Spatial-Temporal Variations of Drought-Flood Abrupt Alternation Events in Southeast China
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area and Data
2.2. Methods
2.2.1. Drought and Flood Indexes
2.2.2. Identification of DFAA Events
2.2.3. Optimization of DFAA Indexes
3. Results
3.1. Optimization of Number Days for Antecedent Precipitation
3.2. Optimization of the SPI, SPEI, and SWAP
3.3. Robustness of the SPI-12d Index
3.4. Spatial-Temporal Evolution Characteristics and Variation Diagnosis of DFAA Events
3.4.1. Temporal Evolution Characteristics and Variation Diagnosis of DFAA Events
3.4.2. Spatial Evolution Characteristics of DFAA Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, X.; Zhang, R.; Bento, V.A.; Leng, S.; Qi, J.; Zeng, J.; Wang, Q. The effect of drought on vegetation gross primary productivity under different vegetation types across China from 2001 to 2020. Remote Sens. 2022, 14, 4658. [Google Scholar] [CrossRef]
- Wang, Q.; Qi, J.; Wu, H.; Zeng, Y.; Shui, W.; Zeng, J.; Zhang, X. Freeze-Thaw cycle representation alters response of watershed hydrology to future climate change. Catena 2020, 195, 104767. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, L.; Chen, S.; Outten, S. Editorial: Extreme climate events: Variability, mechanisms, and numerical simulations. Front. Earth Sci. 2023, 11, 1159605. [Google Scholar] [CrossRef]
- Leng, S.; Huete, A.; Cleverly, J.; Gao, S.; Yu, Q.; Meng, X.; Qi, J.; Zhang, R.; Wang, Q. Assessing the impact of extreme droughts on dryland vegetation by multi-satellite solar-induced chlorophyll fluorescence. Remote Sens. 2022, 14, 1581. [Google Scholar] [CrossRef]
- Leng, S.; Huete, A.; Cleverly, J.; Yu, Q.; Zhang, R.; Wang, Q. Spatiotemporal variations of dryland vegetation phenology revealed by satellite-observed fluorescence and greenness across the North Australian Tropical Transect. Remote Sens. 2022, 14, 2985. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, R.; Qu, Y.; Bento, V.A.; Zhou, T.; Lin, Y.; Wu, X.; Qi, J.; Shui, W.; Wang, Q. Improving the drought monitoring capability of VHI at the global scale via ensemble indices for various vegetation types from 2001 to 2018. Weather. Clim. Extrem. 2022, 35, 100412. [Google Scholar] [CrossRef]
- Chen, H.; Wang, S. Accelerated Transition Between Dry and Wet Periods in a Warming Climate. Geophys. Res. Lett. 2022, 49, e2022GL099766. [Google Scholar] [CrossRef]
- Ford, T.W.; Chen, L.; Schoof, J.T. Variability and Transitions in Precipitation Extremes in the Midwest United States. J. Hydrometeorol. 2020, 22, 533–545. [Google Scholar] [CrossRef]
- Ren, J.; Wang, W.; Wei, J.; Li, H.; Li, X.; Liu, G.; Chen, Y.; Ye, S. Evolution and prediction of drought-flood abrupt alternation events in Huang-Huai-Hai River Basin, China. Sci. Total Environ. 2023, 869, 161707. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Li, J.; He, J.; Jiang, Z. Large-scale atmospheric singularities and summer long-cycle droughts-floods abrupt alternation in the middle and lower reaches of the Yangtze River. Chin. Sci. Bull. 2006, 51, 2027–2034. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.; Min, J.; Zhang, Z.; Zhuang, J.; Lin, J. Drought-flood abrupt alternation based on runoff in the Huaihe River Basin during rainy season. J. Lake Sci. 2012, 24, 679–686. [Google Scholar]
- Shan, L.-j.; Li-ping, Z.; Xin-chi, C.; Wei, Y. Spatio-temporal evolution characteristics of drought- flood abrupt alternation in the middle and lower reaches of the yangtze river basin. Ecol. Inform. 2015, 24, 2100–2107. [Google Scholar]
- Shan, L.-j.; Zhang, L.; Xiong, Z.; Chen, X.; Chen, S.; Yang, W.J.M.; Physics, A. Spatio-temporal evolution characteristics and prediction of dry–wet abrupt alternation during the summer monsoon in the middle and lower reaches of the Yangtze River Basin. Meteorol. Atmospheric Phys. 2018, 130, 427–440. [Google Scholar] [CrossRef]
- Yang, X.; Yunchuan, Y.; Simin, D.; Liping, L.; Chongxun, M.; Disasters, Y. The spatio-temporal evolution characteristics of monthly drought-flood abrupt alternation in Guangxi. J. Nat. Disasters 2019, 28, 192–203. [Google Scholar]
- Sun, H.; Lihui, W.; Ping, T.; Pu, X.; Yong, J.; Zhiming, Y.; Qingshui, Z. Identification and Situation Analysis of Historical Drought-Flood Abrupt Alternation in Jiulong River Basin in Fujian. Pearl. River. 2023, 44, 78–86. [Google Scholar] [CrossRef]
- Wang, R.; Li, X.; Zhang, Q.; Cheng, J.; Li, J.; Zhang, D.; Liu, Y. Projection of drought-flood abrupt alternation in a humid subtropical region under changing climate. J. Hydrol. 2023, 324, 129875. [Google Scholar] [CrossRef]
- Wang, J.; Rong, G.; Li, K.; Zhang, J. Analysis of Characteristics of Dry–Wet Events Abrupt Alternation in Northern Shaanxi, China. Water 2021, 13, 2384. [Google Scholar] [CrossRef]
- Bai, X.; Zhao, C.; Tang, Y.; Zhang, Z.; Yang, B.; Wang, Z. Identification, physical mechanisms and impacts of drought–flood abrupt alternation: A review. Front. Earth Sci. 2023, 11, 1203603. [Google Scholar] [CrossRef]
- Zhang, R.; Bento, V.A.; Qi, J.; Xu, F.; Wu, J.; Qiu, J.; Li, J.; Shui, W.; Wang, Q. The first high spatial resolution multi-scale daily SPI and SPEI raster dataset for drought monitoring and evaluating over China from 1979 to 2018. Big Earth Data 2023, 7, 1–26. [Google Scholar] [CrossRef]
- Wan, L.; Bento, V.A.; Qu, Y.; Qiu, J.; Song, H.; Zhang, R.; Wu, X.; Xu, F.; Lu, J.; Wang, Q. Drought characteristics and dominant factors across China: Insights from high-resolution daily SPEI dataset between 1979 and 2018. Sci. Total Environ. 2023, 901, 166362. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zeng, J.; Qi, J.; Zhang, X.; Zeng, Y.; Shui, W.; Xu, Z.; Zhang, R.; Wu, X.; Cong, J. A multi-scale daily SPEI dataset for drought characterization at observation stations over mainland China from 1961 to 2018. Earth Syst. Sci. Data 2021, 13, 331–341. [Google Scholar] [CrossRef]
- Xu, F.; Qu, Y.; Bento, V.A.; Song, H.; Qiu, J.; Qi, J.; Wan, L.; Zhang, R.; Miao, L.; Zhang, X.; et al. Understanding Climate Change Impacts on Drought in China over the 21st century: A Multi-Model Assessment from CMIP6. NPJ Clim. Atmos. Sci. 2024, 7, 32. [Google Scholar] [CrossRef]
- Zhao, Y.; Weng, Z.; Chen, H.; Yang, J. Analysis of the Evolution of Drought, Flood, and Drought-Flood Abrupt Alternation Events under Climate Change Using the Daily SWAP Index. Water 2020, 12, 1969. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, C.Y.; Ma, X.D.; Zhao, D.N.; Chen, W. Change of Drought at Multiple Temporal Scales Based on SPI/SPEI in Northeast China. Arid Zone Res. 2017, 34, 1250–1262. [Google Scholar] [CrossRef]
- Pei, Z.; Fang, S.; Wang, L.; Yang, W. Comparative Analysis of Drought Indicated by the SPI and SPEI at Various Timescales in Inner Mongolia, China. Water 2020, 12, 1925. [Google Scholar] [CrossRef]
- Yang, J.; Chen, H.; Hou, Y.; Zhao, Y.; Chen, Q.; Xu, C.; Chen, J. A method to identify the drought-flood transition based on the meteorological drought index. Acta Geogr. Sin. 2019, 74, 2358–2370. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, D.; Zhang, J.; Jiang, S.; Xing, S.; Wang, J.; Cheng, Y.; Chen, N. Identification and frequency analysis of drought—Flood abrupt alternation events using a daily-scale standardized weighted average of the precipitation index. Front. Environ. Sci. 2023, 11, 1142259. [Google Scholar] [CrossRef]
- Dibs, H.; Ali, A.H.; Al-Ansari, N.; Abed, S.A. Fusion Landsat-8 Thermal TIRS and OLI Datasets for Superior Monitoring and Change Detection using Remote Sensing. Emerg. Sci. J. 2023, 7, 428–444. [Google Scholar] [CrossRef]
- Dibs, H.; Al-Ansari, N.; Ali, A.H. Multi-Fusion Algorithms for Detecting Land Surface Pattern Changes Using Multi-High Spatial Resolution Images and Remote Sensing Analysis. Emerg. Sci. J. 2023, 7, 1215–1231. [Google Scholar] [CrossRef]
- Liang, M.; Bingjun, L.; Dan, L. Optimization of identification index for drought-flood abrupt alternation events in the Pearl River Basin. J. Nat. Disasters 2022, 31, 57. [Google Scholar]
- Bi, W.; Li, M.; Weng, B.; Yan, D.; Dong, Z.; Feng, J.; Wang, H. Drought-flood abrupt alteration events over China. Sci. Total Environ. 2023, 875, 162529. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, Z.; Lin, K. Dry-Wet Transition Events in China: Identification, Temporal Dynamics, and Spatial Patterns. J. Yangtze River Sci. Res. Inst. 2021, 38, 77–85. [Google Scholar] [CrossRef]
- Wang, S.; Tian, H.; Ding, X. Climate Characteristics of Precipitation and Phenomenon of Drought-flood Abrupt Alternation during Main Flood Season in Huaihe River Basin. Chin. J. Agrometeorol. 2009, 30, 31–34. [Google Scholar]
- Liu, B.; Jianyu, F.; Manlin, L.; Yadong, J. Spatio-temporal evolution trend analysis of drought and flood disasters in the Pearl River Basin. China Flood Drought Manag. 2023, 33, 12–19+45. [Google Scholar] [CrossRef]
- Jiang, S.; Cui, H.; Ren, L.; Yan, D.; Yang, X.; Yuan, S.; Liu, Y.; Wang, M.; Xu, C.-Y. Will China’s Yellow River basin suffer more serious combined dry and wet abrupt alternation in the future? J. Hydrol. 2023, 624, 129871. [Google Scholar] [CrossRef]
- Arianti, I.; Rafani, M.; Fitriani, N.A.; Nizar, J. Spatial Modeling of Flood-Vulnerability as Basic Data for Flood Mitigation. Civ. Eng. J. 2023, 9, 787–798. [Google Scholar] [CrossRef]
- Mckee, T.B.; Doesken, N.J.; Kleist, J.R. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2009, 23, 1696–1718. [Google Scholar] [CrossRef]
- Lu, E. Determining the start, duration, and strength of flood and drought with daily precipitation: Rationale. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Lu, E.; Lu, E.; Cai, W.; Jiang, Z.; Zhang, Q.; Zhang, C.; Higgins, R.W.; Halpert, M.S. The day-to-day monitoring of the 2011 severe drought in China. Clim. Dyn. 2014, 43, 1–9. [Google Scholar] [CrossRef]
- Gu, L.; Chen, J.; Yin, J.; Xu, C.-Y.; Chen, H. Drought hazard transferability from meteorological to hydrological propagation. J. Hydrol. 2020, 585, 124761. [Google Scholar] [CrossRef]
- Achite, M.; Krakauer, N.Y.; Wałęga, A.; Caloiero, T. Spatial and Temporal Analysis of Dry and Wet Spells in the Wadi Cheliff Basin, Algeria. Atmosphere 2021, 12, 798. [Google Scholar] [CrossRef]
- Rezvani, R.; RahimiMovaghar, M.; Na, W.; Reza Najafi, M. Accelerated Lagged Compound Floods and Droughts in Northwest North America under 1.5–4 °C Global Warming Levels. J. Hydrol. 2023, 624, 129906. [Google Scholar] [CrossRef]
- Chen, H.; Wang, S.; Zhu, J.; Zhang, B. Projected Changes in Abrupt Shifts Between Dry and Wet Extremes Over China Through an Ensemble of Regional Climate Model Simulations. J. Geophys. Res. Atmos. 2020, 125, e2020JD033894. [Google Scholar] [CrossRef]
- Li, X.G.; Han, G.X.; Zhu, L.Q.; Chen, C.N. Effects of drying-wetting cycle caused by rainfall on soil respiration: Progress and prospect. Chin. J. Ecol. 2019, 38, 567–575. [Google Scholar]
- Du, J.; Fang, J.; Xu, W.; Shi, P.; Assessment, R. Analysis of dry/wet conditions using the standardized precipitation index and its potential usefulness for drought/flood monitoring in Hunan Province, China. Stoch. Environ. Res. Risk Assess. 2013, 27, 377–387. [Google Scholar] [CrossRef]
- Gao, G. Research on the method of determining indicator weights and converting scores in multi-indicator comprehensive evaluation. J. China Economist. 2003, 3, 265–266. [Google Scholar]
- Yan, B.; Qian, J.; Guo, C. Comprehensive Indicator Weight Determination and Application Based on Dynamic Weight. J. Shenyang Agric. Univ. 2014, 45, 58–61. [Google Scholar]
- Wen, K. China Meteorological Disaster Dictionary; China Meteorological Press: Beijing, China, 2007. [Google Scholar]
- Fujian-Meteorological-Bureau. Weather Chian. Available online: http://fj.weather.com.cn/zxfw/qhgb/index.shtml (accessed on 1 January 2001).
- Qiao, Y.; Xu, W.; Wu, D.; Meng, C.; Qin, L.; Li, Z.; Zhan, X. Changes in the spatiotemporal patterns of dry/wet abrupt alternation frequency, duration, and severity in Mainland China, 1980–2019. Sci. Total Environ. 2022, 838, 156521. [Google Scholar] [CrossRef]
- Yang, X.; Rongyan, Z.; Hang, P.A.N.; Shiyan, G.A.O.; Chen, Y.U.; Ruijuan, B.A.O. Spatio-Temporal Distribution Analysis of Multi-Dimensional Meteorological Drought Characteristics in Fujian Province. Meteorol. Mon. 2022, 48, 1565–1576. [Google Scholar] [CrossRef]
- Wu, B.; Li, L. Study on the effect of precipitation tendency change on drought/flood in fujian province. J. Trop. Meteorol. 2009, 25, 103–109. [Google Scholar]
- Ang, Y.; Chen, Y.; Chen, S.; Xiong, M. Spatial and temporal variation characteristics of the drought-flood abrupt alternations over Haihe River Basin. Hydro-Sci. Eng. 2021, 1–12. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, K.; Xie, Y.; Chao, L.; Tola, T.L.; Xue, X. Monitoring the Variation of Drought-Flood Abrupt Alternation and Its Response to Atmospheric Circulation at Multi-time Scales. In Proceedings of PIANC Smart Rivers 2022; Li, Y., Hu, Y., Rigo, P., Lefler, F.E., Zhao, G., Eds.; Springer: Singapore, 2023; pp. 1139–1151. [Google Scholar]
- Sun, J.; He, J.; Ren, J.; Zhong, S.; Wang, L. Analysis of the relationship between the precipitation and the SST based on the TRMM data during the Asia monsoon season. In Earth Observing Systems XI; SPIE: Bellingham, WA, USA, 2006; pp. 295–306. [Google Scholar]
- Zhang, Y.; Zhai, L.; Lin, P.; Cheng, L.; Wei, X. Variation characteristics and driving factors of drought and flood and their abrupt alternations in a typical basin in the middle reaches of Yangtze River. Eng. J. Wuhan Univ. 2021, 54, 887–897. [Google Scholar]
- Zhang, R.; Qi, J.; Leng, S.; Wang, Q. Long-Term Vegetation Phenology Changes and Responses to Preseason Temperature and Precipitation in Northern China. Remote Sens. 2022, 14, 1396. [Google Scholar] [CrossRef]
- Zarch, M.A.A.; Sivakumar, B.; Sharma, A. Droughts in a warming climate: A global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI). J. Hydrol. 2015, 526, 183–195. [Google Scholar] [CrossRef]
- Wright, B.; Stanford, B.; Weiss, J.; Debroux, J.; Routt, J.; Khan, S. Climate Change how does Weather Affect Surface Water Quality. Opflow 2013, 39, 10–15. [Google Scholar] [CrossRef]
- Chou, J.; Xian, T.; Dong, W.; Xu, Y. Regional Temporal and Spatial Trends in Drought and Flood Disasters in China and Assessment of Economic Losses in Recent Years. Sustainability 2019, 11, 55. [Google Scholar] [CrossRef]
- Huang, J.; Hu, T.; Yasir, M.; Gao, Y.; Chen, C.; Zhu, R.; Wang, X.; Yuan, H.; Yang, J. Root growth dynamics and yield responses of rice (Oryza sativa L.) under drought—Flood abrupt alternating conditions. Environ. Exp. Bot. 2019, 157, 11–25. [Google Scholar] [CrossRef]
- Bi, W.; Weng, B.; Yan, D.; Wang, M.; Wang, H.; Jing, L.; Yan, S. Soil phosphorus loss increases under drought-flood abrupt alternation in summer maize planting area. Agric. Water Manag. 2022, 262, 107426. [Google Scholar] [CrossRef]
- Hu, K.; Huang, G.; Huang, P.; Kosaka, Y.; Xie, S.-P. Intensification of El Niño-induced atmospheric anomalies under greenhouse warming. Nat. Geosci. 2021, 14, 377–382. [Google Scholar] [CrossRef]
- Xue, Y.; Xue, X. Research advances in simultaneous frequency of extreme precipitation and drought. J. Mar. Meteorol. 2022, 42, 61–73. [Google Scholar]
Grade | Type | Index Value |
---|---|---|
4 | Extreme flood | ≥2.0 |
3 | Severe flood | 1.5 ≤ index < 2.0 |
2 | Moderate flood | 1.0 ≤ index < 1.5 |
1 | Slight flood | 0.5 ≤ index < 1.0 |
0 | Near normal | −0.5 < index < 0.5 |
−1 | Slight drought | −1.0 < index ≤ −0.5 |
−2 | Moderate drought | −1.5 < index ≤ −1.0 |
−3 | Severe drought | −2.0 < index ≤ −1.5 |
−4 | Extreme drought | ≤−2.0 |
DFAA Intensity | K |
---|---|
Slight | 1.0 ≤ K < 2.0 |
Moderate | 2.0 ≤ K < 3.0 |
Severe | 3.0 ≤ K |
Index | Number of Events | CI | CV | K = 1 | K = 2 | K = 3 | K = 4 | K = 5 | K = 6 |
---|---|---|---|---|---|---|---|---|---|
SPI-10 | 47 | 0.49 | 13.40 | 202 | 196 | 182 | 170 | 158 | 138 |
SPI-11 | 62 | 0.51 | 13.61 | 265 | 262 | 236 | 221 | 193 | 138 |
SPI-12 | 59 | 0.52 | 13.12 | 265 | 263 | 247 | 229 | 193 | 138 |
SPI-13 | 49 | 0.49 | 12.50 | 242 | 241 | 235 | 229 | 193 | 138 |
SPI-14 | 49 | 0.51 | 12.29 | 239 | 239 | 225 | 222 | 198 | 138 |
SPI-15 | 49 | 0.50 | 11.86 | 232 | 229 | 217 | 217 | 193 | 138 |
SWAP-10 | 95 | 0.49 | 12.65 | 467 | 460 | 452 | 422 | 394 | 360 |
SWAP-11 | 97 | 0.49 | 12.07 | 493 | 489 | 481 | 454 | 430 | 360 |
SWAP-12 | 102 | 0.49 | 12.37 | 523 | 521 | 517 | 487 | 435 | 360 |
SWAP-13 | 101 | 0.49 | 12.21 | 518 | 520 | 520 | 485 | 429 | 360 |
SWAP-14 | 105 | 0.48 | 12.14 | 516 | 515 | 495 | 456 | 424 | 360 |
SWAP-15 | 102 | 0.48 | 12.14 | 489 | 485 | 461 | 431 | 399 | 360 |
SWAP-10 | 95 | 0.49 | 12.65 | 467 | 460 | 452 | 422 | 394 | 360 |
SPEI-10 | 95 | 0.49 | 13.76 | 463 | 452 | 450 | 420 | 404 | 354 |
SPEI-11 | 131 | 0.51 | 13.89 | 633 | 626 | 612 | 570 | 554 | 354 |
SPEI-12 | 134 | 0.51 | 13.39 | 649 | 645 | 629 | 581 | 549 | 354 |
SPEI-13 | 124 | 0.51 | 13.62 | 617 | 614 | 604 | 571 | 539 | 354 |
SPEI-14 | 117 | 0.52 | 13.54 | 606 | 606 | 594 | 570 | 554 | 354 |
SPEI-15 | 120 | 0.52 | 12.86 | 600 | 595 | 581 | 560 | 544 | 354 |
SPEI-10 | 95 | 0.49 | 13.76 | 463 | 452 | 450 | 420 | 404 | 354 |
Index | Number of Events | CI | CV | K = 1 | K = 2 | K = 3 |
---|---|---|---|---|---|---|
SPI-12 | 59 | 0.52 | 13.12 | 116 | 93 | 63 |
SWAP-12 | 102 | 0.49 | 12.37 | 180 | 133 | 63 |
SPEI-12 | 134 | 0.51 | 13.39 | 219 | 148 | 63 |
No. | Start Date | End Date | Intensity | Historical Records | Source |
---|---|---|---|---|---|
1 | 3 September 2009 | 9 November 2009 | −2.3 | Continuous drought in autumn and winter | B |
2 | 20 November 2008 | 4 December 2008 | −2.2 | Continuous drought in autumn and winter | B |
3 | 23 September 2006 | 19 November 2006 | −2.2 | Continuous drought in summer, autumn, and winter | B |
4 | 16 June 1961 | 1 July 1961 | −2.2 | Major drought from June 5 to June 30 in south-central Fujian coastal areas | A |
5 | 24 July 1986 | 5 August 1986 | −2.2 | Drought in early summer from July 13 to August 4 | A |
6 | 15 September 2007 | 30 October 2007 | −2.2 | Drought occurred in early September and intensified into autumn and winter | B |
7 | 5 October 2012 | 29 October 2012 | −2.1 | Drought occurred in mid-September, and it intensified during October along the southern coast of Fujian | B |
8 | 26 October 2017 | 6 November 2017 | −2.1 | Drought began in late August and peaked on November 4 | B |
9 | 14 May 2000 | 28 May 2000 | −2.1 | Drought began to emerge along the coast and spread from south to north in late May | B |
10 | 7 October 1979 | 8 November 1979 | −2.0 | Drought occurred from late September to early November | A |
No | Max Daily Precipitation Date | Max Daily Precipitation (mm) | Flood Start | Flood End |
---|---|---|---|---|
1 | 8 August 2015 | 244.4 | 8 August 2015 | 25 August 2015 |
2 | 28 September 2016 | 241.2 | 28 September 2016 | 19 October 2016 |
3 | 3 October 2005 | 195.6 | 2 October 2005 | 14 October 2005 |
4 | 16 July 2006 | 187.5 | 14 July 2006 | 6 August 2006 |
5 | 6 September 1991 | 170.9 | 6 September 1991 | 19 September 1991 |
6 | 5 June 1972 | 167.6 | 4 June 1972 | 28 June 1972 |
7 | 25 June 1991 | 165.4 | 21 June 1991 | 6 July 1991 |
8 | 31 August 1992 | 164.5 | 17 August 1992 | 16 September 1992 |
9 | 1 August 1990 | 163.4 | 1 August 1990 | 6 October 1990 |
10 | 4 September 1966 | 159.6 | 4 September 1966 | 15 September 1966 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Chen, Y.; Chen, X.; Gao, L.; Liu, M. Spatial-Temporal Variations of Drought-Flood Abrupt Alternation Events in Southeast China. Water 2024, 16, 498. https://doi.org/10.3390/w16030498
Zhang B, Chen Y, Chen X, Gao L, Liu M. Spatial-Temporal Variations of Drought-Flood Abrupt Alternation Events in Southeast China. Water. 2024; 16(3):498. https://doi.org/10.3390/w16030498
Chicago/Turabian StyleZhang, Bowen, Ying Chen, Xingwei Chen, Lu Gao, and Meibing Liu. 2024. "Spatial-Temporal Variations of Drought-Flood Abrupt Alternation Events in Southeast China" Water 16, no. 3: 498. https://doi.org/10.3390/w16030498
APA StyleZhang, B., Chen, Y., Chen, X., Gao, L., & Liu, M. (2024). Spatial-Temporal Variations of Drought-Flood Abrupt Alternation Events in Southeast China. Water, 16(3), 498. https://doi.org/10.3390/w16030498