Research on Water Resource Modeling Based on Machine Learning Technologies
Abstract
:1. Introduction
2. Overview of Machine Learning
2.1. Choosing the Right Method for Different Problems
2.2. Selection of Appropriate Assessment Methods for Different Issues
3. Application of Machine Learning for Water Resource Modeling
3.1. Precipitation Prediction
3.2. Flood Forecasting
Urban Waterlogging Prediction
3.3. Runoff Prediction
3.3.1. Medium- and Long-Term Runoff Prediction
3.3.2. Short Term Runoff Prediction
3.4. Soil Moisture Prediction
3.5. Evapotranspiration Prediction
3.6. Groundwater Level Prediction
3.7. Water Quality Prediction
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC (Accuracy) | AIC (Information Criterion) |
ANFIS (Adaptive Neuro-Fuzzy Inference System) | ANN (Artificial Neural Network) |
Advanced Very High-Resolution Radiometer (AVHRR) | AUC (Area Under Curve) |
Automatic Encoding Decoding (AED) | BP (Backpropagation) |
BBO (Biogeography-Based Optimization) | BIC (Bayesian Information Criterion) |
BID (Bidirectional) | BOD (Biochemical Oxygen Demand) |
Boruta (Boruta packing algorithm) | CNM (Complex Network Model) |
CNN (Convolutional neural network) | CVOA (Coronavirus Optimization Algorithm) |
DBI (Davies-Bouldin Index) | DEM (Digital Elevation Model) |
DI (Dunn) | DO (Dissolved Oxygen) |
DNN (Deep Neural Network) | DT (Decision Tree) |
EEMD (Ensemble Empirical Modal Decomposition) | ELM (Extreme Learning Model) |
ENKF (Ensemble Kalman Filter) | ET (Evaporation Volume) |
ET0 (Reference Crop Evaporation) | ExT (Extra Tree) |
FA (Firefly Algorithm) | FFBP (First-order Feed-Back Propagation) |
FMI (Fowlkes and Mallows Index) | GA (Genetic Algorithm) |
GBDT (Gradient Boosting Decision Tree) | GBM (Gradient Boosting Machine) |
GLM (Generalized Linear Model) | GNB (Gaussian Naïve Bayes) |
GP (Genetic Programming) | GRNN (General Regression Neural Network) |
GRU (Gated Recurrent Unit) | GWL (Groundwater Level) |
GWO (Gray Wolf Optimization) | GIS (Geographic Information System) |
Gradient Tree Boosting (GTB) | GBDT (Gradient Boosting Decision Tree) |
IWM (Integrated Watershed Management) | JC (Jaccard) |
KNN (K-Nearest Neighbors) | LDA (Linear Discriminant Analysis) |
LR (Logistic Regression) | LSTM (Long Short-Term Memory) |
MAE (Mean Absolute Error) | MCC (Matthews Correlation Coefficient) |
MIM (Morphological Inundation Models) | MLR (Multiple Linear Regression) |
MRE (Mean Relative Error) | MSE (Mean Squared Error) |
MVMD (Multivariate Variable Pattern Decomposition) | NMRSE (Normalized Root Mean Square Error) |
NSE (Nash–Sutcliffe Efficiency Coefficient) | NDVI (Normalised Vegetation Index) |
PSO (Particle Swarm Optimization) | QPE (Quantitative Precipitation Estimation) |
RF (Randomforest) | RI (Rand Index) |
RMSE (Root Mean Squared Error) | RNN (Recurrent Neural Network) |
ROM (Reduced Order Model) | SMLR (Stepwise Multiple Linear Regression) |
Sn (Sensitivity) | SOM (Self-Organizing Map) |
SONN (Second-order Neural Network) | Sp (Specificity) |
SVM (Support Vector Machine) | SVR (Support Vector Regression) |
TCN (Time Convolutional Neural Networks) | TLBO (Teaching-Learning-Based Optimization) |
TDS (Total Dissolved Solids) | TPOT (Tree-based Pipeline Optimization) |
TRMM (Tropical Rainfall Measuring Mission) | WNB (Weighted Native Bayes) |
WQI (Water Quality Index) | WT (Wavelet Transform) |
XGB (Extreme Gradient Boosting) |
References
- Ren, J.; Zhao, D. Recent Advances in Reticular Chemistry for Clean Energy, Global Warming, and Water Shortage Solutions. Adv. Funct. Mater. 2023, 5, 2307778. [Google Scholar] [CrossRef]
- Gharib, A.A.; Blumberg, J.; Manning, D.T.; Goemans, C.; Arabi, M. Assessment of vulnerability to water shortage in semi-arid river basins: The value of demand reduction and storage capacity. Sci. Total. Environ. 2023, 871, 161964. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, P.; Zhang, S.; Wang, W.Y.; Cai, Y.; Hu, S. Evaluation of water resource carrying capacity in the middle reaches of the Yangtze River Basin using the variable fuzzy-based method. Environ. Sci. Pollut. Res. 2022, 30, 30572–30587. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Han, Y.; Liu, B.; Li, H.; Du, X.; Wang, Q.; Wang, X.; Zhu, X. Construction and application of a refined model for the optimal allocation of water resources—Taking Guantao County, China as an example. Ecol. Indic. 2023, 146, 109929. [Google Scholar] [CrossRef]
- Li, Z.; Liu, H. Temporal and spatial variations of precipitation change from Southeast to Northwest China during the period 1961–2017. Water 2020, 12, 2622. [Google Scholar] [CrossRef]
- Guo, Y.; Shen, Y. Agricultural water supply/demand changes under projected future climate change in the arid region of northwestern China. J. Hydrol. 2016, 540, 257–273. [Google Scholar] [CrossRef]
- Zhang, Y.; Khan, S.U.; Swallow, B.; Liu, W.; Zhao, M. Coupling coordination analysis of China’s water resources utilization efficiency and economic development level. J. Clean. Prod. 2022, 373, 133874. [Google Scholar] [CrossRef]
- Zhang, H.; Jin, G.; Yu, Y. Review of river basin water resource management in China. Water 2018, 10, 425. [Google Scholar] [CrossRef]
- Lin, L.; Yang, H.; Xu, X. Effects of water pollution on human health and disease heterogeneity: A review. Front. Environ. Sci. 2022, 10, 880246. [Google Scholar] [CrossRef]
- Makanda, K.; Nzama, S.; Kanyerere, T. Assessing the role of water resources protection practice for sustainable water resources management: A review. Water 2022, 14, 3153. [Google Scholar] [CrossRef]
- Loucks, D.P. Sustainable water resources management. Water Int. 2000, 25, 3–10. [Google Scholar] [CrossRef]
- Vorosmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Zheng, Y.; Wu, X.; Tian, Y.; Han, F.; Liu, J.; Zheng, C.B. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach. Water Resour. Res. 2015, 51, 2153–2173. [Google Scholar] [CrossRef]
- Wang, J.; Shi, P.; Jiang, P.; Hu, J.; Qu, S.; Chen, X.; Chen, Y.; Dai, Y.; Xiao, Z. Application of BP neural network algorithm in traditional hydrological model for flood forecasting. Water 2017, 9, 48. [Google Scholar] [CrossRef]
- Shen, H.; Tolson, B.A.; Mai, J. Time to update the split-sample approach in hydrological model calibration. Water Resour. Res. 2022, 58, e2021WR031523. [Google Scholar] [CrossRef]
- Rani, K.S.; Kumari, M.; Singh, V.B.; Sharma, M. Deep learning with big data: An emerging trend. In Proceedings of the 2019 19th International Conference on Computational Science and Its Applications (ICCSA), Saint Petersburg, Russia, July 1–4 2019; pp. 93–101. [Google Scholar]
- Anjum, R.; Parvin, F.; Ali, S.A. Machine Learning Applications in Sustainable Water Resource Management: A Systematic Review. In Emerging Technologies for Water Supply, Conservation and Management Springer Water; Springer: Cham, Switzerland, 2023; pp. 29–47. [Google Scholar]
- Mekanik, F.; Imteaz, M.A.; Gato-Trinidad, S.; Elmahdi, A. Multiple regression and artificial neural network for long-term rainfall forecasting using large scale climate modes. J. Hydrol. 2013, 503, 11–21. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, F. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Uc-Castillo, J.L.; Marín-Celestino, A.E.; Martínez-Cruz, D.A.; Tuxpan-Vargas, J.; Ramos-Leal, J.A. A systematic review and meta-analysis of groundwater level forecasting with machine learning techniques: Current status and future directions. Environ. Model. Softw. 2023, 168, 5788. [Google Scholar] [CrossRef]
- Arrighi, C.; Castelli, F. Prediction of ecological status of surface water bodies with supervised machine learning classifiers. Sci. Total Environ. 2023, 857, 159655. [Google Scholar] [CrossRef]
- Ghobadi, F.; Kang, D. Application of Machine Learning in Water Resources Management: A Systematic Literature Review. Water 2023, 15, 620. [Google Scholar] [CrossRef]
- Mosaffa, H.; Sadeghi, M.; Mallakpour, I.; Jahromi, M.N.; Pourghasemi, H.R. Chapter 43-Application of machine learning algorithms in hydrology. Comput. Earth Environ. Sci. 2022, 2–3, 585–591. [Google Scholar]
- Zounemat-Kermani, M.; Batelaan, O.; Fadaee, M.; Hinkelmann, R. Ensemble machine learning paradigms in hydrology: A review. J. Hydrol. 2021, 598, 126266. [Google Scholar] [CrossRef]
- Başağaoğlu, H.; Chakraborty, D.; Lago, C.D.; Gutierrez, L.; Şahinli, M.A.; Giacomoni, M.; Furl, C.; Mirchi, A.; Moriasi, D.; Şengör, S.S. A Review on Interpretable and Explainable Artificial Intelligence in Hydroclimatic Applications. Water 2022, 14, 1230. [Google Scholar] [CrossRef]
- Collins, C.; Dennehy, D.; Conboy, K.; Mikalef, P. Artificial Intelligence in Information Systems Research: A Systematic Literature Review and Research Agenda. Int. J. Inf. Manag. 2021, 60, 102383. [Google Scholar] [CrossRef]
- Tufail, S.; Riggs, H.; Tariq, M.; Sarwat, A.I. Advancements and Challenges in Machine Learning: A Comprehensive Review of Models, Libraries, Applications, and Algorithms. Electronics 2023, 12, 1789. [Google Scholar] [CrossRef]
- Jain, A.K.; Murty, M.N.; Flynn, P. Data Clustering: A Review. ACM Comput. Surv. 1999, 31, 264–323. [Google Scholar] [CrossRef]
- Nasteski, V. An Overview of the Supervised Machine Learning Methods. Horizons. B. 2017, 4, 51–62. [Google Scholar] [CrossRef]
- Frénay, B.; Verleysen, M. Classification in the Presence of Label Noise: A Survey. IEEE Trans. Neural Netw. Learn. Syst. 2013, 25, 845–869. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y. Identification and Estimation of Nonlinear Models with Misclassification Error Using Instrumental Variables: A General Solution. J. Econom. 2008, 144, 27–61. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. Nonlinear Problems via a Convergence Accelerated Decomposition Method of Adomian. Comput. Model. Eng. Sci. 2021, 127, 1. [Google Scholar] [CrossRef]
- Raschka, S. Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning. arXiv 2018, arXiv:1811.12808. [Google Scholar]
- Zhou, Z.H. Machine Learning, 1st ed.; Tsinghua University Press: Beijing, China, 2016. [Google Scholar]
- Yadav, S.; Shukla, S. Analysis of k-Fold Cross-Validation over Hold-Out Validation on Colossal Datasets for Quality Classification. In Proceedings of the 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 27–28 February 2016; pp. 78–83. [Google Scholar]
- Rahman, A.-U.; Abbas, S.; Gollapalli, M.; Ahmed, R.; Aftab, S.; Ahmad, M.; Khan, M.A.; Mosavi, A. Rainfall Prediction System Using Machine Learning Fusion for Smart Cities. Sensors 2022, 22, 3504. [Google Scholar] [CrossRef] [PubMed]
- Salaeh, N.S.; Ditthakit, S.; Pinthong, M.A.; Islam, S.M.; Mohammadi, B.; Linh, N.T. Long-Short Term Memory Technique for Monthly Rainfall Prediction in Thale Sap Songkhla River Basin, Thailand. Symmetry 2022, 14, 1599. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, J. Analysis and prediction of spatial characteristics of precipitation based on ARIMA model. Jiangxi Sci. 2021, 39, 99–104. [Google Scholar]
- Wang, B.; Liang, X.J.; Zhang, H.; Wang, L.; Wei, Y. Vulnerability of hydropower generation to climate change in China: Results based on grey forecasting model. Energy Policy 2014, 65, 701–707. [Google Scholar] [CrossRef]
- Gui, Y.; Shao, J. Prediction of precipitation based on weighted Markov chain in Dangshan. In Proceedings of the International Conference on High Performance Compilation. Computing and Communications, Kuala Lumpur, Malaysia, 22–24 March 2017; pp. 81–85. [Google Scholar]
- Dimri, A.P.; Joshi, P.; Ganju, A. Precipitation forecast over western Himalayas using k-nearest neighbour method. Int. J. Climatol. J. R. Meteorol. Soc. 2008, 28, 1921–1931. [Google Scholar] [CrossRef]
- Ghazvinian, H.; Bahrami, H.; Ghazvinian, H.; Heddam, S. Simulation of monthly precipitation in Semnan city using ANN artificial intelligence model. J. Soft Comput. Civ. Eng. 2020, 4, 36–46. [Google Scholar]
- Wolfensberger, D.; Gabella, M.; Boscacci, M.; Germann, U.; Berne, A. Rainforest: A random forest algorithm for quantitative precipitation estimation over Switzerland. Atmos. Meas. Tech. 2021, 14, 3169–3193. [Google Scholar] [CrossRef]
- Umirbekov, A.; Peña-Guerrero, M.D.; Müller, D. Regionalization of climate teleconnections across central Asian mountains improves the predictability of seasonal precipitation. Environ. Res. Lett. 2022, 17, 055002. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, A.; Samui, P.; Jha, R.K. Forecasting monthly precipitation using sequential modelling. Hydrol. Sci. J. 2019, 64, 690–700. [Google Scholar] [CrossRef]
- Shen, Z.Y.; Ban, W.C. Machine learning model combined with CEEMDAN algorithm for monthly precipitation prediction. Earth Sci. Inform. 2023, 16, 1821–1833. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Zhao, D.; Wang, T.; Wu, X.L.; Duan, B.S. A novel rainfall prediction model based on CEEMDAN-PSO-ELM coupled model. Water Supply 2022, 22, 4531–4543. [Google Scholar] [CrossRef]
- Bi, K.; Xie, L.; Zhang, H.; Chen, X.; Gu, X.; Tian, Q. Accurate medium-range global weather forecasting with 3D neural networks. Nature 2023, 619, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Hao, G.; Li, J.; Song, L.; Li, H.E.; Li, Z.L. Comparison between the TOPMODEL and the Xin’anjiang model and their application to rainfall runoff simulation in semi-humid regions. Environ. Earth Sci. 2018, 77, 279. [Google Scholar] [CrossRef]
- Le, X.H.; Ho, H.V.; Lee, G.; Jung, S. Application of Long Short-Term Memory (LSTM)Neural Network for Flood Forecasting. Water 2019, 11, 1387. [Google Scholar] [CrossRef]
- Rezaeianzadeh, M.; Tabari, H.; Arabi Yazdi, A.; Lsik, S.; Kalin, L. Flood flow forecasting using ANN, ANFIS and regression models. Neural Comput. Appl. 2014, 25, 25–37. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, Y.; Shao, Y.; Zhang, X.F.; Yuan, X.F. Deep learning in different remote sensing image categories and applications: Status and prospects. Int. J. Remote Sens. 2022, 43, 1800–1847. [Google Scholar] [CrossRef]
- Xu, J.H.; Lin, Z.M. Application of multiple linear regression method in short-term flood forecasting. J. China Hydrol. 1981, 6, 5–8. [Google Scholar]
- Zhang, X.Y.; Dong, Z.C.; Wang, J.Q.; Zhao, J.X. Method of flood forecasting for Niyang River Basin of Yarlungzangbo River. J. Hohai Univ. 2005, 5, 530–533. [Google Scholar]
- Latt, Z.Z.; Wittenberg, H. Improving flood forecasting in a developing country: A comparative study of stepwise multiple linear regression and artificial neural network. Water Resour. Manag. 2014, 28, 2109–2128. [Google Scholar] [CrossRef]
- Jain, S.K.; Das, A.; Srivastava, D.K. Application of ANN for reservoir inflow prediction and operation. J. Water Resour. Plan. Manag. 1999, 125, 263–271. [Google Scholar] [CrossRef]
- Hsu, K.L.; Gupta, H.V.; Sorooshian, S. Artificial neural network modeling of the rainfall: Runoff process. Water Resour. Res. 1995, 31, 2517–2530. [Google Scholar] [CrossRef]
- Liong, S.Y.; Sivapragasam, C. Flood stage forecasting with support vector machines. JAWRA J. Am. Water Resour. Assoc. 2007, 38, 173–186. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Chen, S.T. Real-time probabilistic flood forecasting using multiple machine learning methods. Water 2020, 12, 787. [Google Scholar] [CrossRef]
- Lohani, A.K.; Kumar, R.; Singh, R.D. Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques. J. Hydrol. 2012, 442–443, 23–35. [Google Scholar] [CrossRef]
- Li, B.; Yang, G.; Wan, R.; Dai, X.; Zhang, Y.H. Comparison of random forests and other statistical methods for the prediction of lake water level: A case study of the Poyang Lake in China. Hydrol. Res. 2016, 47, 69–83. [Google Scholar] [CrossRef]
- Kabir, S.R.; Patidar, S.; Xia, X. A deep convolutional neural network model for rapid prediction of fluvial flood inundation. J. Hydrol. 2020, 590, 125481. [Google Scholar] [CrossRef]
- Hosseiny, H. A deep learning model for predicting river flood depth and extent. Environ. Model. Softw. 2021, 145, 105186. [Google Scholar] [CrossRef]
- Hu, R.; Fang, F.; Pain, C.C. Rapid spatio-temporal flood prediction and uncertainty quantification using a deep learning method. J. Hydrol. 2019, 575, 911–920. [Google Scholar] [CrossRef]
- Moshe, Z.; Metzger, A.; Elidan, G.; Kratzert, F. HydroNets: Leveraging River Structure for Hydrologic Modeling. arXiv 2020, arXiv:2007.00595. [Google Scholar]
- Shu, Z.K.; Li, W.X.; Zhang, J.Y.; Jin, J.L.; Xue, Q.; Wang, Y.T.; Wang, G.Q. Historical changes and future trends of extreme precipitation and high temperature in China. Strateg. Study CAE 2022, 24, 116–125. [Google Scholar] [CrossRef]
- Zhang, W.; Li, S.M.; Shi, Z.N. Causes and countermeasures of urban rainstorm waterlogging in China. J. Nat. Disasters 2012, 21, 180–184. [Google Scholar]
- Xia, J.; Wang, H.J.; Gan, Y.Y.; Zhang, L.P. Research progress in forecasting methods of rainstorm and flood disaster in China. Torrential Rain Disasters 2019, 38, 416–421. [Google Scholar]
- Krupka, M. A Rapid Inundation Flood Cell Model for Flood Risk Analysis; Heriot-Watt University: Edinburgh, UK, 2009. [Google Scholar]
- Zhang, S.; Pan, B. An urban storm-inundation simulation method based on GIS. J. Hydrol. 2014, 517, 260–268. [Google Scholar] [CrossRef]
- Huang, G.R.; Wang, X.; Huang, W. Simulation of rainstorm water logging in urban area based on InfoWorks ICM Model. Water Resour. Power 2017, 35, 66–70. [Google Scholar]
- Zeng, Z.Y.; Wang, Z.L.; Wu, X.S.; Lai, C.G.; Chen, X.H. Rainstorm waterlogging simulations based on SWMM and LISFLOOD models. J. Hydroelectr. Eng. 2017, 36, 68–77. [Google Scholar]
- Leitão, J.P.; Simões, N.E.; Simões, N.E.; Maksimović, Č.; Ferreira, F.; Prodanović, D.; Matos, J.S.; Marques, A. Real-time forecasting urban drainage models: Full or simplified networks? Water Sci. Technol. 2010, 62, 2106–2114. [Google Scholar] [CrossRef]
- Guo, Z.; Leitao, J.P.; Simoes, N.E.; Moosavi, V. Data-driven flood emulation: Speeding up urban flood predictions by deep convolutional neural networks. J. Flood Risk Manag. 2020, 14, 12684. [Google Scholar] [CrossRef]
- Zheng, S.S.; Wan, Q.; Jia, M.Y. Short-term forecasting of waterlogging at urban storm-waterlogging monitoring sites based on STARMA model. Prog. Geogr. 2014, 33, 949–957. [Google Scholar]
- Lai, W.; Wang, H.; Wang, C.; Zhang, J.; Zhao, Y. Waterlogging risk assessment based on self-organizing map (SOM) artificial neural networks: A case study of an urban storm in Beijing. J. Mt. Sci. 2017, 14, 898–905. [Google Scholar] [CrossRef]
- Yan, J.; Jin, J.M.; Chen, F.R.; Yu, G.; Yin, H.L.; Wang, W.J. Urban flash flood forecast using support vector machine and numerical simulation. J. Hydroinformatics 2018, 20, 221–231. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, Y.H.; Wang, H.L. Real-time prediction of the water accumulation process of urban stormy accumulation points based on deep learning. IEEE Access 2020, 8, 151938–151951. [Google Scholar] [CrossRef]
- Li, H.H.; Wu, J.D.; Wang, Q.; Yang, C.; Pan, S. A study on rain storm waterlogging disater prediction models in ShangHai based on machine learning. J. Nat. Disaters 2021, 30, 191–200. [Google Scholar]
- Wang, M.; Fu, X.; Zhang, D.; Lou, S.W.; Li, J.J.; Chen, F.R.; Li, S.; Tan, S.K. Urban agglomeration waterlogging hazard exposure assessment based on an integrated Naive Bayes classifier and complex network analysis. Nat. Hazards 2023, 118, 2173–2197. [Google Scholar] [CrossRef]
- Kim, H.I.; Han, K.Y. Data-driven approach for the rapid simulation of urban flood prediction. KSCE J. Civ. Eng. 2020, 24, 1932–1943. [Google Scholar] [CrossRef]
- Hou, J.M.; Zhou, N.; Chen, G.; Huang, M.S.; Bai, G.B. Rapid forecasting of urban flood inundation using multiple machine learning models. Nat. Hazards 2021, 108, 2335–2356. [Google Scholar] [CrossRef]
- Milly, P.; Dunne, K.; Vecchia, A. Global pattern of trends in streamflow and water availability in a changing climate. Nature 2005, 438, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Kratzert, F.; Klotz, D.; Herrnegger, M.; Sampson, A.K.; Hochreiter, S.; Nearing, G.S. Toward improved predictions in ungauged basins: Exploiting the power of machine learning. Water Resour. Res. 2019, 55, 11344–11354. [Google Scholar] [CrossRef]
- Fang, J.J.; Yang, L.; Wen, X.H.; Li, W.; Yu, H.; Zhou, T. A deep learning-based hybrid approach for multi-time-ahead streamflow prediction in an arid region of Northwest China. Hydrol. Res. 2024, nh2024124. [Google Scholar] [CrossRef]
- Liu, J.; Ren, K.; Ming, K.; Qu, J.; Guo, W.; Li, H. Investigating the efects of local weather, streamfow lag, and global climate information on 1-month-ahead streamfow forecasting by using XGBoost and SHAP: Two case studies involving the contiguous USA. Acta Geophys. 2023, 71, 905–925. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, Z.; Wang, D.; Wu, J.; Chen, L. An ensemble CNN-LSTM and GRU adaptive weighting model based improved sparrow search algorithm for predicting runoff using historical meteorological and runoff data as input. J. Hydrol. 2023, 625, 129977. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Yang, L.; Liu, X.; Wang, L. Runoff Prediction and Analysis Based on Improved CEEMDAN-OS-QR-ELM. IEEE Access 2021, 9, 57311–57324. [Google Scholar] [CrossRef]
- Yang, M.X.; Wang, H.; Jiang, Y.; Lu, X.; Xu, Z.; Sun, G. GECA Proposed Ensemble–KNN Method for Improved Monthly Runoff Forecasting. Water Resour. Manag. 2020, 34, 849–863. [Google Scholar] [CrossRef]
- Ghumman, A.R.; Ghazaw, Y.M.; Sohail, A.R.; Watanabe, K. Runoff forecasting by artificial neural network and conventional model. Alex. Eng. J. 2011, 50, 345–350. [Google Scholar] [CrossRef]
- Tan, Q.F.; Lei, X.H.; Wang, X.; Wang, H.; Wen, X.; Ji, Y.; Kang, A.Q. An adaptive middle and long-term runoff forecast model using EEMD-ANN hybrid approach. J. Hydrol. 2018, 567, 767–780. [Google Scholar] [CrossRef]
- Liao, S.L.; Wang, H.; Liu, B.X.; Ma, X.; Zhou, B.; Su, H. Runoff Forecast Model Based on an EEMD-ANN and Meteorological Factors Using a Multicore Parallel Algorithm. Water Resour. Manag. 2023, 37, 1539–1555. [Google Scholar] [CrossRef]
- Han, D.Y.; Liu, P.; Xie, K.; Li, H.; Xia, Q.; Cheng, Q.; Xia, J. An attention-based LSTM model for long-term runoff forecasting and factor recognition. Environ. Res. Lett. 2023, 18, 024004. [Google Scholar] [CrossRef]
- Zealand, C.M.; Burn, D.H.; Simonovic, S.P. Short term streamflow forecasting using artificial neural networks. J. Hydrol. 1999, 214, 32–48. [Google Scholar] [CrossRef]
- Hu, C.H.; Wu, Q.; Li, H.; Jian, S.; Li, N.; Lou, Z. Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Runoff Simulation. Water 2018, 10, 1543. [Google Scholar] [CrossRef]
- Gao, S.; Huang, Y.; Zhang, S.; Han, J.; Wang, G.; Zhang, M.; Lin, Q. Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation. J. Hydrol. 2020, 589, 125188. [Google Scholar] [CrossRef]
- Naganna, S.R.; Sreedhara, B.; Muttana, S.; Marulasiddappa, S.B.; Balreddy, M.S.; Yaseen, Z.M. Daily scale streamflow forecasting in multiple stream orders of Cauvery River, India: Application of advanced ensemble and deep learning models. J. Hydrol. 2023, 626, 130320. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, H.; Zhang, X.; Leung, L.R.; Liu, C.; Zheng, C.; Blöschl, G. Future global streamflow declines are probably more severe than previously estimated. Nat. Water 2023, 1, 261–271. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Chakraborty, D.; Başağaoğlu, H.; Alian, S.; Mirchi, A.; Moriasi, D.N.; Starks, P.J.; Verser, J.A. Multiscale extrapolative learning algorithm for predictive soil moisture modeling & applications. Expert Syst. Appl. 2023, 213, 119056. [Google Scholar]
- Cai, Y.; Zheng, W.G.; Zhang, X.; Zhangzhong, L.; Xue, X. Research on soil moisture prediction model based on deep learning. PLoS ONE 2019, 14, e0214508. [Google Scholar] [CrossRef] [PubMed]
- Western, A.W.; Grayson, R.B.; Blöschl, G. Scaling of Soil Moisture: A Hydrologic Perspective. Annu. Rev. Earth Planet. Sci. 2002, 30, 149–180. [Google Scholar] [CrossRef]
- Freeze, R.A.; Harlan, R.L. Blueprint for a physically-based, digitally-simulated hydrologic response model. J. Hydrol. 1969, 9, 237–258. [Google Scholar] [CrossRef]
- Elshorbagy, A.; Corzo, G.; Srinivasulu, S.; Solomatine, D.P. Experimental investigation of the predictive capabilities of data-driven modeling techniques in hydrology—Part 1: Concepts and methodology. Hydrol. Earth Syst. Sci. 2010, 14, 1931–1941. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Chai, S.S.; Walker, J.P.; Makarynskyy, O.; Kuhn, M.; Veenendaal, B.; West, G. Use of Soil Moisture Variability in Artificial Neural Network Retrieval of Soil Moisture. Remote Sens. 2009, 2, 166–190. [Google Scholar] [CrossRef]
- Ahmad, S.; Kalra, A.; Stephen, H. Estimating soil moisture using remote sensing data: A machine learning approach. Adv. Water Resour. 2010, 33, 69–80. [Google Scholar] [CrossRef]
- Das, N.N.; Mohanty, B.P. Root Zone Soil Moisture Assessment Using Remote Sensing and Vadose Zone Modeling. Vadose Zone J. 2006, 5, 296–307. [Google Scholar] [CrossRef]
- Kumar, S.V.; Reichle, R.H.; Peters-Lidard, C.D.; Koster, R.D.; Zhan, X.; Crow, W.T.; Houser, P.R. A land surface data assimilation framework using the land information system: Description and applications. Adv. Water Resour. 2008, 31, 1419–1432. [Google Scholar] [CrossRef]
- Chen, W.; Huang, C.; Shen, H.; Li, X. Comparison of ensemble-based state and parameter estimation methods for soil moisture data assimilation. Adv. Water Resour. 2015, 86, 425–438. [Google Scholar] [CrossRef]
- Liu, D.; Yu, Z.B.; Liu, H.S. Data assimilation using support vector machines and ensemble Kalman filter for multi-layer soil moisture prediction. Water Sci. Eng. 2010, 3, 361–377. [Google Scholar]
- Elsaadani, M.; Habib, E.; Abdelhameed, A.M.; Bayoumi, M. Assessment of a Spatiotemporal Deep Learning Approach for Soil Moisture Prediction and Filling the Gaps in Between Soil Moisture Observations. Front. Artif. Intell. 2021, 4, 636234. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Qiu, H.; Lan, Y.; Wang, W.; Chen, W.; Han, X.; Lu, J. Modeling for the Prediction of Soil Moisture in Litchi Orchard with Deep Long Short-Term Memory. Agriculture 2022, 12, 25. [Google Scholar] [CrossRef]
- Datta, P.K.; Salah, F.A. A Multihead LSTM Technique for Prognostic Prediction of Soil Moisture. Geoderma 2023, 433, 116452. [Google Scholar] [CrossRef]
- Adamowski, J.; Fung Chan, H.; Prasher, S.O.; Ozga-Zielinski, B.; Sliusarieva, A. Comparison of Multiple Linear and Nonlinear Regression, Autoregressive Integrated Moving Average, Artificial Neural Network, and Wavelet Artificial Neural Network Methods for Urban Water Demand Forecasting in Montreal, Canada. Water Resour. Res. 2012, 48, 273–279. [Google Scholar] [CrossRef]
- Prasad, R.; Ravinesh, C.L.; Tek, Y.M. Weekly Soil Moisture Forecasting with Multivariate Sequential, Ensemble Empirical Mode Decomposition and Boruta-Random Forest Hybridizer Algorithm Approach. CATENA 2019, 177, 149–166. [Google Scholar] [CrossRef]
- Kim, H.; Choi, M. An inter-comparison of active and passive satellite soil moisture products in east asia for dust-outbreak prediction. J. Korean Soc. Hazard Mitig. 2015, 15, 53–58. [Google Scholar] [CrossRef]
- Jamei, M.; Ali, M.; Karbasi, M.; Sharma, E.; Jamei, M.; Chu, X.; Yaseen, Z.M. A High Dimensional Features-Based Cascaded Forward Neural Network Coupled with MVMD and Boruta-GBDT for Multi-step Ahead Forecasting of Surface Soil Moisture. Eng. Appl. Artif. Intell. 2023, 120, 105895. [Google Scholar] [CrossRef]
- Li, T.S.; Xia, J.; Zhang, L.; She, D.; Wang, G.; Cheng, L. An Improved Complementary Relationship for Estimating Evapotranspiration Attributed to Climate Change and Revegetation in the Loess Plateau, China. J. Hydrol. 2021, 592, 125516. [Google Scholar] [CrossRef]
- Chakraborty, D.; Başağaoğlu, H.; Winterle, J. Interpretable vs. noninterpretable machine learning models for data-driven hydro-climatological process modeling. Expert Syst. Appl. 2021, 170, 114498. [Google Scholar] [CrossRef]
- Ozgur, K. Modeling Reference Evapotranspiration Using Three Different Heuristic Regression Approaches. Agric. Water Manag. 2016, 169, 162–172. [Google Scholar]
- Kumar, M.; Raghuwanshi, N.S.; Singh, R.; Wallender, W.W.; Pruitt, W.O. Estimating Evapotranspiration Using Artificial Neural Network. J. Irrig. Drain. Eng. 2002, 128, 224–233. [Google Scholar] [CrossRef]
- Adamala, S.; Raghuwanshi, N.S.; Mishra, A.; Tiwari, M.K. Evapotranspiration Modeling Using Second-Order Neural Networks. J. Hydrol. Eng. 2014, 19, 1131–1140. [Google Scholar] [CrossRef]
- Antonopoulos, V.Z.; Antonopoulos, A.V. Daily Reference Evapotranspiration Estimates by Artificial Neural Networks Technique and Empirical Equations Using Limited Input Climate Variables. Comput. Electron. Agric. 2017, 132, 86–96. [Google Scholar] [CrossRef]
- Sahoo, S.; Russo, T.A.; Elliott, J.; Foster, I. Machine Learning Algorithms for Modeling Groundwater Level Changes in Agricultural Regions of the U.S. Water Resour. Res. 2017, 53, 3878–3895. [Google Scholar] [CrossRef]
- Rangapuram, S.S.; Seeger, M.W.; Gasthaus, J.; Stella, L.; Wang, Y.; Januschowski, T. Deep State Space Models for Time Series Forecasting. Adv. Neural Inf. Process. Syst. 2018, 31, 7796–7805. [Google Scholar]
- Chen, Z.; Zhu, Z.; Jiang, H.; Sun, S. Estimating Daily Reference Evapotranspiration Based on Limited Meteorological Data Using Deep Learning and Classical Machine Learning Methods. J. Hydrol. 2020, 591, 125286. [Google Scholar] [CrossRef]
- Karbasi, M.; Jamei, M.; Ali, M.; Malik, A.; Yaseen, Z.M. Forecasting Weekly Reference Evapotranspiration Using Auto Encoder Decoder Bidirectional LSTM Model Hybridized with a Boruta-CatBoost Input Optimizer. Comput. Electron. Agric. 2022, 198, 107121. [Google Scholar] [CrossRef]
- Adnan, R.M.; Mostafa, R.R.; Islam, A.; Islam, A.R.M.T.; Kisi, O.; Kuriqi, A.; Heddam, S. Estimating Reference Evapotranspiration Using Hybrid Adaptive Fuzzy Inferencing Coupled with Heuristic Algorithms. Comput. Electron. Agric. 2021, 191, 106541. [Google Scholar] [CrossRef]
- Alizamir, M.; Kisi, O.; Adnan, R.M.; Muhammad Adnan, R.; Kuriqi, A. Modelling Reference Evapotranspiration by Combining Neuro-Fuzzy and Evolutionary Strategies. Acta Geophys. 2020, 68, 1113–1126. [Google Scholar] [CrossRef]
- Maroufpoor, O.M.E. Reference Evapotranspiration Estimating Based on Optimal Input Combination and Hybrid Artificial Intelligent Model: Hybridization of Artificial Neural Network with Grey Wolf Optimizer Algorithm. J. Hydrol. 2020, 588, 125060. [Google Scholar] [CrossRef]
- Roy, D.K.; Barzegar, R.; Quilty, J.; Adamowski, J. Using Ensembles of Adaptive Neuro-Fuzzy Inference System and Optimization Algorithms to Predict Reference Evapotranspiration in Subtropical Climatic Zones. J. Hydrol. 2020, 591, 125509. [Google Scholar] [CrossRef]
- Troncoso-García, A.R.; Brito, I.S.; Troncoso, A.; Martínez-Álvarez, F. Explainable Hybrid Deep Learning and Coronavirus Optimization Algorithm for Improving Evapotranspiration Forecasting. Comput. Electron. Agric. 2023, 215, 108387. [Google Scholar] [CrossRef]
- Başağaoğlu, H.; Chakraborty, D.; Winterle, J. Reliable Evapotranspiration Predictions with a Probabilistic Machine Learning Framework. Water 2021, 13, 557. [Google Scholar] [CrossRef]
- Hydrology: Groundwater stores running dry. Nature 2010, 467, 636. [CrossRef]
- Zhang, Q.; Li, P.; Ren, X.; Ning, J.; Li, J.H.; Liu, C.S.; Wang, Y.; Wang, G.Q. A new real-time groundwater level forecasting strategy: Coupling hybrid data-driven models with remote sensing data. J. Hydrol. 2023, 625, 129962. [Google Scholar] [CrossRef]
- Liu, Q.; Gui, D.; Zhang, L.; Niu, J.; Dai, H.; Wei, G.; Hu, B. Simulation of regional groundwater levels in arid regions using interpretable machine learning models. Sci. Total Environ. 2022, 831, 154902. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Lu, C.; Zhang, Y.; Wu, C.; Ebrima, S.; Liu, B.; Shu, L. Hysteresis response of groundwater depth on the influencing factors using an explainable learning model framework with Shapley values. Sci. Total Environ. 2023, 904, 166662. [Google Scholar] [CrossRef] [PubMed]
- Aderemi, B.A.; Olwal, T.O.; Ndambuki, J.M.; Rwanga, S.S. Groundwater levels forecasting using machine learning models: A case study of the groundwater region 10 at Karst Belt, South Africa. Syst. Soft Comput. 2023, 5, 200049. [Google Scholar] [CrossRef]
- Sun, A.Y.; Scanlon, B.R. How can big data and machine learning benefit environment and water management: A survey of methods, applications, and future directions. Environ. Res. Lett. 2019, 14, 073001. [Google Scholar] [CrossRef]
- Iqbal, M.; Naeem, A.U.; Ahmad, A.; Rehman, H.; Ghani, U.; Farid, T. Relating groundwater levels with meteorological parameters using ANN technique. Measurement 2020, 166, 108163. [Google Scholar] [CrossRef]
- Natarajan, N.; Sudheer, C. Groundwater level forecasting using soft computing techniques. Neural Comput. Applic. 2020, 32, 7691–7708. [Google Scholar] [CrossRef]
- Liu, D.; Mishra, A.K.; Yu, Z.B.; Lv, H.; Li, Y. Support vector machine and data assimilation framework for Groundwater Level Forecasting using GRACE satellite data. J. Hydrol. 2021, 603, 126929. [Google Scholar] [CrossRef]
- Rahman, A.T.M.S.; Hosono, T.; John, M.Q.; Das, J.; Basak, A. Multiscale groundwater level forecasting: Coupling new machine learning approaches with wavelet transforms. Adv. Water Resour. 2020, 141, 103595. [Google Scholar] [CrossRef]
- Aydin, H.E.; Iban, M.C. Predicting and analyzing food susceptibility using boosting-based ensemble machine learning algorithms with SHapley Additive exPlanations. Nat. Hazards 2023, 116, 2957–2991. [Google Scholar] [CrossRef]
- Virro, H.; Kmoch, A.; Vainu, M.; Uuemaa, E. Random forest-based modeling of stream nutrients at national level in a data-scarce region. Sci. Total Environ. 2022, 840, 156613. [Google Scholar] [CrossRef]
- Huang, R.X.; Ma, C.X.; Ma, J.; Huangfu, L.; He, Q. Machine learning in natural and engineered water systems. Water Res. 2021, 205, 117666. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.Y.; Wang, J.W.; Yang, X.; Zhang, Y.; Zhang, L.Y.; Ren, H.Q.; Wu, B.; Ye, L. A review of the application of machine learning in water quality evaluation. Eco-Environ. Health 2022, 1, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.N.; Othman, F.B.; Afan, H.A.; Ibrahim, R.K.; Fai, C.M.; Hossain, M.S.; Ehteram, M.; Elshafie, A. Machine learning methods for better water quality prediction. J. Hydrol. 2019, 578, 124084. [Google Scholar] [CrossRef]
- Noori, R.; Berndtsson, R.; Hosseinzadeh, M.; Adamowski, J.F.; Abyaneh, M.R. A critical review on the application of the National Sanitation Foundation Water Quality Index. Environ. Pollut. 2019, 244, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, T.; Abbasi, S.A. Water Quality Indices; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 978-0-444-54304-2. [Google Scholar]
- Mijares, V.; Gitau, M.; Johnson, D.R. A Method for Assessing and Predicting Water Quality Status for Improved Decision-Making and Management. Water Resour Manag. 2019, 33, 509–522. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Olbert, A.I. A review of water quality index models and their use for assessing surface water quality. Ecol. Indic. 2021, 122, 107218. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Diganta, M.T.M.; Rahman, A.; Olbert, A.I. Robust machine learning algorithms for predicting coastal water quality index. J. Environ. Manag. 2022, 321, 115923. [Google Scholar] [CrossRef]
- Ding, F.; Zhang, W.J.; Chen, L.Y.; Sun, Z.G.; Li, W.P.; Li, C.; Jiang, M.C. Water quality assessment using optimized CWQII in Taihu Lake. Environ. Res. 2022, 214, 113713. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Rahman, A.; Olbert, A.I. A comprehensive method for improvement of water quality index (WQI) models for coastal water quality assessment. Water Res. 2022, 219, 118532. [Google Scholar] [CrossRef]
- Talukdar, S.; Shahfahad; Ahmed, S.; Naikoo, M.W.; Rahman, A.; Mallik, S.; Ningthoujam, S.; Bera, S.; Ramana, G.V. Predicting lake water quality index with sensitivity-uncertainty analysis using deep learning algorithms. J. Clean. Prod. 2023, 406, 136885. [Google Scholar] [CrossRef]
- Brester, C.; Ryzhikov, I.; Siponen, S.; Jayapraksh, B.; Ikonen, J.; Pitkanen, T.; Miettinen, I.K.; Torvinen, E.; Kolehmainen, M. Potential and limitations of a pilot-scale drinking water distribution system for bacterial community predictive modelling. Sci. Total Environ. 2020, 717, 137249. [Google Scholar] [CrossRef]
- Liu, P.; Wang, J.; Sangaiah, A.K.; Xie, Y.; Yin, X.C. Analysis and Prediction of Water Quality Using LSTM Deep Neural Networks in IoT Environment. Sustainability 2019, 11, 2058. [Google Scholar] [CrossRef]
- Sokolova, E.; Ivarsson, O.; Lillieström, A.; Nora, K.S.; Rydberg, H.; Bondelind, M. Data-driven models for predicting microbial water quality in the drinking water source using E. coli monitoring and hydrometeorological data. Sci. Total Environ. 2022, 802, 149798. [Google Scholar] [CrossRef]
- Chakraborty, D.; Başağaoğlu, H.; Gutierrez, L.; Mirchi, A. Explainable AI reveals new hydroclimatic insights for ecosystem-centric groundwater management. Environ. Res. Lett. 2021, 16, 114024. [Google Scholar] [CrossRef]
- Stef, N.; Başağaoğlu, H.; Chakraborty, D.; Jabeur, S.B. Does institutional quality affect CO2 emissions? Evidence from explainable artificial intelligence models. Energy Econ. 2023, 124, 106822. [Google Scholar] [CrossRef]
Algorithm | Application | Advantages/Disadvantages |
---|---|---|
LR | Classification | Suitable for binary classification, the output can be interpreted as probabilities/not effective for complex nonlinear problems. |
LDA | Classification/Dimensionality reduction | Suitable for multi classification and can also be used for dimensionality reduction/not suitable for dimensionality reduction on non-Gaussian distribution samples. |
Perceptron | Classification | Suitable for large-scale datasets (with short training time)/sensitive to noise and outliers, poor performance for nonlinear problems. |
ANN | Classification/Regression | Suitable for solving complex nonlinear problems/no unified theoretical guidance for the construction of network structure and easily trapped in local optima. |
SVM | Classification | Not easily affected by noise interference/training takes a long time and requires normalization. |
Naive Bayes | Classification | Not sensitive to outliers and missing values/poor classification performance on datasets with high feature dependency. |
ID3 | Classification | Can train models with missing feature values/nodes tend to choose attributes with a higher number of values. |
CART | Classification/Regression | Can solve classification or regression problems/cannot guarantee global optimal solution. |
RF | Classification/Regression | No normalization required, parallel processing/not suitable for small and low dimensional datasets. |
KNN | Classification/Regression | No need for early training/the model’s performance heavily depends on the selection of k values. |
DeepForest | Classification/Regression | Superparameters are much fewer than deep ANN/high memory consumption, trained only with CPU. |
Linear regression | Regression | Suitable for large-scale datasets, high computational efficiency/Inability to handle nonlinear problems. |
Ridge regression | Regression | Can be used to solve multicollinearity problems/not suitable for feature selection. |
Lasso regression | Regression | Suitable for feature selection, solving multicollinearity problems/Difficult selection of regularization coefficients. |
SVR | Regression | Suitable for handling complex nonlinear regression problems/difficult parameter selection (kernel function, regularization parameters). |
Kmeans | Clustering | Fast convergence speed/The k value needs to be determined in advance. |
LVQ | Clustering | Insensitive to noise (relative to Kmeans)/slow convergence speed. |
DBSCAN | Clustering | No need to determine the number of clusters k in advance/the values of parameter e and MinPts have a significant impact on the results. |
AGNES | Clustering | The hierarchical relationships of different clusters can be discovered/the clustering results are greatly affected by singular values. |
GMM | Clustering | Suitable for big data exploration/the definition of core objects has a significant impact on the results. |
PCA | Dimensionality reduction | Eliminate the mutual influence of different features, not affected by the labeling information of the samples/lack of interpretability. |
t-SNE | Dimensionality reduction | Retain similarity information in data, suitable for visualizing high-dimensional data/poor performance for large-scale data (high computational complexity). |
Locally linear embedding | Dimensionality reduction | The computational complexity is relatively small, making it easy to implement/different numbers of nearest neighbors have a significant impact on the final dimensionality reduction results. |
ISOMAP | Dimensionality reduction | Invariant to the overall translation, rotation, and flipping of the sample dataset/difficult to recover the inherent structure of the dataset with excessive noise. |
Laplacian eigenmaps | Dimensionality reduction | Insensitive to noise and isolated points/difficult to select thermal nuclear parameters. |
Locality preserving projections | Dimensionality reduction | Reduce dimensionality while preserving local nearest neighbor node information/can only be used for linear dimensionality reduction. |
Index | Application | Formula |
---|---|---|
Classification | ||
Classification | ||
Classification | ||
Classification | ||
Classification | ||
Regression | ||
Regression | ||
Regression | ||
Regression | ||
Regression | ||
Clustering | ||
Clustering | ||
Clustering |
Reference | Algorithm | Study Area | Dataset | Framework | Model Performance | Water Field |
---|---|---|---|---|---|---|
Hu and Wu. (2021) [38] | ARIMA | JiangXi | Acquired | MATLAB | / | Rainfall |
Gui and Shao. (2017) [40] | Markov chain | Dangshan | Existing | / | Related error = 1.9% | Rainfall |
Dimri et al. (2008) [41] | KNN | India | Existing | Python | ACC = 71–88% | Rainfall |
Ghazvinian et al. (2020) [42] | ANN | Semnan | Acquired | Python | MAE = 2.3261 | Rainfall |
Wolfensberger et al. (2021) [43] | RF, RZC | SwissMetNet | Existing | Python | RMSE = 1.35 | Rainfall |
Umirbekov et al. (2022) [44] | SVR | Tian-Shan Mountain | Acquired | / | = 0.57 | Rainfall |
Kumar et al. (2019) [45] | LSTM and RNN | India | Acquired | Python | RMSE = 424.23 | Rainfall |
Shen and Ban. (2023) [46] | Hybridizer | Lanzhou | Existing | MATLAB and Python | RMSE = 16.41 | Rainfall |
Bi et al. (2023) [48] | CNN | / | Existing | / | / | Rainfall |
Latt et al. (2014) [55] | SMLR | Myanmar | Existing | MATLAB | = 0.99 | Flood |
Wang et al. (2017) [14] | BP | Dingan River | Acquired | Python | NSE = 0.937 | Flood |
Liong et al. (2007) [58] | SVM | Bangladesh | Existing | / | = 0.931 | Flood |
Nguyen et al. (2020) [59] | V-SVR | Taiwan | Acquired | Python | RMSE = 0.07 | Flood |
Lohani et al. (2012) [60] | ANN | Bhakra Dam | Existing | Python | RMSE = 256.30 | Flood |
Li et al. (2016) [61] | ANN | Poyang Lake | Acquired | Python | = 0.999 | Flood |
Kabir et al. (2020) [62] | CNN | Northwest England | Existing | Python | RMSE = 0.08 | Flood |
Hosseiny et al. (2021) [63] | U-NetRiver | United States | Existing | Python | MAE = 0.0077 | Flood |
Zhang and Pan. (2014) [70] | / | Harbin | Existing | / | / | Storm |
Huang et al. (2017) [71] | / | Beijing | Acquired | / | ACC = 99.51% | Storm |
Zeng et al. (2017) [72] | / | Dongguan | Existing | / | / | Storm |
Lai et al. (2017) [76] | SOM-ANN | Beijing | Collected | MATLAB | / | Storm |
Yan et al. (2018) [77] | SVM | Hangzhou | Existing | Python | RMSE = 0.038 | Storm |
Wu et al. (2020) [78] | GBDT | Zhengzhou | Acquired | Python | MRE = 62.76% | Storm |
Kim and Han. (2020) [81] | SOM | Korea | Acquired | / | RMSE = 0.032 | Storm |
Ghumman et al. (2011) [90] | ANN | Hub River | Acquired | / | RMSE = 3.27 | Runoff |
Tan et al. (2018) [91] | ANN | Yangtze River | Acquired | / | R = 0.983 | Runoff |
Liao et al. (2023) [92] | ANN | Lancang River | Acquired | / | RMSE = 252.74 | Runoff |
Han et al. (2023) [93] | LSTM | Yangtze River | Acquired | / | R = 0.928 | Runoff |
Kratzert et al. (2018) [84] | LSTM | United States | Existing | Python | NSE = 0.90 | Runoff |
Hu et al. (2018) [95] | ANN/LSTM | Fen River | Acquired | / | R2 = 0.95 | Runoff |
Gao et al. (2020) [96] | LSTM | Shaxi River | Acquired | Python | MAE = 6.0 NSE = 0.990 | Runoff |
Naganna et al. (2023) [97] | CNN/RF/MLP | Cauvery River, | Acquired | / | SMAPE = 22.7965 | Runoff |
Chai et al. (2009) [106] | ANN | Goulburn River | Acquired | / | RMSE = 7.8, R2 = 0.67 | Soil moisture |
Ahmad et al. (2010) [107] | SVM | Lower Colorado River | Acquired | / | RMSE = 1.19, R2 = 0.74 | Soil moisture |
Liu et al. (2010) [111] | SVM | Yixing | Acquired | / | R = 0.9122 | Soil moisture |
ElSaadani et al. (2021) [112] | LSTM | South Louisiana | Existing | Python | NMRSE = 5.2% | Soil moisture |
Gao et al. (2022) [113] | LSTM | Guangzhou | Collected | Python | RMSE = 0.48%, R2 = 0.94 | Soil moisture |
Datta et al. (2023) [114] | LSTM | SanAntonio Mountain | Acquired | / | R2 = 0.9209, RMSE = 0.0217 | Soil moisture |
Prasad et al. (2019) [116] | Hybridizer | New South Wales | Acquired | MATLAB | R = 0.954, RMSE = 0.033 | Soil moisture |
Jamei et al. (2023) [118] | Hybridizer | Iran | Acquired | Python | R = 0.9993, RMSE = 0.0025 | Soil moisture |
Kumar et al. (2002) [122] | ANN | California | Existing | / | MAE = 9.2, R2 = 0.949 | Evapotranspiration |
Adamala et al. (2014) [123] | SONN | India. | Acquired | MATLAB | RMSE = 0.077, R2 = 0.998 | Evapotranspiration |
Antonopoulos et al. (2017) [124] | ANN | West Macedonia | Acquired | / | R = 0.876, RMSE = 0.936 | Evapotranspiration |
Chen et al. (2020) [127] | ANN | China | Acquired | / | R2 = 0.831, RMSE = 0.755 | Evapotranspiration |
Karbasi et al. (2022) [128] | AED-BiLSTM | Iran | Existing | MATLAB and Python | R = 0.9835 RMSE = 3.4597 | Evapotranspiration |
Maroufpoor et al. (2020) [131] | ANN-GWO | Iran | Acquired | MATLAB | R2 = 0.884, MAE = 0.717 | Evapotranspiration |
Roy et al. (2020) [132] | ANFIS | Bangladesh | Acquired | MATLAB | R = 1.000, RMSE = 0.021 | Evapotranspiration |
Troncoso-García et al., (2023) [133] | LSTM | Europe. | Acquired | Python | RSME = 1.0614, R2 = 0.7194 | Evapotranspiration |
Iqbal et al. (2020) [141] | ANN | Ravi and Sutlej River | Acquired | MATLAB | MAE = 0.031, R = 0.974 | Groundwater level |
Natarajan et al. (2020) [142] | ELM | India | Existing | / | RMSE = 0.277 | Groundwater level |
Liu et al. (2021) [143] | SVM-DA | Northeast US | Acquired | / | R = 0.96, MAE = 0.44 | Groundwater level |
Rahman et al. (2020) [144] | WT-XGB | Kumamoto | Acquired | R | R2 = 0.84, NSE = 0.81 | Groundwater level |
Zhang et al. (2023) [136] | WT-LSTM | Xi’an and Yinchuan | Existing | / | NSE = 0.843 | Groundwater level |
Uddin et al. (2022) [154] | ExT and XGB | Irish | Acquired | / | R2 = 1, RMSE = 0.0 | WQI |
Uddin et al. (2022) [156] | XGB, MLR | Irish | Acquired | / | R2 = 0.97, RMSE = 3.1 | WQI |
Talukdar et al. (2023) [157] | CNN, DNN | India | Acquired | R | RMSE = 5.07, R2 = 0.98 | WQI |
Brester et al. (2020) [158] | RF | Kuopio, Finland | Acquired | / | IA = 0.92 | Drinking water |
Liu et al. (2019) [159] | LSTM | Yangzhou | Acquired | Python | MSE = 0.02 | Drinking water |
Sokolova et al. (2022) [160] | TPOT | Gothenburg, Sweden. | Acquired | Python | R2 = 0.62, MAE = 0.22 | Drinking water |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhou, J.; Yang, X.; Zhao, Z.; Lv, Y. Research on Water Resource Modeling Based on Machine Learning Technologies. Water 2024, 16, 472. https://doi.org/10.3390/w16030472
Liu Z, Zhou J, Yang X, Zhao Z, Lv Y. Research on Water Resource Modeling Based on Machine Learning Technologies. Water. 2024; 16(3):472. https://doi.org/10.3390/w16030472
Chicago/Turabian StyleLiu, Ze, Jingzhao Zhou, Xiaoyang Yang, Zechuan Zhao, and Yang Lv. 2024. "Research on Water Resource Modeling Based on Machine Learning Technologies" Water 16, no. 3: 472. https://doi.org/10.3390/w16030472
APA StyleLiu, Z., Zhou, J., Yang, X., Zhao, Z., & Lv, Y. (2024). Research on Water Resource Modeling Based on Machine Learning Technologies. Water, 16(3), 472. https://doi.org/10.3390/w16030472