13 | lob | 5.78 | 24.1 | 14 ± 1 | 0.06 ± 0.01 | 0.97 |
PS17-05 | 27 | 8 | gul | 5.78 | 44.4 | 18 ± 1 | N/A | N/A |
PS17-91 | 40 | 14 | gul | 18.32 | 79.5 | 18 ± 1 | 0.28 ± 0.07 | 0.77 |
Core ID | Water Depth (m) | Distance from Pass (km) | Facies | 7Be Theoretical Inventory (dpm/cm2) a | 7Be Theoretical Inventory (dpm/cm2) b | 7Be Core Inventory (dpm/cm2) | 7Be Penetration Depth (cm) | 7Be Surface Activity (dpm/g) | 7Be SDR (cm/Day) c | SDR R2 |
---|---|---|---|---|---|---|---|---|---|---|
PS17-01 | 31 | 9 | uuf | 14.7 | 5.4 | 3.91 | 4 ± 1 | 4.35 | 0.016 | 1 |
PS17-02 | 51 | 11 | gul | 14.7 | 5.4 | 9.15 | 10 ± 1 | 5.17 | 0.05 ± 0.01 | 0.97 |
PS17-03 | 60 | 13 | lob | 14.7 | 5.4 | 6.62 | 6 ± 1 | 7.22 | 0.03 ± 0.01 | 0.97 |
PS17-05 | 27 | 8 | gul | 14.7 | 5.4 | 37.6 | 26 ± 1 | N/D | 0.69 ± 0.79 | 0.08 |
PS17-20 | 187 | 18 | uuf | 14.7 | 5.4 | 0.66 | 2 ± 1 | 1.17 | N/D | N/D |
PS17-26 | 206 | 20 | uuf | 14.7 | 5.4 | 0.39 | 2 ± 1 | 0.98 | N/D | N/D |
PS17-32 | 258 | 23 | pro | 14.7 | 5.4 | N/D | N/D | N/D | N/D | N/D |
PS17-42 | 39 | 7 | gul | 14.7 | 5.4 | 13.2 | 22 ± 1 | 4.98 | 0.06 ± 0.01 | 0.9 |
PS17-91 | 40 | 14 | gul | 14.7 | 5.4 | 18.5 | 16 ± 1 | 4.82 | 0.12 ± 0.03 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Courtois, A.; Bentley, S.; Maloney, J.; Xu, K.; Chaytor, J.; Georgiou, I.Y.; Miner, M.D.; Obelcz, J.; Jafari, N.H.; Damour, M. Short-Term Sediment Dispersal on a Large Retreating Coastal River Delta via 234Th and 7Be Sediment Geochronology: The Mississippi River Delta Front. Water 2024, 16, 463. https://doi.org/10.3390/w16030463
Courtois A, Bentley S, Maloney J, Xu K, Chaytor J, Georgiou IY, Miner MD, Obelcz J, Jafari NH, Damour M. Short-Term Sediment Dispersal on a Large Retreating Coastal River Delta via 234Th and 7Be Sediment Geochronology: The Mississippi River Delta Front. Water. 2024; 16(3):463. https://doi.org/10.3390/w16030463
Chicago/Turabian StyleCourtois, Andrew, Samuel Bentley, Jillian Maloney, Kehui Xu, Jason Chaytor, Ioannis Y. Georgiou, Michael D. Miner, Jeffrey Obelcz, Navid H. Jafari, and Melanie Damour. 2024. "Short-Term Sediment Dispersal on a Large Retreating Coastal River Delta via 234Th and 7Be Sediment Geochronology: The Mississippi River Delta Front" Water 16, no. 3: 463. https://doi.org/10.3390/w16030463
APA StyleCourtois, A., Bentley, S., Maloney, J., Xu, K., Chaytor, J., Georgiou, I. Y., Miner, M. D., Obelcz, J., Jafari, N. H., & Damour, M. (2024). Short-Term Sediment Dispersal on a Large Retreating Coastal River Delta via 234Th and 7Be Sediment Geochronology: The Mississippi River Delta Front. Water, 16(3), 463. https://doi.org/10.3390/w16030463