Assessment of the Impact of Spatial Variability on Streamflow Predictions Using High-Resolution Modeling and Parameter Estimation: Case Study of Geumho River Catchment, South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methodology
2.2.1. WRF-Hydro
2.2.2. PEST
2.2.3. Assessment Index
3. Results
3.1. Comparative Analysis of Streamflow Predictions with Varying Spatial Resolution
3.2. Impact of Scale-Specific Parameter Estimation on Streamflow Simulation
4. Conclusions
- In the simulations without calibration using the default parameter set, 100 m resolution exhibited superior performance in terms of NSE, although calibration was deemed necessary for Rainfall Event 2 (Rainfall Event 1 NSE: 0.868; Rainfall Event 2 NSE: 0.058).
- For Rainfall Event 2, the NSE and RMSE results of calibrated simulations indicated significant improvement compared to those for Rainfall Event 1. In particular, at 250 m resolution, the NSE was 0.9 or higher at all gauges, with the evaluation index value more than doubled relative to no-calibration cases, thereby indicating more effective calibration compared to other resolutions.
- Calibration runtime for calibrating PEST parameters varied significantly across resolutions and rainfall events. In particular, for Event 2 with a drier hydrological initial condition, the calibration runtimes at 100 m and 500 m resolutions nearly doubled compared to those for Event 1. For 250 m resolution, there was no significant difference in the calibrated parameters between Rainfall Events 1 and 2 (calibrated parameter of Rainfall Event 1: 0.203; Rainfall Event 2: 0.158).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maxwell, R.M.; Condon, L.E.; Kollet, S.J. A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3. Geosci. Model Dev. 2015, 8, 923–937. [Google Scholar] [CrossRef]
- Abbaszadeh, P.; Gavahi, K.; Moradkhani, H. Multivariate remotely sensed and in-situ data assimilation for enhancing community WRF-Hydro model forecasting. Adv. Water Resour. 2020, 145, 103721. [Google Scholar] [CrossRef]
- Moges, E.; Demissie, Y.; Li, H. Uncertainty propagation in coupled hydrological models using winding stairs and null-space Monte Carlo methods. J. Hydrol. 2020, 589, 125341. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Xu, H. Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization. Hydrol. Earth Syst. Sci. 2016, 20, 375–392. [Google Scholar] [CrossRef]
- Verri, G.; Pinardi, N.; Gochis, D.; Tribbia, J.; Navarra, A.; Coppini, G.; Vukicevic, T. A meteo-hydrological modelling system for the reconstruction of river runoff: The case of the Ofanto river catchment. Nat. Hazards Earth Syst. Sci. 2017, 17, 1741–1761. [Google Scholar] [CrossRef]
- Tolson, B.A.; Shoemaker, C.A. Cannonsville Reservoir Watershed SWAT2000 model development, calibration and validation. J. Hydrol. 2007, 337, 68–86. [Google Scholar] [CrossRef]
- Setegn, S.G.; Srinivasan, R.; Melesse, A.M.; Dargahi, B. SWAT model application and prediction uncertainty analysis in the Lake Tana Basin, Ethiopia. Hydrol. Process. Int. J. 2010, 24, 357–367. [Google Scholar] [CrossRef]
- Senatore, A.; Mendicino, G.; Gochis, D.J.; Yu, W.; Yates, D.N.; Kunstmann, H. Fully coupled atmosphere-hydrology simulations for the central Mediterranean: Impact of enhanced hydrological parameterization for short and long time scales. J. Adv. Model. Earth Syst. 2015, 7, 1693–1715. [Google Scholar] [CrossRef]
- Naabil, E.; Kouadio, K.; Lamptey, B.; Annor, T.; Chukwudi Achugbu, I. Tono basin climate modeling, the potential advantage of fully coupled WRF/WRF-Hydro modeling System. Model. Earth Syst. Environ. 2023, 9, 1669–1679. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Li, C.; Liu, Y.; Yu, F.; Yu, E. An Evaluation Study of the Fully Coupled WRF/WRF-Hydro Modeling System for Simulation of Storm Events with Different Rainfall Evenness in Space and Time. Water 2020, 12, 1209. [Google Scholar] [CrossRef]
- Lee, J.; Kim, Y.; Wang, D. Assessing the characteristics of recent drought events in South Korea using WRF-Hydro. J. Hydrol. 2022, 607, 127459. [Google Scholar] [CrossRef]
- Cho, K.; Kim, Y. Improving streamflow prediction in the WRF-Hydro model with LSTM networks. J. Hydrol. 2022, 605, 127297. [Google Scholar] [CrossRef]
- Liu, S.; Wang, J.; Wang, H.; Wu, Y. Post-processing of hydrological model simulations using the convolutional neural network and support vector regression. Hydrol. Res. 2022, 53, 605–621. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, P.; Gao, S.; Fang, Z. Understanding the re-infiltration process to simulating streamflow in North Central Texas using the WRF-hydro modeling system. J. Hydrol. 2020, 587, 124902. [Google Scholar] [CrossRef]
- Kim, S.; Shen, H.; Noh, S.; Seo, D.J.; Welles, E.; Pelgrim, E.; Weerts, A.; Lyons, E.; Philips, B. High-resolution modeling and prediction of urban floods using WRF-Hydro and data assimilation. J. Hydrol. 2021, 598, 126236. [Google Scholar] [CrossRef]
- Abbas, S.A.; Bailey, R.T.; White, J.T.; Arnold, J.G.; White, M.J.; Čerkasova, N.; Gao, J. A framework for parameter estimation, sensitivity analysis, and uncertainty analysis for holistic hydrologic modeling using SWAT+. Hydrol. Earth Syst. Sci. 2024, 28, 21–48. [Google Scholar] [CrossRef]
- De Wit, J.A.; Van Huijgevoort, M.H.; Van Dam, J.C.; Van Den Eertwegh, G.A.; Van Deijl, D.; Ritsema, C.J.; Bartholomeus, R.P. Hydrological consequences of controlled drainage with subirrigation. J. Hydrol. 2024, 628, 130432. [Google Scholar] [CrossRef]
- Fersch, B.; Senatore, A.; Adler, B.; Arnault, J.; Mauder, M.; Schneider, K.; Völksch, I.; Kunstmann, H. High-resolution fully coupled atmospheric–hydrological modeling: A cross-compartment regional water and energy cycle evaluation. Hydrol. Earth Syst. Sci. 2020, 24, 2457–2481. [Google Scholar] [CrossRef]
- Sofokleous, I.; Bruggeman, A.; Camera, C.; Eliades, M. Grid-based calibration of the WRF-Hydro with Noah-MP model with improved groundwater and transpiration process equations. J. Hydrol. 2023, 617, 128991. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Rao, V.; Orr, A.; Yan, E.; Kotamarthi, R. A parallel workflow implementation for PEST version 13.6 in high-performance computing for WRF-Hydro version 5.0: A case study over the midwestern United States. Geosci. Model Dev. 2019, 12, 3523–3539. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 2011, 116, D12109. [Google Scholar] [CrossRef]
- Gochis, D.J.; Yu, W.; Yates, D.N. The WRF-Hydro Model Technical Description and User’s Guide; Version 1.0, NCAR Technical Document; NCAR: Boulder, CO, USA, 2013; 120p. [Google Scholar]
- Downer, C.W.; Ogden, F.L.; Martin, W.D.; Harmon, R.S. Theory, development, and applicability of the surface water hydrologic model CASC2D. Hydrol. Process. 2002, 16, 255–275. [Google Scholar] [CrossRef]
- Gupta, H.; Sorooshian, S.; Hogue, T.; Boyle, D. Advances in automatic calibration of watershed models. Calibration Watershed Model. 2003, 6, 9–28. [Google Scholar] [CrossRef]
- Schaake, J.C.; Koren, V.I.; Duan, Q.Y.; Mitchell, K.; Chen, F. Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res. Atmos. 1996, 101, 7461–7475. [Google Scholar] [CrossRef]
- Gochis, D.; Barlage, M.; Dugger, A.; FitzGerald, K.; Karsten, L.; McAllister, M.; McCreight, J.; Mills, J.; Pan, L.; Rafieeinasab, A.; et al. WRF-Hydro Model Source Code Version 5; Medium: Fortran90; UCAR/NCAR: Boulder, CO, USA, 2018. [Google Scholar] [CrossRef]
- Doherty, J. Manual for PEST, 5th ed.; Watermark Numerical Computing: Brisbane, Australia, 2002. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
Rainfall Event | Warm-Up Period | Simulation Period |
---|---|---|
Event 1 | 1 July–5 August 2020 | 5–13 August 2020 |
Event 2 | 1 July–1 August 2022 | 1–9 September 2022 |
Resolution | No. LSM Grids | No. Routing Grids | No. Channel Grids |
---|---|---|---|
100 m | 459,441 (639 × 719) | 459,441 | 9804 |
250 m | 72,865 (247 × 295) | 72,865 | 1484 |
500 m | 18,081 (123 × 147) | 18,081 | 378 |
Calibrated Parameter | Range |
---|---|
50–200 | |
C | 0.5–1.5 |
E | 1–4 |
Event | Forecast Gauges | Resolution | RMSE (m3/s) | NSE | ||
---|---|---|---|---|---|---|
No Calibration | Calibrated | No Calibration | Calibrated | |||
Event 1 | Gangchang | 100 m | 147.9 | 135.5 | 0.868 | 0.889 |
250 m | 245.1 | 168.5 | 0.266 | 0.843 | ||
500 m | 250.4 | 134.7 | 0.476 | 0.872 | ||
Ansim | 100 m | 124.6 | 109.9 | 0.791 | 0.841 | |
250 m | 160.6 | 111.9 | 0.255 | 0.794 | ||
500 m | 169.1 | 89.5 | 0.524 | 0.906 | ||
Geumchang | 100 m | 85.5 | 85.4 | 0.832 | 0.848 | |
250 m | 118.5 | 106.0 | 0.277 | 0.644 | ||
500 m | 108.8 | 83.2 | 0.427 | 0.808 | ||
Event 2 | Gangchang | 100 m | 113.6 | 43.7 | 0.058 | 0.938 |
250 m | 127.0 | 37.5 | −0.187 | 0.972 | ||
500 m | 153.4 | 33.5 | −0.322 | 0.971 | ||
Ansim | 100 m | 100.3 | 60.2 | −0.053 | 0.742 | |
250 m | 111.1 | 44.7 | −0.145 | 0.934 | ||
500 m | 129.0 | 38.6 | −0.244 | 0.928 | ||
Geumchang | 100 m | 75.8 | 38.4 | −0.058 | 0.684 | |
250 m | 74.9 | 29.8 | −0.087 | 0.903 | ||
500 m | 82.2 | 26.3 | −0.142 | 0.830 |
ID | Resolution | |||
---|---|---|---|---|
100 m | 250 m | 500 m | ||
Event 1 | 1.283 | 0.203 | 0.555 | |
PEST Runtime (min) | 216 | 71 | 54 | |
Event 2 | 0.079 | 0.158 | 0.070 | |
PEST Runtime (min) | 695 | 90 | 125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.; Lee, G.; Lee, Y.; Kim, S.; Noh, S.J. Assessment of the Impact of Spatial Variability on Streamflow Predictions Using High-Resolution Modeling and Parameter Estimation: Case Study of Geumho River Catchment, South Korea. Water 2024, 16, 591. https://doi.org/10.3390/w16040591
Kim B, Lee G, Lee Y, Kim S, Noh SJ. Assessment of the Impact of Spatial Variability on Streamflow Predictions Using High-Resolution Modeling and Parameter Estimation: Case Study of Geumho River Catchment, South Korea. Water. 2024; 16(4):591. https://doi.org/10.3390/w16040591
Chicago/Turabian StyleKim, Bomi, Garim Lee, Yaewon Lee, Sohyun Kim, and Seong Jin Noh. 2024. "Assessment of the Impact of Spatial Variability on Streamflow Predictions Using High-Resolution Modeling and Parameter Estimation: Case Study of Geumho River Catchment, South Korea" Water 16, no. 4: 591. https://doi.org/10.3390/w16040591
APA StyleKim, B., Lee, G., Lee, Y., Kim, S., & Noh, S. J. (2024). Assessment of the Impact of Spatial Variability on Streamflow Predictions Using High-Resolution Modeling and Parameter Estimation: Case Study of Geumho River Catchment, South Korea. Water, 16(4), 591. https://doi.org/10.3390/w16040591