Phthalates in Surface Waters of the Selenga River (Main Tributary of Lake Baikal) and Its Delta: Spatial-Temporal Distribution and Environmental Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Chemicals and Materials
2.3. Laboratory Analyses
2.3.1. Analysis of Parameters of Water Quality
2.3.2. Determination of PAEs
2.4. Ecological Risk Assessment
2.4.1. Human Health Risk
2.4.2. Freshwater Risk Assessment
3. Results and Discussion
3.1. Hydroclimatic Conditions
3.2. Water Quality
3.3. Phthalates
3.4. Ecological Risks
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Galazii, G.I. Baikal Atlas; Federal Geodesic and Cartographic Service of Russia: Moscow, Russia, 1993; p. 160.
- Sinyukovich, V.N. Relationships between water flow and dissolved solids discharge in the major tributaries of Lake Baikal. Water Resour. 2003, 30, 208–212. [Google Scholar] [CrossRef]
- Grigoriev, V.Y.; Millionshchikova, T.D.; Sazonov, A.A.; Chalov, S.R. Influence of changes in climatic parameters on river runoff in the Baikal basin in the second half of XX–early XXI centuries. Mosc. Univ. Bull. Ser. 5 Geogr. 2020, 5, 3–11. [Google Scholar]
- Kasimov, N.S.; Kosheleva, N.; Lychagin, M.; Chalov, S.; Alekseenko, A.; Bazilova, V.; Beshentsev, A.; Bogdanova, M.; Chernov, A.; Dorjgotov, D.; et al. Environmental Atlas-Monograph “Selenga-Baikal”; Faculty of Geography of Lomonosov Moscow State University: Moscow, Russia, 2019. [Google Scholar]
- Narangarvuu, D.; Enkhdul, T.; Erdenetsetseg, E.; Enkhrii-Ujin, E.; Irmuunzaya, K.; Batbayar, G.; Oyundelger, K.; Yam, R.S.-W.; Pfeiffer, M. Mining and urbanization affect river chemical water quality and macroinvertebrate communities in the upper Selenga River Basin, Mongolia. Environ. Monit. Assess. 2023, 195, 1500. [Google Scholar] [CrossRef]
- Garmaev, E.Z.; Khristoforov, A.V.; Tsydypov, B.Z.; Ayurzhanaev, A.A.; Andreev, S.G.; Sodnomov, B.V.; Zhamyanov, D.T.-D. Impact of the global climate change on the transboundary Selenga River water runoff and general principles of its water resources use. Water Sect. Russ. Probl. Technol. Manag. 2022, 2, 80–94. [Google Scholar] [CrossRef]
- Zaharova, E.D.; Belyaev, V.R. Contribution of The Different Sources to The Formation of Alluvial Sediments in The Selenga River Delta. (Eastern Siberia, Russia). Geogr. Environ. Sustain. 2022, 4, 222–231. [Google Scholar] [CrossRef]
- Illyicheva, E.A.; Pavlov, M.; McElroy, B.; Nittrouer, J.A.; Dong, T. Formation of floodplains of the delta of the Selenga River. Geogr. Nat. Resour. 2020, 41, 113–119. (In Russian) [Google Scholar] [CrossRef]
- Tulokhonov, A.K.; Plusnin, A.M. (Eds.) The Selenga River Delta-Natural Biofilter and Indicator of the Condition of the Lake Baikal; Izd-vo SORAN: Novosibirsk, Russia, 2008. (In Russian) [Google Scholar]
- Marchenko, O.Y. Conditions of Formation and Long-Term Changes of Extreme Water Content in the Selenga River Basin; Institute of Water Problems of the Russian Academy of Sciences: Moscow, Russia, 2013. [Google Scholar]
- Moreido, V.M.; Kalugin, A.S. Assessing possible changes in Selenga R. water regime in the XXI century based on a runoff formation model. Water Resour. 2017, 44, 390–398. [Google Scholar] [CrossRef]
- Sorokovikova, L.M.; Sinyukovich, V.N.; Tomberg, I.V.; Marinaite, I.I.; Khodzher, T.V. Assessing the water quality in the tributary streams of Lake Baikal from chemical parameters. Geogr. Nat. Resour. 2015, 36, 31–39. [Google Scholar] [CrossRef]
- Chalov, S.; Thorslund, J.; Kasimov, N.; Aybullatov, D.; Ilyicheva, E.; Karthe, D.; Kositsky, A.; Lychagin, M.; Nittrouer, J.; Pavlov, M.; et al. The Selenga River delta: A geochemical barrier protecting Lake Baikal waters. Reg. Environ. Chang. 2017, 17, 2039–2053. [Google Scholar] [CrossRef]
- Sinyukovich, V.N.; Zharikova, N.G.; Zharikov, V.D. Runoff of the Selenga River in its delta. Geogr. Nat. Resour. 2004, 3, 64–69. [Google Scholar]
- Federal State Statistics Service. Available online: https://rosstat.gov.ru (accessed on 20 December 2023).
- Municipal Unitary Enterprise “Vodokanal”. Available online: https://web.archive.org/web/20231230124046/https://xn--03-6kcaim6bkqgb.xn--p1ai/?page=3 (accessed on 30 December 2023).
- Gomboev, B.O.; Tsybikova, A.B.; Ul’zetueva, I.D.; Zhamyanova, D.T.-D. Assessing the Anthropogenically Caused Pollution of Water Bodies Within the Selenga River Basin on the Territory of Mongolia and Russia. Geogr. Nat. Resour. 2020, 41, 372–380. [Google Scholar] [CrossRef]
- Gorshkov, A.; Grigoryeva, T.; Bukin, Y.; Kuzmin, A. Case Study of Diesters of o-Phthalic Acid in Surface Waters with Background Levels of Pollution. Toxics 2023, 11, 869. [Google Scholar] [CrossRef]
- Sorokovikova, L.M.; Sinyukovich, V.N.; Tomberg, I.V.; Popovskaya, G.I.; Chernyshev, M.S.; Ivanov, V.G.; Khodzher, T.V. The status of the aquatic ecosystem of the Selenga river delta under long-duration low-water conditions. Geogr. Nat. Resour. 2017, 1, 81–89. [Google Scholar]
- Bazarzhapov, T.Z.; Shiretorova, V.G.; Radnaeva, L.D.; Nikitina, E.P.; Sodnomov, B.V.; Tsydypov, B.Z.; Batomunkuev, V.S.; Taraskin, V.V.; Dong, S.; Li, Z.; et al. Trend Analysis of Precipitation, Runoff and Major Ions for the Russian Part of the Selenga River Basin. Water 2023, 15, 197. [Google Scholar] [CrossRef]
- Chebykin, E.P.; Sorokovikova, L.M.; Tomberg, I.V.; Vodneva, E.N.; Rasskazov, S.V.; Khodzher, T.V.; Grachev, M.A. Current State of Waters of the Selenga River in the Territory of Russia According to the Main Components and Trace Elements. Chem. Interests Sustain. Dev. 2012, 20, 613–631. [Google Scholar]
- Kasimov, N.; Shinkareva, G.; Lychagin, M.; Kosheleva, N.; Chalov, S.; Pashkina, M.; Jarsjö, J. River water quality of the Selenga-Baikal basin: Part I—Spatio-temporal patterns of dissolved and suspended metals. Water 2020, 12, 2137. [Google Scholar] [CrossRef]
- Marinaite, I.I.; Sorokovikova, L.M.; Sinyukovich, V.N.; Zhuchenko, N.A.; Onishchuk, N.A.; Tomberg, I.V. Oil Products in Lake Baikal and Its Tributaries. Water Resour. 2022, 49, 458–466. [Google Scholar] [CrossRef]
- Morozov, S.V.; Shirapova, G.S.; Ermolaeva, O.A.; Chernyak, E.I.; Tkacheva, N.I.; Batoev, V.B.; Mognonov, D.M. Studies of the Behaviour of Persistent Organic Pollutants in the Baikal-Selenga Ecosystem as an Element of the Implementation of the Stockholm Convention. Chem. Sustain. Dev. 2022, 30, 600–611. [Google Scholar] [CrossRef]
- Lucaccioni, L.; Trevisani, V.; Passini, E.; Righi, B.; Plessi, C.; Predieri, B.; Iughetti, L. Perinatal Exposure to Phthalates: From Endocrine to Neurodevelopment Effects. Int. J. Mol. Sci. 2021, 22, 4063. [Google Scholar] [CrossRef] [PubMed]
- Gardner, S.T.; Wood, A.T.; Lester, R.; Onkst, P.E.; Burnham, N.; Perygin, D.H.; Rayburn, J. Assessing differences in toxicity and teratogenicity of three phthalates, Diethyl phthalate, Di-n-propyl phthalate, and Di-n-butyl phthalate, using Xenopus laevis embryos. J. Toxicol. Environ. Health A 2016, 79, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wang, Y.; Yang, M.; Shao, P.; Duan, L.; Li, M.; Zhu, M.; Yang, J.; Jiang, J. Di-(2-ethylhexyl) phthalate induces precocious puberty in adolescent female rats. Iran J. Basic Med. Sci. 2018, 21, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Bisai, K.; Pati, M.K.; Behera, B.K. Hazards of phthalate exposure on fish reproduction—A review. South Asian J. Exp. Biol. 2022, 12, 184–191. [Google Scholar] [CrossRef]
- Bissegger, S.; Pineda Castro, M.A.; Yargeau, V.; Langlois, V.S. Phthalates modulate steroid 5-reductase transcripts in the Western clawed frog embryo. Comparative biochemistry and physiology. Toxicol. Pharmacol. CBP 2018, 213, 39–46. [Google Scholar]
- Jergensen, T.; Cusmano, D.; Roy, N.M. Di-butyl phthalate (DBP) induces craniofacial defects during embryonic development in zebrafish. Ecotoxicology 2019, 28, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Wang, W.; Zhou, J.; Yi, X.; Zhang, J.; Wang, X.; Liu, Z. Screening of high phytotoxicity priority pollutants and their ecological risk assessment in China’s surface waters. Chemosphere 2015, 128, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.T.; Christie, P.; Luo, Y.M.; Teng, Y. Phthalate esters contamination in soil and plants on agricultural land near an electronic waste recycling site. Environ. Geochem. Health 2013, 35, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Du, N.; Wang, L.; Zhang, H.; Zhao, J.; Sun, G.; Wang, P. Physical and chemical indices of cucumber seedling leaves under dibutyl phthalate stress. Environ. Sci. Pollut. Res. 2015, 22, 3477–3488. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, M.J. Phthalate exposure and childhood obesity. Ann. Pediatr. Endocrinol. Metab. 2014, 19, 69–75. [Google Scholar] [CrossRef]
- Sree, C.G.; Buddolla, V.; Lakshmi, B.A.; Kim, Y.-J. Phthalate toxicity mechanisms: An update. Comp. Biochem. Physiol. 2023, 263, 109498. [Google Scholar] [CrossRef]
- Bazarsadueva, S.V.; Taraskin, V.V.; Budaeva, O.D.; Nikitina, E.P.; Zhigzhitzhapova, S.V.; Shiretorova, V.G.; Bazarzhapov, T.Z.; Radnaeva, L.D. First Data on PAE Levels in Surface Water in Lakes of the Eastern Coast of Baikal. Int. J. Environ. Res. Public Health 2023, 20, 1173. [Google Scholar] [CrossRef]
- U.S. EPA. Regional Screening Level (RSL)–Generic Tables. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 28 November 2023).
- Wu, B.; Zhang, Y.; Zhang, X.; Cheng, S. Health risk from exposure of organic pollutants through drinking water consumption in Nanjing, China. Bull. Environ. Contam. Toxicol. 2010, 84, 46–50. [Google Scholar] [CrossRef]
- Dong, L.; Lin, L.; Pan, X.; Zhang, S.; Lv, Z.; Mi, C. Distribution Dynamics of Phthalate Esters in Surface Water and Sediment of the Middle-Lower Hanjiang River, China. Int. J. Environ. Res. Public Health 2022, 19, 2702. [Google Scholar] [CrossRef]
- Liang, X.; Junaid, M.; Wang, Z.; Li, T.; Xu, N. Spatiotemporal distribution, source apportionment and ecological risk assessment of PBDEs and PAHs in the Guanlan River from rapidly urbanizing areas of Shenzhen, China. Environ. Pollut. 2019, 250, 695–707. [Google Scholar] [CrossRef]
- Sorokovikova, L.M.; Popovskaya, G.I.; Tomberg, I.V.; Bashenkhaeva, N.V. Space and time variations in concentrations of biogenic and organic matter and phytoplankton in the water of the Selenga River and its delta branches. Water Resour. 2009, 36, 443–452. [Google Scholar] [CrossRef]
- Tomberg, I.V.; Sinyukovich, V.N.; Sorokovikova, L.M.; Radnaeva, L.D.; Pavlov, I.A.; Shiretorova, V.G.; Chernyshov, M.S.; Tulokhonov, A.K. Characteristics of the water chemical composition in the Selenga river during the 2017–2018 winter low-water period. Geogr. Nat. Resour. 2020, 3, 81–88. [Google Scholar] [CrossRef]
- Li, T.; Liu, Y.; Li, M.; Qian, X.; Dai, S.Y. Mask or no mask for COVID-19: A public health and market study. PLoS ONE 2020, 15, e0237691. [Google Scholar] [CrossRef] [PubMed]
- Aragaw, T.A. Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Mar. Pollut. Bull. 2020, 159, 111517. [Google Scholar] [CrossRef] [PubMed]
- Fadare, O.O.; Okoffo, E.D. COVID-19 face masks: A potential source of microplastic fibers in the environment. Sci. Total Environ. 2020, 737, 140279. [Google Scholar] [CrossRef]
- Patricio Silva, A.L.; Prata, J.C.; Walker, T.R.; Duarte, A.C.; Ouyang, W.; Barcelo, D.; Rocha-Santos, T. Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chem. Eng. J. 2021, 405, 126683. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Face Masks & Marine Plastic Pollution Oceans Asia. Available online: https://oceansasia.org/covid-19-facemasks (accessed on 23 July 2023).
- Farooq, A.; Lee, J.; Song, H.; Hyun Ko, C.; Lee, I.; Kim, Y.; Rhee, G.H.; Pyo, S.; Park, Y. Valorization of hazardous COVID-19 mask waste while minimizing hazardous byproducts using catalytic gasification. J. Hazard Mater. 2022, 423, 127222. [Google Scholar] [CrossRef]
- Saadat, S.; Rawtani, D.; Hussain, C.M. Environmental perspective of COVID-19. Sci. Total Environ. 2020, 728, 138870. [Google Scholar] [CrossRef]
- Lyche, J.L. 1 Phthalates. In Reproductive and Developmental Toxicology, 2nd ed.; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 829–856. [Google Scholar] [CrossRef]
- Guo, Y.; Kannan, K. A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure. Environ. Sci. Technol. 2013, 47, 14442–14449. [Google Scholar] [CrossRef] [PubMed]
- De-la-Torre, G.E.; Dioses-Salinas, D.C.; Dobaradaran, S.; Spitz, J.; Nabipour, I.; Keshtkar, M.; Akhbarizadeh, R.; Tangestani, M.; Abedi, D.; Javanfekr, F. Release of phthalate esters (PAEs) and microplastics (MPs) from face masks and gloves during the COVID-19 pandemic. Environ. Res. 2022, 215, 2. [Google Scholar] [CrossRef] [PubMed]
- Idowu, G.A.; Olalemi, A.O.; Aiyesanmi, A.F. Environmental impacts of COVID-19 pandemic: Release of microplastics, organic contaminants and trace metals from face masks under ambient environmental conditions. Environ. Res. 2023, 217, 114956. [Google Scholar] [CrossRef]
- SanPiN 1.2.3685-21 Hygienic Standards and Requirements to Ensure Safety and (or) Harmful for Human Environmental Factors. Available online: https://faolex.fao.org/docs/pdf/taj183394.pdf (accessed on 30 November 2023).
- World Health Organization. Global Assessment of the State-of-the-Science of Endocrine Disruptors. Available online: https://apps.who.int/iris/handle/10665/67357 (accessed on 28 November 2023).
- Lei, Y.D.; Wania, F. Is rain or snow a more efficient scavenger of organic chemicals? Atmos. Environ. 2004, 38, 3557–3571. [Google Scholar] [CrossRef]
- Herbert, B.M.J.; Villa, S.; Halsall, C.J. Chemical interactions with snow: Understanding the behavior and fate of semi-volatile organic compounds in snow. Ecotoxicol. Environ. Saf. 2006, 63, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Gomboev, B.O.; Dambueva, I.K.; Khankhareev, S.S.; Batomunkuev, V.S.; Zangeeva, N.R.; Tsydypov, V.E.; Sharaldaev, B.B.; Badmaev, A.G.; Zhamyanov, D.T.-D.; Bagaeva, E.E.; et al. Atmospheric Air Pollution by Stationary Sources in Ulan-Ude (Buryatia, Russia) and Its Impact on Public Health. Int. J. Environ. Res. Public Health 2022, 19, 16385. [Google Scholar] [CrossRef]
- Kotowska, U.; Kapelewska, J.; Sawczuk, R. Occurrence, removal, and environmental risk of phthalates in wastewaters, landfill leachates, and groundwater in Poland. Environ. Pollut. 2020, 267, 115643. [Google Scholar] [CrossRef]
- Berg, A.; Gasperi, J.; Rocher, V. Phthalates and alkylphenols in industrial and domestic effluents: Case of Paris conurbation (France). Sci. Total Environ. 2020, 488–489, 26–35. [Google Scholar] [CrossRef]
- Strotmann, U.; Pastor Flores, D.; Konrad, O.; Gendig, C. Bacterial Toxicity Testing: Modification and Evaluation of the Luminescent Bacteria Test and the Respiration Inhibition Test. Processes 2020, 8, 1349. [Google Scholar] [CrossRef]
- Strotmann, U.; Thouand, G.; Pagga, U.; Gartiser, S.; Heipieper, H.J. Toward the future of OECD/ISO biodegradability testing-new approaches and developments. Appl. Microbiol. Biotechnol. 2023, 107, 2073–2095. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA Office of Emergency and Remedial Response. Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (Part A). EPA/540/1-89/002. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part (accessed on 28 November 2023).
- Selvaraj, K.K.; Sundaramoorthy, G.; Ravichandran, P.K.; Girijan, G.K.; Sampath, S.; Ramaswamy, B.R. Phthalate esters in water and sediments of the Kaveri River, India: Environmental levels and ecotoxicological evaluations. Environ. Geochem. Health 2015, 37, 83–96. [Google Scholar] [CrossRef]
- Li, X.; Yin, P.; Zhao, L. Phthalate esters in water and surface sediments of the Pearl River Estuary: Distribution, ecological, and human health risks. Environ. Sci. Pollut. Res. Int. 2016, 23, 19341–19349. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, B.R.; Shanmugam, G.; Velu, G.; Rengarajan, B.; Larsson, D.G. GC-MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers. J. Hazard. Mater. 2011, 186, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
Site Number | Sampling Site | Location |
---|---|---|
1 | upstream of Ulan-Ude | N 51°43′41.5″ E 107°27′46.0″ |
2 | downstream of Ulan-Ude (after RBTF) | N 51°52′55.5″ E 107°31′15.1″ |
3 | downstream of Ulan-Ude (after LBTF) | N 52°0′6.9″ E 107°28′45.8″ |
4 | Kabansk | N 52°5′42.4″ E 106°37′50.0″ |
5 | Levoberezhnaya | N 52°9′30.6″ E 106°18′37.0″ |
6 | Kharauz | N 52°16′29.5″ E 106°15′28.8″ |
7 | Galutai | N 52°17′1.7″ E 106°17′47.4″ |
8 | Srednyaya | N 52°20′19.9″ E 106°21′49.0″ |
9 | Severnaya | N 52°20′12.9″ E 106°30′41.7″ |
10 | Lobanovskaya | N 52°18′19.1″ E 106°45′55.5″ |
RBTF | LBTF | |||
---|---|---|---|---|
Inlet | Discharge to the River | Inlet | Discharge to the River | |
DMP | 6.92 | 0.52 | 8.57 | 1.39 |
DEP | 52.59 | 0.43 | 54.72 | 0.46 |
DBP | 4.63 | 1.13 | 2.85 | 0.52 |
BBP | 0.35 | 0.46 | 0.00 | 0.09 |
DEHP | 1.09 | 5.00 | 0.75 | 0.53 |
DnOP | 0.00 | 0.00 | 0.00 | 0.05 |
Σ6PAE | 65.59 | 7.55 | 66.90 | 3.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taraskin, V.V.; Budaeva, O.D.; Nikitina, E.P.; Shiretorova, V.G.; Bazarsadueva, S.V.; Nikolaev, Y.N.; Tykheev, Z.A.; Zhigzhitzhapova, S.V.; Bazarzhapov, T.Z.; Pintaeva, E.T.; et al. Phthalates in Surface Waters of the Selenga River (Main Tributary of Lake Baikal) and Its Delta: Spatial-Temporal Distribution and Environmental Risk Assessment. Water 2024, 16, 525. https://doi.org/10.3390/w16040525
Taraskin VV, Budaeva OD, Nikitina EP, Shiretorova VG, Bazarsadueva SV, Nikolaev YN, Tykheev ZA, Zhigzhitzhapova SV, Bazarzhapov TZ, Pintaeva ET, et al. Phthalates in Surface Waters of the Selenga River (Main Tributary of Lake Baikal) and Its Delta: Spatial-Temporal Distribution and Environmental Risk Assessment. Water. 2024; 16(4):525. https://doi.org/10.3390/w16040525
Chicago/Turabian StyleTaraskin, Vasilii V., Olga D. Budaeva, Elena P. Nikitina, Valentina G. Shiretorova, Selmeg V. Bazarsadueva, Yuri N. Nikolaev, Zhargal A. Tykheev, Svetlana V. Zhigzhitzhapova, Tcogto Zh. Bazarzhapov, Evgeniya Ts. Pintaeva, and et al. 2024. "Phthalates in Surface Waters of the Selenga River (Main Tributary of Lake Baikal) and Its Delta: Spatial-Temporal Distribution and Environmental Risk Assessment" Water 16, no. 4: 525. https://doi.org/10.3390/w16040525
APA StyleTaraskin, V. V., Budaeva, O. D., Nikitina, E. P., Shiretorova, V. G., Bazarsadueva, S. V., Nikolaev, Y. N., Tykheev, Z. A., Zhigzhitzhapova, S. V., Bazarzhapov, T. Z., Pintaeva, E. T., Radnaeva, L. D., Ayurzhanaev, A. A., Shirapova, S. D., Tsyrendorzhieva, T. B., Batorova, G. N., & Garmaev, E. Z. (2024). Phthalates in Surface Waters of the Selenga River (Main Tributary of Lake Baikal) and Its Delta: Spatial-Temporal Distribution and Environmental Risk Assessment. Water, 16(4), 525. https://doi.org/10.3390/w16040525