The Influence of Regional Groundwater Flow and a Neighbouring River on the Behaviour of an Aquifer Thermal Energy Storage System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Geological Conditions
2.3. Groundwater Conditions
2.4. Climate Conditions
2.5. Well Locations and Operating Conditions
2.6. Governing Equations
2.7. Model Domain and Meshing
2.8. Model Parameters
2.9. Boundary and Initial Conditions
2.10. Simulation
3. Results and Discussion
3.1. System at 75 m from the River
3.2. System at 300 m from the River
3.3. Seepage Velocity Direction Map
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Climate Change: Atmospheric Carbon Dioxide. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide (accessed on 1 December 2023).
- Total Energy Supply, 2020, Middle East. Available online: https://www.iea.org/regions/middle-east (accessed on 1 December 2023).
- Tawfeeq, A.H.; Hayder, A.M.; Ali, A.H. The Essential factors to reduce energy consumption in Iraq. In Proceedings of the 3rd International Scientific Conference of Alkafeel University, Najaf, Iraq, 22–23 March 2021. [Google Scholar]
- CO2 Emissions (kt)—Iraq. Available online: https://data.worldbank.org/indicator/EN.ATM.CO2E.KT?locations=IQ (accessed on 1 December 2023).
- Alva, C.A.; Gould, T.; Kim, T.Y.; Mackey, P.; McGlade, C.; Olejarnik, P.; Walton, M.A.; Wanner, B. Iraq’s Energy Sector: A Roadmap to a Brighter Future; International Energy Agency: Paris, France, 2019; pp. 5–45. [Google Scholar]
- Fleuchaus, P.; Schüppler, S.; Godschalk, B.; Bakema, G.; Blum, P. Performance analysis of aquifer thermal energy storage (ATES). Renew. Energy 2020, 146, 1536–1548. [Google Scholar] [CrossRef]
- Stemmle, R.; Blum, P.; Schüppler, S.; Fleuchaus, P.; Limoges, M.; Bayer, P.; Menberg, K. Environmental impacts of aquifer thermal energy storage (ATES). Renew. Sustain. Energy Rev. 2021, 151, 111560. [Google Scholar] [CrossRef]
- Yang, T.; Liu, W.; Kramer, G.J.; Sun, Q. Seasonal thermal energy storage: A techno-economic literature review. Renew. Sustain. Energy Rev. 2021, 139, 110732. [Google Scholar] [CrossRef]
- Bloemendal, M.; Jaxa-Rozen, M.; Olsthoorn, T. Methods for planning of ATES systems. Appl. Energy 2018, 216, 534–557. [Google Scholar] [CrossRef]
- Fleuchaus, P.; Godschalk, B.; Stober, I.; Blum, P. Worldwide application of aquifer thermal energy storage–A review. Renew. Sustain. Energy Rev. 2018, 94, 861–876. [Google Scholar] [CrossRef]
- Schüppler, S.; Fleuchaus, P.; Blum, P. Techno-economic and environmental analysis of an Aquifer Thermal Energy Storage (ATES) in Germany. Geotherm. Energy 2019, 7, 11. [Google Scholar] [CrossRef]
- Amiri Delouei, A.; Sajjadi, H.; Ahmadi, G. Ultrasonic vibration technology to improve the thermal performance of CPU water-cooling systems: Experimental investigation. Water 2022, 14, 4000. [Google Scholar] [CrossRef]
- Bloemendal, M.; Olsthoorn, T.; Boons, F. How to achieve optimal and sustainable use of the subsurface for aquifer thermal energy storage. Energy Policy 2014, 66, 104–114. [Google Scholar] [CrossRef]
- Birdsell, D.T.; Adams, B.M.; Saar, M.O. Minimum transmissivity and optimal well spacing and flow rate for high-temperature aquifer thermal energy storage. Appl. Energy 2021, 289, 116658. [Google Scholar] [CrossRef]
- Bloemendal, M.; Olsthoorn, T. ATES systems in aquifers with high ambient groundwater flow velocity. Geothermics 2018, 75, 81–92. [Google Scholar] [CrossRef]
- Schmidt, T.; Pauschinger, T.; Sørensen, P.A.; Snijders, A.; Djebbar, R.; Boulter, R.; Thornton, J. Design aspects for large-scale pit and aquifer thermal energy storage for district heating and cooling. Energy Procedia 2018, 149, 585–594. [Google Scholar] [CrossRef]
- Fakhari, M.; Raymond, J.; Martel, R.; Drolet, J.-P.; Dugdale, S.J.; Bergeron, N. Analysis of large-scale groundwater-driven cooling zones in rivers using thermal infrared imagery and radon measurements. Water 2023, 15, 873. [Google Scholar] [CrossRef]
- Brielmann, H.; Griebler, C.; Schmidt, S.I.; Michel, R.; Lueders, T. Effects of thermal energy discharge on shallow groundwater ecosystems. FEMS Microbiol. Ecol. 2009, 68, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Bonte, M.; Stuyfzand, P.J.; Hulsmann, A.; Van Beelen, P. Underground thermal energy storage: Environmental risks and policy developments in the Netherlands and European Union. Ecol. Soc. 2011, 16, 22. [Google Scholar] [CrossRef]
- Al-Madhlom, Q.; Al-Ansari, N.; Hamza, B.A.; Laue, J.; Hussain, H.M. Seepage velocity: Large scale mapping and the evaluation of two different aquifer conditions (silty clayey and sandy). Hydrology 2020, 7, 60. [Google Scholar] [CrossRef]
- Yacoub, S.Y. Geomorphology of the Mesopotamia Plain. Iraqi Bull. Geol. Min. (Spec. Issue) 2011, 4, 7–32. [Google Scholar]
- Yacoub, S.Y. Stratigraphy of the Mesopotamia Plain. Iraqi Bull. Geol. Min. (Spec. Issue) 2011, 4, 47–82. [Google Scholar]
- Al-Jiburi, H.K.; Al-Basrawi, N.H. Hydrogeology of the Mesopotamia plain. Iraqi Bull. Geol. Min. 2011, 4, 83–103. [Google Scholar]
- Al-Jiburi, H.K.; Al-Basrawi, N.H. Hydrogeological map of Iraq, scale 1: 1000 000, 2013. Iraqi Bull. Geol. Min. 2015, 11, 17–26. [Google Scholar]
- Alwan, I.A.; Karim, H.H.; Aziz, N.A. Agro-climatic zones (ACZ) using climate satellite data in Iraq Republic. In Proceeding of the 2nd International Conference on Sustainable Engineering Techniques, Baghdad, Iraq, 6–7 March 2019. [Google Scholar]
- Tabari, H.; Willems, P. Seasonally varying footprint of climate change on precipitation in the Middle East. Sci. Rep. 2018, 8, 4435. [Google Scholar] [CrossRef]
- Kim, J.; Park, Y.; Harmon, T.C. Real-time model parameter estimation for analyzing transport in porous media. Groundw. Monit. Remediat. 2005, 25, 78–86. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, P.P. MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User’s Guide; US Army Corps of Engineers: Washington, DC, USA, 1999. [Google Scholar]
- Bakr, M.; Van Oostrom, N.; Sommer, W. Efficiency of and interference among multiple aquifer thermal energy storage systems; A Dutch case study. Renew. Energy 2013, 60, 53–62. [Google Scholar] [CrossRef]
- Al-Dabbas, M.; Al-Jabbari, M. Geometric properties of the River Euphrates, Iraq: The nature of its slope variation. In Proceedings of the Sediment Dynamics and the Hydromorphology of Fluvial Systems, Dundee, UK, 3–7 July 2006. [Google Scholar]
- AL-Abbas, R.; Hommadi, A.; Abbas, A.; Essa, H.; Nheir, A. Checking the safety of Alhindya barrage foundation from uplift pressure and seepage ratio with variation of discharge and water level. In Proceeding of the International Conference on Civil and Environmental Engineering Technology, Al-Najaf, Iraq, 23–24 April 2019. [Google Scholar]
- Jasim, N. Estimation of sediments transport of Euphrates River branches within Babylon city using a mathematical model. J. Eng. Sci. Technol. 2020, 15, 2163–2177. [Google Scholar]
- Rahi, K.; Halihan, T. Changes in the salinity of the Euphrates River system in Iraq. Reg. Environ. Change 2010, 10, 27–35. [Google Scholar] [CrossRef]
- Bloemendal, M.; Hartog, N. Analysis of the impact of storage conditions on the thermal recovery efficiency of low-temperature ATES systems. Geothermics 2018, 71, 306–319. [Google Scholar] [CrossRef]
ATES System | Warm Well | Cold Well | Distance between the System and the River (m) | ||||
---|---|---|---|---|---|---|---|
Well No. | X(UTM) | Y(UTM) | Well No. | X(UTM) | Y(UTM) | ||
1 | W1 | 447,247 | 3,594,779 | C1 | 447,316 | 3,594,706 | 75 |
2 | W2 | 447,614 | 3,594,706 | C2 | 447,658 | 3,594,611 | 300 |
Property | Value | |
---|---|---|
Aquifer density | 1700 kg/m3 | |
Water density | 1000 kg/m3 | |
Compressibility of the water | 1 × 10−8 Pa−1 | |
Viscosity of the water | 0.001 kg/m·d | |
Dispersion | 10 m | |
Total porosity | 0.3 | |
Specific yield | 0.2 | |
Specific storage (Ss) | 1 × 10−5 m−1 | |
Distribution coefficient (Kd) | 2.1 × 10−7 L/mg | |
Upper semi-permeable confining layer | Hydraulic conductivity x-direction (Kx) | 1 × 10−7 m/s |
Hydraulic conductivity y-direction (Ky) | 1 × 10−7 m/s | |
Hydraulic conductivity z-direction (Kz) | 1 × 10−8 m/s | |
Aquifer | Hydraulic conductivity x-direction (Kx) | 1 × 10−5 m/s |
Hydraulic conductivity y-direction (Ky) | 1 × 10−5 m/s | |
Hydraulic conductivity z-direction (Kz) | 1 × 10−6 m/s | |
Lower semi-permeable confining layer | Hydraulic conductivity x-direction (Kx) | 1 × 10−7 m/s |
Hydraulic conductivity y-direction (Ky) | 1 × 10−7 m/s | |
Hydraulic conductivity z-direction (Kz) | 1 × 10−8 m/s |
Conditions | Euphrates Upstream of Hindiyah Barrage | Euphrates Downstream of Hindiyah Barrage | Shatt Al-Hilla | |||
---|---|---|---|---|---|---|
a | b | c | d | e | f | |
Stage (m) 2, 3 | 36.1 | 31.7 | 26.85 | 24.88 | 29.6 | 27.6 |
Bottom (m) 2, 4 | 33.1 | 27.3 | 23.3 | 19.6 | 26.4 | 24.4 |
Riverbed thickness (m) 2 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
River width (m) 4 | 240 | 140 | 120 | 100 | 73 | 60 |
River conductivity (m/s) 5 | 1 × 10−6 | 1 × 10−6 | 1 × 10−6 | 1 × 10−6 | 1 × 10−4 | 1 × 10−4 |
Temperature (°C) 6 | 24 | 24 | 24 | 24 | 24 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Madhlom, Q.H.M.; Jassim, S.A.; Muttaleb, R.H.M. The Influence of Regional Groundwater Flow and a Neighbouring River on the Behaviour of an Aquifer Thermal Energy Storage System. Water 2024, 16, 548. https://doi.org/10.3390/w16040548
Al-Madhlom QHM, Jassim SA, Muttaleb RHM. The Influence of Regional Groundwater Flow and a Neighbouring River on the Behaviour of an Aquifer Thermal Energy Storage System. Water. 2024; 16(4):548. https://doi.org/10.3390/w16040548
Chicago/Turabian StyleAl-Madhlom, Qais H. M., Sanaa A. Jassim, and Riyadh H. M. Muttaleb. 2024. "The Influence of Regional Groundwater Flow and a Neighbouring River on the Behaviour of an Aquifer Thermal Energy Storage System" Water 16, no. 4: 548. https://doi.org/10.3390/w16040548
APA StyleAl-Madhlom, Q. H. M., Jassim, S. A., & Muttaleb, R. H. M. (2024). The Influence of Regional Groundwater Flow and a Neighbouring River on the Behaviour of an Aquifer Thermal Energy Storage System. Water, 16(4), 548. https://doi.org/10.3390/w16040548