Challenges to Water Resource Management: The Role of Economic and Modeling Approaches
Abstract
:1. Introduction—Water Shocks and Future Projections of Water Availability, Quality, and Use
2. Materials and Methods
3. Physical Changes Faced by and Introduced by Water Users
3.1. Changes to Water Scarcity Levels
3.2. Changes to Water Quality
3.3. Impacts of External Shocks (Droughts and Floods)
3.3.1. Droughts
3.3.2. Floods
3.4. Changes in Use of Water Sources (Surface Water, Groundwater, Reclaimed Wastewater, and Desalinated Water)
4. The Role of Technological Advancement in Addressing Water Resource Management Challenges
4.1. Feasibility of Water-Saving Technologies and Pricing
4.2. Feasibility of Water-Pollution-Reduction Technologies
4.3. Adoption of New Technologies (Residential and Agricultural)
5. Management of Internationally Shared Water
6. What Do New Economic Tools and Approaches Have to Offer?
6.1. Experimental Economics
6.2. Game Theory
6.3. Institutional Economics
6.4. Valuation Methods
6.5. Modeling Approaches
6.5.1. Hydro-Economic Modeling
6.5.2. Computable General Equilibrium (CGE)
7. Linking All of the above into One Framework
8. Unaddressed Issues and Agenda for Future Research
9. Personal Reflections
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shiklomanov, I.A. World freshwater resources. In Water in Crisis: A Guide to the World Fresh Water Resources; Gleick, P.H., Ed.; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Shiklomanov, I.A. Assessment of Water Resources and Water Availability in the World; State Hydrological Institute: St. Petersburg, Russia, 1996. [Google Scholar]
- Shiklomanov, I.A. World Water Resources: An Appraisal for the 21st Century; IHP Report; UNESCO: Paris, France, 1999. [Google Scholar]
- Shiklomanov, I.A. Appraisal and assessment of world water resources. Water Int. 2000, 25, 11–32. [Google Scholar] [CrossRef]
- Clarke, R.; King, J. The Atlas of Water; Earthscan: London, UK, 2004. [Google Scholar]
- Dinar, A.; Tsur, Y. The Economics of Water Resources: A Comprehensive Approach; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 2020, 11, 3044. [Google Scholar] [CrossRef] [PubMed]
- Dinar, A.; Tieu, A.; Huynh, H. Water scarcity impacts on global food production. Glob. Food Secur. 2019, 23, 212–226. [Google Scholar] [CrossRef]
- Damania, R. The economics of water scarcity and variability. Oxf. Rev. Econ. Policy 2020, 36, 24–44. [Google Scholar] [CrossRef]
- Barbier, E.B. Water and economic growth. Econ. Rec. 2004, 80, 1–16. [Google Scholar] [CrossRef]
- Barbier, E.B. Water and growth in developing countries. In Handbook of Water Economics; Dinar, A., Schwabe, K., Eds.; Edward Elgar: Cheltenham, UK, 2015; pp. 500–512. [Google Scholar]
- Olmstead, S.M. The economics of managing scarce water resources. Rev. Environ. Econ. Policy 2010, 4, 179–198. Available online: https://www.journals.uchicago.edu/doi/full/10.1093/reep/req004 (accessed on 13 February 2024). [CrossRef]
- Garrick, D.E.; Hanemann, M.; Hepburn, C. Rethinking the economics of water: An assessment. Oxf. Rev. Econ. Policy 2020, 36, 1–23. [Google Scholar] [CrossRef]
- Jeuland, M. Review of the state of the art in analysis of the economics of water resources infrastructure. Oxf. Res. Encycl. Environ. Sci. 2021. [Google Scholar] [CrossRef]
- UN-Water. Water Scarcity. Available online: https://www.unwater.org/water-facts/scarcity/ (accessed on 11 August 2022).
- Dolan, F.; Lamontagne, J.; Link, R.; Hejazi, M.; Reed, P.; Edmonds, J. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. 2021, 12, 1915. [Google Scholar] [CrossRef]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Von Gunten, U.V.; Wehrli, B. Global water pollution and human health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. Available online: https://www.annualreviews.org/doi/full/10.1146/annurev-environ-100809-125342 (accessed on 13 February 2024). [CrossRef]
- UNEP (United Nations Environment Programme). A Snapshot of the World’s Water Quality: Towards a Global Assessment; United Nations Environment Programme: Nairobi, Kenya, 2016; Available online: https://wesr.unep.org/media/docs/assessments/unep_wwqa_report_web.pdf (accessed on 13 February 2024).
- Mateo-Sagasta, J.; Zadeh, S.M.; Turral, H.; Burke, J. Water Pollution from Agriculture: A Global Review; FAO: Rome, Italy; IWMI: Colombo, Sri Lanka, 2017; Available online: https://www.fao.org/3/ca0146en/CA0146EN.pdf (accessed on 13 February 2024).
- Lall, U.; Josset, L.; Russo, T. A snapshot of the world’s groundwater challenges. Annu. Rev. Environ. Resour. 2020, 45, 171–194. [Google Scholar] [CrossRef]
- Olmstead, S.M. The economics of water quality. Rev. Environ. Econ. Policy 2010, 4, 44–62. [Google Scholar] [CrossRef]
- Shortle, J.S.; Horan, R.D. The economics of water quality trading. Int. Rev. Environ. Resour. Econ. 2008, 2, 101–133. [Google Scholar] [CrossRef]
- Quinn, N.W.; Dinar, A.; Sridharan, V. Decision support tools for water quality management, special issue. Water 2022, 14, 3644. Available online: https://www.mdpi.com/journal/water/special_issues/decision_support_tools (accessed on 13 February 2024). [CrossRef]
- Tsur, Y.; Zemel, A. Coping with multiple catastrophic threats. Environ. Resour. Econ. 2017, 68, 175–196. [Google Scholar] [CrossRef]
- Tsur, Y.; Zemel, A. Resource management under catastrophic threats. Annu. Rev. Resour. Econ. 2021, 13, 403–425. [Google Scholar] [CrossRef]
- Pourzand, F.; Noy, I. Catastrophic droughts and their economic consequences. In Oxford Research Encyclopedias, Environmental Science; Oxford University Press: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Wilhite, D.A. Drought Assessment, Management and Planning: Theory and Case Studies; Kluwer Academic Publishers: Boston, MA, USA, 1993. [Google Scholar]
- Wilhite, D.A. Drought, a Global Assessment; Routledge Hazards and Disaster Series; Routledge: New York, NY, USA, 2000; Volume 1–2. [Google Scholar]
- Cavallo, E.A.; Noy, I. The economics of natural disasters: A survey. Int. Rev. Environ. Resour. Econ. 2009, 5, 63–102. [Google Scholar] [CrossRef]
- Gil, M.; Garrido, A.; Hernández-Mora, N. Direct and indirect economic impacts of drought in the agri-food sector in the Ebro River basin (Spain). Nat. Hazards Earth Syst. Sci. 2013, 13, 2679–2694. [Google Scholar] [CrossRef]
- Hezron, M.; Gichere, S.; Davis, R.; Hirji, R. Climate Variability and Water Resource Degradation in Kenya: Improving Water Resources Development and Management; World Bank Working Paper No. 69; World Bank: Washington, DC, USA, 2006; Available online: https://openknowledge.worldbank.org/handle/10986/7414 (accessed on 13 February 2024).
- Freire-González, J.; Decker, C.; Hall, J.W. The economic impacts of droughts: A framework for analysis. Ecol. Econ. 2017, 132, 196–204. [Google Scholar] [CrossRef]
- Naumann, G.; Cammalleri, C.; Mentaschi, L.; Feyen, L. Increased economic drought impacts in Europe with anthropogenic warming. Nat. Clim. Chang. 2021, 11, 485–491. [Google Scholar] [CrossRef]
- Desbureaux, S.; Rodella, A.-S. Drought in the city: The economic impact of water scarcity in Latin American metropolitan areas. World Dev. 2018, 114, 13–27. [Google Scholar] [CrossRef]
- Booker, J.F.; Michelsen, A.M.; Ward, F.A. Economic impact of alternative policy responses to prolonged and severe drought in the Rio Grande Basin. Water Resour. Res. 2005, 41, W02026. [Google Scholar] [CrossRef]
- Allaire, M. Editorial—Disaster impacts and adaptation: The economics of flooding. Water Econ. Policy 2022, 8, 2202001. [Google Scholar] [CrossRef]
- Sun, Q.; Mann, J.; Skidmore, M. The impacts of flooding and business activity and employment: A spatial perspective on small business. Water Econ. Policy 2022, 8, 2140003. [Google Scholar] [CrossRef]
- Tonn, G.; Czajkowski, J. Evaluating the risk and complexity of pluvial flood damage in the U.S. Water Econ. Policy 2022, 8, 2240002. [Google Scholar] [CrossRef]
- Ahmed, R.; Barkat, W.; Ahmed, A.; Tahir, M.; Nasir, A.M. The impact of flooding on education of children and adolescents: Evidence from Pakistan. Water Econ. Policy 2022, 8, 2240009. [Google Scholar] [CrossRef]
- Allaire, M. Disparities in disaster assistance: A comparison of the social benefits of flood insurance and compensation. Water Econ. Policy 2020, 6, 2050007. [Google Scholar] [CrossRef]
- Esteban, E. Emerging issues in groundwater sustainability: New challenges. In Oxford Research Encyclopedias, Environmental Science; Oxford University Press: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.P.; Van Beek, L.P.H. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Koundouri, P.; Roseta-Palma, C.; Englezos, N. Out of sight, not out of mind: Developments in economic models of groundwater management. Int. Rev. Environ. Resour. Econ. 2017, 11, 55–96. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Schreiner-McGraw, A.P.; Ajami, H. Delayed response of groundwater to multi-year meteorological droughts in the absence of anthropogenic management. J. Hydrol. 2021, 603 Pt B, 126917. [Google Scholar] [CrossRef]
- Herrera-García, G.; Ezquerro, P.; Tomás, R.; Béjar-Pizarro, M.; López-Vinielles, J.; Rossi, M.; Mateos, R.M.; Carreón-Freyre, D.; Lambert, J.; Teatini, P.; et al. Mapping the global threat of land subsidence. Science 2021, 371, 34–36. [Google Scholar] [CrossRef] [PubMed]
- Esteban, E.; Albiac, J. Groundwater and ecosystems damages: Questioning the Gisser-Sanchez effect. Ecol. Econ. 2011, 70, 2062–2069. [Google Scholar] [CrossRef]
- Esteban, E.; Dinar, A. The role of groundwater-dependent ecosystems in groundwater management. Nat. Resour. Model. 2015, 29, 98–129. [Google Scholar] [CrossRef]
- Esteban, E.; Dinar, A. Cooperative management of groundwater resources in the presence of environmental externalities. Environ. Resour. Econ. 2013, 54, 443–469. [Google Scholar] [CrossRef]
- Molle, F.; Closas, A. Co-management of groundwater: A review. WIREs Water 2019, 7, e1394. [Google Scholar] [CrossRef]
- Esteban, E.; Dinar, A. Modeling sustainable groundwater management: Packaging and sequencing of policy interventions. J. Environ. Manag. 2013, 119, 93–102. [Google Scholar] [CrossRef]
- Pereau, J.-C.; Pryet, A.; Rambonilaza, T. Optimal versus viability in groundwater management with environmental flows. Ecol. Econ. 2019, 161, 109–120. [Google Scholar] [CrossRef]
- Pongkijvorasin, S.; Burnett, K.; Wada, C. Joint management of an interconnected coastal aquifer and invasive tree. Ecol. Econ. 2018, 146, 125–135. [Google Scholar] [CrossRef]
- Reznik, A.; Dinar, A.; Bresney, S.; Forni, L.; Joyce, B.; Wallander, S.; Bigelow, D.; Kan, I. Institutions and the economic efficiency of managed aquifer recharge as a mitigation strategy against drought impacts on irrigated agriculture in California. Water Resour. Res. 2022, 58, e2021WR031261. [Google Scholar] [CrossRef]
- Reznik, A.; Dinar, A.; Hernández-Sancho, F. Reclaimed wastewater reuse: An efficient and sustainable solution for water resource scarcity. Environ. Resour. Econ. 2019, 74, 1647–1685. [Google Scholar] [CrossRef]
- Reznik, A.; Dinar, A. Local conditions and the economic feasibility of urban wastewater recycling in irrigated agriculture: Lessons from a stochastic regional analysis in California. Appl. Econ. Perspect. Policy 2021, 44, 2115–2130. [Google Scholar] [CrossRef]
- Reznik, A.; Jiang, Y.; Dinar, A. The impacts of climate change on wastewater treatment costs: Evidence from the wastewater sector in China. Water 2020, 12, 3272. [Google Scholar] [CrossRef]
- Younos, T. The economics of desalination. J. Contemp. Water Res. Educ. 2005, 132, 39–45. Available online: https://opensiuc.lib.siu.edu/cgi/viewcontent.cgi?article=1050&context=jcwre (accessed on 13 February 2024). [CrossRef]
- Sewilam, H.; Nasr, P. Desalinated water for food production in the Arab Region. In The Water, Energy, and Food Security Nexus in the Arab World; Amer, K.M., Adeel, Z., Boer, B., Saleh, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Chapter 4; pp. 59–81. Available online: https://link.springer.com/chapter/10.1007/978-3-319-48408-2_4 (accessed on 13 February 2024).
- Kaner, A.; Tripler, E.; Hadas, E.; Ben-Gal, A. Feasibility of desalination as an alternative to irrigation with water high in salts. Desalination 2017, 416, 122–128. [Google Scholar] [CrossRef]
- Inman, D.; Jeffrey, P. A review of residential water conservation tool performance and influences on implementation effectiveness. Urban Water J. 2006, 3, 127–143. [Google Scholar] [CrossRef]
- Perry, C.; Steduto, P. Does Improved Irrigation Technology Save Water? A Review of the Evidence; FAO Discussion Paper; FAO: Cairo, Egypt, 2017; Available online: https://www.fao.org/3/I7090EN/i7090en.pdf (accessed on 13 February 2024).
- Pérez-Blanco, C.D.; Hrast-Essenfelder, A.; Perry, C. Irrigation technology and water conservation: A review of the theory and evidence. Rev. Environ. Econ. Policy 2020, 14, 216–239. [Google Scholar] [CrossRef]
- Ward, F.A.; Pulido-Velazquez, M. Water conservation in irrigation can increase water use. Proc. Natl. Acad. Sci. USA 2008, 105, 18215–18220. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Williams, J.; Perry, C.J.; Molle, F.; Ringler, C.; Steduto, P.; Udall, B.; Wheeler, S.A.; Wang, Y.; Garrick, D.; et al. The paradox of irrigation efficiency. Science 2018, 361, 748–750. [Google Scholar] [CrossRef]
- Dinar, A.; Zilberman, D. (Eds.) The Economics and Management of Water and Drainage in Agriculture; Kluwer Academic Publishers: Boston, MA, USA, 1991. [Google Scholar]
- Siderius, C.; Biemans, H.; Conway, D.; Immerzeel, W.; Jaegermeyr, J.; Ahmad, B.; Hellegers, P. Financial feasibility of water conservation in agriculture. Earth’s Future 2021, 9, e2020EF001726. [Google Scholar] [CrossRef]
- Vatta, K.; Sidhu, R.S.; Lall, U.; Birthal, P.S.; Taneja, G.; Kaur, B.; Devineni, N.; MacAlister, C. Assessing the economic impact of a low-cost water-saving irrigation technology in Indian Punjab: The tensiometer. Water Int. 2018, 43, 305–321. [Google Scholar] [CrossRef]
- Nauges, C.; Whittington, D. Evaluating the performance of alternative municipal water tariff designs: Quantifying the tradeoffs between equity, economic efficiency, and cost recovery. World Dev. 2017, 91, 125–143. [Google Scholar] [CrossRef]
- Lu, L.; Deller, D.; Hviid, M. Price and behavioural signals to encourage household water conservation: Implications for the UK. Water Resour. Manag. 2019, 33, 475–491. [Google Scholar] [CrossRef]
- Goffi, A.S.; Trojan, F.; de Lima, J.D.; Lizot, M.; Thesari, S.S. Crossmark economic feasibility for selecting wastewater treatment systems. Water Sci. Technol. 2018, 78, 2518–2531. [Google Scholar] [CrossRef]
- Mayzelle, M.M.; Viers, J.H.; Medellín-Azuara, J.; Harter, T. Economic feasibility of irrigated agricultural land use buffers to reduce groundwater nitrate in rural drinking water sources. Water 2015, 7, 12–37. [Google Scholar] [CrossRef]
- Schaible, G.D.; Aillery, M.L.P. Water Conservation in Irrigated Agriculture: Trends and Challenges in the Face of Emerging Demands; EIB-99; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2012. Available online: https://www.ers.usda.gov/webdocs/publications/44696/30956_eib99.pdf (accessed on 13 February 2024).
- de Witt, M.; de Clercq, W.P.; Velazquez, F.J.B.; Altobelli, F.; Marta, A.D. An in-depth evaluation of personal barriers to technology adoption in irrigated agriculture in South Africa. Outlook Agric. 2021, 50, 259–268. [Google Scholar] [CrossRef]
- Gui, X.; Gou, Z. Regional differences in household water technology adoption: A longitudinal study of Building Sustainability Index-certified dwelling units in New South Wales, Australia. J. Clean. Prod. 2021, 307, 127338. [Google Scholar] [CrossRef]
- Warner, L.A.; Lamm, A.J.; Silvert, C. Diffusion of water-saving irrigation innovations in Florida’s urban residential landscapes. Urban For. Urban Green. 2020, 47, 126540. [Google Scholar] [CrossRef]
- Reints, J.; Dinar, A.; Crowley, D. Dealing with water scarcity and salinity: Adoption of water efficient technologies and management practices by California Avocado Growers. Sustainability 2020, 12, 3555. [Google Scholar] [CrossRef]
- Mukherjee, M.; Schwabe, K. Irrigated Agricultural Adaptation to Water and Climate Variability: The Economic Value of a Water Portfolio. Am. J. Agric. Econ. 2015, 97, 809–832. [Google Scholar] [CrossRef]
- McCracken, M.; Wolf, A.T. Updating the register of international river basins of the world. Int. J. Water Resour. Dev. 2019, 35, 732–782. [Google Scholar] [CrossRef]
- Dinar, S.; Dinar, A. Recent developments in the literature on conflict and cooperation in international shared water. Nat. Resour. J. 2003, 43, 1217–1287. [Google Scholar]
- Dinar, A.; Hogarth, M. Game theory and water resources: Critical review of its contributions, progress and remaining challenges. Found. Trends Microecon. 2015, 11, 1–139. [Google Scholar] [CrossRef]
- Dinar, S. Emerging issues and challenges in transboundary freshwater: The role of treaties and treaty design. In Oxford Research Encyclopedias, Environmental Science; Oxford University Press: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Dinar, A.; De Stefano, L.; Nigatu, G.; Zawahri, N. Why are there so few basin-wide treaties? Econ. Politics Coalit. Form. Multilater. Int. basins. Water Int. 2019, 44, 463–485. [Google Scholar]
- Zawahri, N.A.; Dinar, A.; Nigatu, G. Governing international freshwater resources: An analysis of treaty design. Int. Environ. Agreem. Politics Law Econ. 2014, 16, 307–331. [Google Scholar] [CrossRef]
- Drezner, D. Bargaining, enforcement, and multilateral economic sanctions. Int. Organ. 2000, 54, 73–102. [Google Scholar] [CrossRef]
- Verdier, D. Multilateralism, bilateralism, and exclusion in the nuclear proliferation regime. Int. Organ. 2008, 62, 439–476. [Google Scholar] [CrossRef]
- Dinar, S.; Dinar, A.; Kurukulasuriya, P. Scarcity and cooperation along international rivers: An empirical assessment of bilateral treaties. Int. Stud. Q. 2011, 55, 809–833. [Google Scholar] [CrossRef]
- Dinar, A.; Blankespoor, B.; Dinar, S.; Kurukulasuriya, P. Does precipitation and runoff variability affect treaty cooperation between states sharing international bilateral rivers? Ecol. Econ. 2010, 69, 2568–2581. [Google Scholar] [CrossRef]
- Dinar, S.; Katz, D.; De Stefano, L.; Blankespoor, B. Climate change, conflict, and cooperation: Global analysis of the effectiveness of international river treaties in addressing water variability. Political Geogr. 2015, 45, 55–66. [Google Scholar] [CrossRef]
- Dinar, S.; Katz, D.; De Stefano, L.; Blankespoor, B. Do treaties matter? Clim. Change Water Var. Coop. Along Transbound. River Basins. Political Geogr. 2019, 69, 162–172. [Google Scholar]
- Barrett, S. Environment and Statecraft: The Strategy of Environmental Treaty-Making; Oxford University Press: New York, NY, USA, 2003. [Google Scholar]
- Dombrowsky, I. The role of intra-water sector issue linkage in the resolution of transboundary water conflicts. Water Int. 2010, 35, 132–149. [Google Scholar] [CrossRef]
- Pham Do, K.H.; Dinar, A. The role of issue linkage in managing non-cooperating basins: The case of the Mekong. Nat. Resour. Model. 2014, 27, 492–518. [Google Scholar]
- Pham Do, K.H.; Dinar, A.; McKinney, D. Transboundary water management: Can issue linkage help mitigate externalities? Int. Game Theory Rev. 2012, 14, 39–59. [Google Scholar] [CrossRef]
- Pham Do, K.H.; Dinar, A. The linkages of energy, water, and land use in Southeast Asia: Challenges and opportunities for the Mekong Region. In The Political Economy of Energy Transitions; Douglas, A., Arndt, C., Miller, M., Tarp, F., Zinaman, O., Eds.; Oxford University Press: London, UK, 2017; pp. 511–529. [Google Scholar]
- Pham Do, K.H.; Dinar, A. Issue linkage: A mechanism for managing conflict, applied to the Mekong Basin. In Management of Transboundary Water Resources Under Scarcity: A Multidisciplinary Approach; Dinar, A., Tsur, Y., Eds.; World Scientific: Singapore, 2017; pp. 91–114. [Google Scholar]
- Katz, D.; Shafran, A. Energizing mid–east water diplomacy: The potential for regional water–energy exchanges. Water Int. 2020, 45, 292–310. [Google Scholar] [CrossRef]
- Walschot, M.; Katz, D. Desalination and transboundary water conflict and cooperation: A mixed-method empirical approach. Water 2022, 14, 1925. [Google Scholar] [CrossRef]
- Banerjee, S. Use of experimental economics in policy design and evaluation: An application to water resources and other environmental domains. In Oxford Research Encyclopedias, Environmental Science; Oxford University Press: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Bejarano, H.; Shortle, J. Experimental economics and water resources. In Handbook of Water Economics; Dinar, A., Schwabe, K., Eds.; Edward Elgar: Cheltenham, UK, 2015; pp. 263–282. [Google Scholar] [CrossRef]
- Meinzen-Dick, R.; Janssen, M.A.; Kandikuppa, S.; Chaturvedi, R.; Rao, K.; Theis, S. Playing games to save water: Collective action games for groundwater management in Andhra Pradesh, India. World Dev. 2018, 107, 40–53. [Google Scholar] [CrossRef]
- Torres, M.M.J.; Carlsson, F. Direct and spillover effects of a social information campaign on residential water-savings. J. Environ. Econ. Manag. 2018, 92, 222–243. [Google Scholar] [CrossRef]
- Brent, D.A.; Lott, C.; Taylor, M.; Cook, J.; Rollins, K.; Stoddard, S. What causes heterogeneous responses to social comparison messages for water conservation? Environ. Resour. Econ. 2020, 77, 503–537. [Google Scholar] [CrossRef]
- Murphy, J.J.; Dinar, A.; Howitt, R.E.; Rassenti, S.J.; Smith, V.L. The design of “smart” water market institutions using laboratory experiments. Environ. Resour. Econ. 2000, 17, 375–394. [Google Scholar] [CrossRef]
- Murphy, J.J.; Dinar, A.; Howitt, R.; Rassenti, S.; Smith, V.; Weinberg, M. Incorporating instream flow values into a water market. J. Environ. Manag. 2009, 90, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Suter, J.F.; Spraggon, J.M.; Poe, G.L. Thin and lumpy: An experimental investigation of water quality trading. Water Resour. Econ. 2013, 1, 36–60. [Google Scholar] [CrossRef]
- Palm-Forster, L.H.; Suter, J.F.; Messer, K.D. Experimental evidence on policy approaches that link agricultural subsidies to water quality outcomes. Am. J. Agric. Econ. 2019, 101, 109–133. [Google Scholar] [CrossRef]
- Tellez-Foster, E.; Rapoport, A.; Dinar, A. Alternative policies to manage electricity subsidies for groundwater extraction: A field study in Mexico. J. Behav. Econ. Policy 2017, 2, 55–69. [Google Scholar]
- Tellez-Foster, E.; Rapoport, A.; Dinar, A. Groundwater and electricity consumption under alternative subsidies: Evidence from laboratory experiments. J. Behav. Exp. Econ. 2017, 68, 41–52. [Google Scholar] [CrossRef]
- Tellez-Foster, E.T.; Dinar, A.; Rapoport, A. Comparing alternative policies for modification of energy subsidies: The case of groundwater pumping for irrigation. J. Hydrol. 2018, 565, 614–622. [Google Scholar] [CrossRef]
- Cardenas, J.C.; Rodriguez, L.A.; Johnson, N. Collective action for watershed management: Field experiments in Colombia and Kenya. Environ. Dev. Econ. 2011, 16, 275–303. [Google Scholar] [CrossRef]
- Ert, E.; Cohen-Amin, S.; Dinar, A. The effect of issue linkage on cooperation in bilateral conflicts: An experimental analysis. J. Behav. Exp. Econ. 2019, 9, 134–142. [Google Scholar] [CrossRef]
- Dinar, A.; Albiac, J.; Sanchez-Soriano, J. (Eds.) Game Theory and Policymaking in Natural Resources and the Environment; Routledge Explorations in Environmental Economics: New York, NY, USA, 2008. [Google Scholar]
- Dinar, A.; Rapoport, A. (Eds.) Analyzing Global Environmental Issues: Theoretical and Experimental Applications and Their Policy Implications; Routledge: New York, NY, USA, 2013. [Google Scholar]
- Pham Do, K.H. Water resource management: Challenges and opportunities with game theory approaches. In Oxford Research Encyclopedias, Environmental Science; Oxford University Press: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Dinar, A.; Farolfi, S.; Patrone, F.; Rowntree, K. To negotiate or to game theorize: Evaluating water allocation mechanisms in the Kat Basin, South Africa. In Game Theory and Policymaking in Natural Resources and the Environment; Dinar, A., Albiac, J., Sanchez-Soriano, J., Eds.; Routledge Explorations in Environmental Economics: New York, NY, USA, 2008; Chapter 5; pp. 85–111. [Google Scholar]
- Li, X.; Shi, H.; Lin, X. Game theoretic modeling of water allocation regimes applied to the Yellow River Basin in China. In Game Theory and Policymaking in Natural Resources and the Environment; Dinar, A., Albiac, J., Sanchez-Soriano, J., Eds.; Routledge Explorations in Environmental Economics: New York, NY, USA, 2008; Chapter 12; pp. 248–265. [Google Scholar]
- Ambec, S.; Ehlers, L. Cooperation and equity in the river-sharing problem. In Game Theory and Policymaking in Natural Resources and the Environment; Dinar, A., Albiac, J., Sanchez-Soriano, J., Eds.; Routledge Explorations in Environmental Economics: New York, NY, USA, 2008; Chapter 6; pp. 112–131. [Google Scholar]
- Ambec, S.; Dinar, A.; McKinney, D. Water sharing agreements sustainable to reduced flows. J. Environ. Econ. Manag. 2013, 66, 639–655. [Google Scholar] [CrossRef]
- Dinar, A.; Nigatu, G. Distributional considerations of international water resources un-der externality: The case of Ethiopia, Sudan and Egypt on the Blue Nile. Water Resour. Econ. 2013, 2–3, 1–16. [Google Scholar] [CrossRef]
- Nigatu, G.; Dinar, A. Economic and hydrological impacts of the Grand Ethiopian Re-naissance Dam on the Eastern Nile River Basin. Environ. Dev. Econ. 2016, 21, 532–555. [Google Scholar] [CrossRef]
- Frisvold, G.B.; Emerick, K.J. Rural-urban water transfers with applications to the US-Mexico border region. In Game Theory and Policymaking in Natural Resources and the Environment; Dinar, A., Albiac, J., Sanchez-Soriano, J., Eds.; Routledge Explorations in Environmental Economics: New York, NY, USA, 2008; Chapter 7; pp. 155–180. [Google Scholar]
- Fisher, M.F.; Huber-Lee, A.T. WAS-guided cooperation in water management: Coalitions and gains. In Game Theory and Policymaking in Natural Resources and the Environment; Dinar, A., Albiac, J., Sanchez-Soriano, J., Eds.; Routledge Explorations in Environmental Economics: New York, NY, USA, 2008; Chapter 9; pp. 181–208. [Google Scholar]
- Llioret, A. Informal Agreements in transboundary water resources. In Analyzing Global Environmental Issues: Theoretical and Experimental Applications and Their Policy Implications; Dinar, A., Rapoport, A., Eds.; Routledge: New York, NY, USA, 2013; Chapter 10; pp. 170–185. [Google Scholar]
- Zhu, X.; Houba, H.; Do, K.H.P. Efficient use of the Mekong River Basin: A joint management approach. In Analyzing Global Environmental Issues: Theoretical and Experimental Applications and Their Policy Implications; Dinar, A., Rapoport, A., Eds.; Routledge: New York, NY, USA, 2013; Chapter 11; pp. 186–202. [Google Scholar]
- Ansink, E.; Gengenbach, M.; Weikard, H.-P. River coalitions and water trade. Oxf. Econ. Pap. 2017, 69, 453–469. [Google Scholar] [CrossRef]
- Pham Do, K.H. Introduction to Special Issue on Game Theory and Water Resource Management. Water Econ. Policy 2019, 5, 1802005. [Google Scholar] [CrossRef]
- Madani, K.; Dinar, A. Cooperative institutions for sustainable common pool resource management: Application to groundwater. Water Resour. Res. 2012, 48, W09553. [Google Scholar] [CrossRef]
- Madani, K.; Dinar, A. Non-cooperative institutions for sustainable common pool resource management: Application to groundwater. Ecol. Econ. 2012, 74, 34–45. [Google Scholar] [CrossRef]
- Raquel, S.; Ferenc, S.; Emery, C., Jr.; Abraham, R. Application of game theory for a groundwater conflict in Mexico. J. Environ. Manag. 2007, 84, 560–571. [Google Scholar] [CrossRef]
- JiJiang, K.; Merrill, R.; You, D.; Pan, P.; Li, Z. Optimal control for transboundary pollution under ecological compensation: A stochastic differential game approach. J. Clean. Prod. 2019, 241, 118391. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, J.; Ge, J. Dynamic game in agriculture and industry cross-sectoral water pollution governance in developing countries. Agric. Water Manag. 2021, 243, 106417. [Google Scholar] [CrossRef]
- Sears, L.; Lim, D.; Lawell, C.-Y.C.L. Spatial groundwater management: A dynamic game framework and application to California. Water Econ. Policy 2019, 5, 1850019. [Google Scholar] [CrossRef]
- Hemati, H.; Abrishamchi, A. Water allocation using game theory under climate change impact (case study: Zarinehrood). J. Water Clim. Change 2021, 12, 759–771. [Google Scholar] [CrossRef]
- Rightnar, J.; Dinar, A. The welfare implications of bankruptcy allocation of the Colorado River water: The case of the Salton Sea Region. Water Resour. Manag. 2020, 34, 2353–2370. [Google Scholar] [CrossRef]
- Moretti, S.; Patrone, F.; Dinar, A.; Abdel-Dayem, S. Sharing the Costs of Complex Water Projects: Application to the West Delta Water Conservation and Irrigation Rehabilitation Project, Egypt. Games 2016, 7, 18. [Google Scholar] [CrossRef]
- Meinzen-Dick, R. Beyond panaceas in water institutions. Proc. Natl. Acad. Sci. USA 2007, 104, 15200–15205. [Google Scholar] [CrossRef]
- Dinar, A.; Kemper, K.; Blomquist, W.; Kurukulasuriya, P. Whitewater: Process and performance of decentralization reform of river basin water resource management. J. Policy Model. 2007, 29, 851–867. [Google Scholar] [CrossRef]
- Dinar, A.; Correa, J.O.; Farolfi, S.; Mutondo, J. Quantifying the process and performance of river basin water management decentralization in Sub-Saharan Africa. J. Afr. Econ. 2016, 25, 267–299. [Google Scholar] [CrossRef]
- Maria-Saleth, R.; Dinar, A. The Institutional Economics of Water: A Cross-Country Analysis of Institutions and Performance; Edward Elgar: Cheltenham, UK, 2004; Available online: https://openknowledge.worldbank.org/handle/10986/14884 (accessed on 13 February 2024).
- Araral, E.; Yu, D.J. Comparative water law, policies, and administration in Asia: Evidence from 17 countries. Water Resour. Res. 2013, 49, 5307–5316. [Google Scholar] [CrossRef]
- Bromley, D.W.; Anderson, G. Does water governance matter? Water Econ. Policy 2018, 4, 1750002. [Google Scholar] [CrossRef]
- Dinar, A.; Saleth, R. Can water institution be cured? A water institutions health index. Water Sci. Technol. Water Supply J. 2005, 5, 17–40. [Google Scholar] [CrossRef]
- Maria-Saleth, R.; Dinar, A. Linkages within institutional structure: An empirical analysis of water institutions. J. Institutional. Econ. 2008, 4, 375–401. [Google Scholar] [CrossRef]
- Bandaragoda, D.J. A Framework for Institutional Analysis for Water Resources Management in a River Basin Context; Working Paper 5; IWMI: Colombo, Sri Lanka, 2000; Available online: https://www.iwmi.cgiar.org/Publications/Working_Papers/working/WOR5.pdf (accessed on 13 February 2024).
- Maria-Saleth, R.; Dinar, A. Water challenge and institutional response. In (A Cross Country Perspective), Policy Research Working Paper 2045; The World Bank: Washington, DC, USA, 1999. [Google Scholar]
- Maria-Saleth, R.; Dinar, A. Evaluating water institutions and water sector performance. In World Bank Technical Paper No. 447; The World Bank: Washington, DC, USA, 1999. [Google Scholar]
- Berbel, J.; Montilla-López, N.M.; Giannoccaro, G. Institutions and economics of water scarcity and droughts (Special Issue). Water 2020, 12, 3248. [Google Scholar] [CrossRef]
- Chopra, A.; Ramachandran, P. Understanding water institutions and their impact on the performance of the water sector in India. Water Policy 2021, 23, 466–486. [Google Scholar] [CrossRef]
- Adamowicz, W.; Calderon-Etter, L.; Entem, A.; Fenichel, E.P.; Hall, J.S.; Lloyd-Smith, P.; Stallard, R.F. Assessing ecological infrastructure investments. Proc. Natl. Acad. Sci. USA 2019, 116, 5254–5261. [Google Scholar] [CrossRef]
- Carson, R.T. Contingent valuation: A practical alternative when prices aren’t available. J. Econ. Perspect. 2012, 26, 27–42. [Google Scholar] [CrossRef]
- Freeman, M., III; Herriges, J.; Kling, K.C. The Measurement of Environmental and Resource Values, 3rd ed.; Resource for the Future Press: New York, NY, USA, 2014. [Google Scholar]
- Carson, R.T.; Mitchell, R.C.; Hanemann, M.; Kopp, R.J.; Presser, S.; Ruud, P.A. Contingent valuation and lost passive use: Damages from the Exxon Valdez oil spill. Environ. Resour. Econ. 2003, 25, 257–286. Available online: https://econweb.ucsd.edu/~rcarson/papers/ExxonERE.pdf (accessed on 13 February 2024). [CrossRef]
- Kling, C.; Phaneuf, D.; Zhao, J. From Exxon to BP: Has some number become better than no number? J. Econ. Perspect. 2012, 26, 3–26. [Google Scholar] [CrossRef]
- Bishop, R.C.; Boyle, K.J.; Carson, R.T.; Chapman, D.; Hanemann, W.M.; Kanninen, B.; Kopp, R.J.; Krosnick, J.A.; List, J.; Meade, N.; et al. Putting a value on injuries to natural assets: The BP oil spill. Science 2017, 356, 253–254. [Google Scholar] [CrossRef]
- Adamowicz, V.; Dupont, D. Challenges to environmental valuation of water in light of global change. In Oxford Research Encyclopedias, Environmental Science; Oxford University Press: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Zhang, J.; Adamowicz, W.; Dupont, D.P.; Krupnick, A. Assessing the extent of altruism in the valuation of community drinking water quality improvements. Water Resour. Res. 2013, 49, 6286–6297. [Google Scholar] [CrossRef]
- Jin, J.; Wang, Z.; Ran, S. Comparison of contingent valuation and choice experiment in solid waste management programs in Macao. Ecol. Econ. 2005, 57, 430–441. [Google Scholar] [CrossRef]
- Johnston, R.J.; Boyle, K.J.; Adamowicz, W.; Bennett, J.; Brouwer, R.; Cameron, T.A.; Hanemann, W.M.; Hanley, N.; Ryan, M.; Scarpa, R.; et al. Contemporary guidance for stated preference studies. J. Assoc. Environ. Resour. Econ. 2017, 4, 319–405. [Google Scholar] [CrossRef]
- Bishop, R.C.; Boyle, K.J. Reliability and validity in nonmarket valuation. Environ. Resour. Econ. 2019, 72, 559–582. [Google Scholar] [CrossRef]
- Lloyd-Smith, P.; Zawojska, E.; Adamowicz, W. Moving beyond the contingent valuation versus choice experiment debate: Presentation effects in stated preference. Land Econ. 2020, 96, 1–24. [Google Scholar] [CrossRef]
- Tourkolias, C.; Skiada, T.; Mirasgedis, S.; Diakoulaki, D. Application of the travel cost method for the valuation of the Poseidon temple in Sounio, Greece. J. Cult. Herit. 2014, 16, 567–574. [Google Scholar] [CrossRef]
- Czajkowski, M.; Giergiczny, M.; Kronenberg, J.; Englin, J. The individual travel cost method with consumer-specific values of travel time savings. Environ. Resour. Econ. 2019, 74, 961–984. [Google Scholar] [CrossRef]
- Remoundou, K.; Diaz-Simal, P.; Koundouri, P.; Rulleauf, B. Valuing climate change mitigation: A choice experiment on a coastal and marine ecosystem. Ecosyst. Serv. 2015, 11, 87–94. [Google Scholar] [CrossRef]
- Birol, E.; Karousakis, K.; Koundouri, P. Using a choice experiment to account for preference heterogeneity in wetland attributes: The case of Cheimaditida wetland in Greece. Ecol. Econ. 2006, 60, 145–156. [Google Scholar] [CrossRef]
- Das, S.; Fuchs, H.; Philip, R.; Rao, P. A review of water valuation metrics: Supporting sustainable water use in manufacturing. Water Resour. Ind. 2023, 29, 100199. [Google Scholar] [CrossRef]
- Pulido-Velazquez, M.; Tilmant, A. Hydroeconomics. In Oxford Encyclopedia of Environmental Sciences; Oxford University Press: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Harou, J.J.; Pulido-Velazquez, M.; Rosenberg, D.E.; Medellín-Azuara, J.; Lund, J.R.; Howitt, R.E. Hydro-economic models: Concepts, design, applications, and future prospects. J. Hydrol. 2009, 375, 627–643. [Google Scholar] [CrossRef]
- Bekchanov, M.; Sood, A.; Pinto, A.; Jeuland, M. Systematic review of water-economy modeling applications. J. Water Resour. Plan. Manag. 2017, 143, 04017037. [Google Scholar] [CrossRef]
- Brouwer, R.; Hofkes, M. Integrated hydro-economic modelling: Approaches, key issues and future research directions. Ecol. Econ. 2008, 66, 16–22. [Google Scholar] [CrossRef]
- Eamen, L.; Brouwer, R.; Razavi, S. Comparing the applicability of hydro-economic modelling approaches for large-scale decision-making in multi-sectoral and multi-regional river basins. Environ. Model. Softw. 2022, 152, 105385. [Google Scholar] [CrossRef]
- Dalcin, A.P.; Marques, G.F. Integrating water management instruments to reconcile a hydro-economic water allocation strategy with other water preferences. Water Resour. Res. 2020, 56, e2019WR025558. [Google Scholar] [CrossRef]
- Hossen, M.A.; Connor, J.; Ahammed, F. Review of hydro-economic models (HEMs) which focus on transboundary river water sharing disputes. Water Policy 2021, 23, 1359–1374. [Google Scholar] [CrossRef]
- Arjoon, D.; Tilmant, A.; Herrmann, M. Sharing water and benefits in transboundary river basins. Hydrol. Earth Syst. Sci. 2016, 20, 2135–2150. [Google Scholar] [CrossRef]
- Kahil, T.; Parkinson, S.; Satoh, Y.; Greve, P.; Burek, P.; Veldkamp, T.I.E.; Burtscher, R.; Byers, E.; Djilali, N.; Fischer, G.; et al. A continental-scale hydroeconomic model for integrating water-energy-land nexus solutions. Water Resour. 2018, 54, 7511–7533. [Google Scholar] [CrossRef]
- Kuwayama, Y.; Olmstead, S.M. Hydroeconomic modeling of resource recovery from wastewater: Implications for water quality and quantity management. J. Environ. Qual. 2020, 49, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Baccour, S.; Albiac, J.; Kahil, T.; Esteban, E.; Crespo, D.; Dinar, A. Hydroeconomic modeling for assessing water scarcity and agricultural pollution abatement policies in the Ebro River Basin, Spain. J. Clean. Prod. 2021, 327, 129459. [Google Scholar] [CrossRef]
- Berthet, A.; Vincent, A.; Fleury, P. Water quality issues and agriculture: An international review of innovative policy schemes. Land Use Policy 2021, 109, 105654. [Google Scholar] [CrossRef]
- Crespo, D.; Albiac, J.; Dinar, A.; Esteban, E.; Kahil, T. Integrating ecosystem benefits for sustainable water allocation in hydroeconomic modeling. PLoS ONE 2022, 17, e0267439. [Google Scholar] [CrossRef]
- Crespo, D.; Albiac, J.; Kahil, T.; Esteban, E.; Baccour, S. Tradeoffs between water uses and environmental flows: A hydroeconomic analysis in the Ebro Basin. Water Resour. Manag. 2019, 33, 2301–2317. [Google Scholar] [CrossRef]
- Levers, L.; Skaggs, T.; Schwabe, K. Buying water for the environment: A hydro-economic analysis of Salton Sea inflows. Agric. Water Manag. 2019, 213, 554–567. [Google Scholar] [CrossRef]
- Momblanch, A.; Connor, J.D.; Crossman, N.D.; Paredes-Arquiola, J.; Andreu, J. Using ecosystem services to represent the environment in hydro-economic models. J. Hydrol. 2016, 538, 293–303. [Google Scholar] [CrossRef]
- MacEwan, D.; Cayar, M.; Taghavi, A.; Mitchell, D.; Hatchett, S.; Howitt, R. Hydroeconomic modeling of sustainable groundwater management. Water Resour. Res. 2017, 53, 2384–2403. [Google Scholar] [CrossRef]
- Pulido-Velazquez, M.; Marques, G.F.; Harou, J.J.; Lund, J.R. Hydroeconomic models as decision support tools for conjunctive management of surface and groundwater. In Integrated Groundwater Management; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.D., Ross, A., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Kahil, M.T.; Ward, F.A.; Albiac, J.; Eggleston, J.; Sanz, D. Hydro-economic modeling with aquifer–river interactions to guide sustainable basin management. J. Hydrol. 2016, 539, 510–524. [Google Scholar] [CrossRef]
- Gürlük, S.; Ward, F.A. Integrated Basin Management: Water and Food Policy Options for Turkey. Ecol. Econ. 2009, 68, 2666–2678. [Google Scholar] [CrossRef]
- Esteve, P.; Varela-Ortega, C.; Blanco-Gutiérrez, I.; Downing, T.E. A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture. Ecol. Econ. 2015, 120, 49–58. [Google Scholar] [CrossRef]
- Expósito, A.; Beier, F.; Berbel, J. Hydro-economic modelling for water-policy assessment under climate change at a river basin scale: A review. Water 2020, 12, 1559. [Google Scholar] [CrossRef]
- Kahil, M.T.; Dinar, A.; Albiac, J. Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions. J. Hydrol. 2015, 522, 95–109. [Google Scholar] [CrossRef]
- Dinar, A. Water and economy-wide policy interventions. Found. Trends Microecon. 2014, 10, 1–84. [Google Scholar] [CrossRef]
- Calzadilla, A.; Rehdanz, K.; Roson, R.; Sartori, M.; Tol, R.S.J. Review of CGE models of water issues. In The WSPC Reference on Natural Resources and Environmental Policy in the Era of Global Change; Bryant, T., Ed.; World Scientific: Singapore, 2016; pp. 101–123. [Google Scholar] [CrossRef]
- Bardazzi, E.; Bosello, F. Critical reflections on water-energy-food nexus in computable general equilibrium models: A systematic literature review. Environ. Model. Softw. 2021, 145, 105201. [Google Scholar] [CrossRef]
- Roe, T.; Dinar, A.; Tsur, Y.; Diao, X. Feedback links between economy-wide and farm-level policies: With application to irrigation water management in Morocco. J. Policy Model. 2005, 27, 905–928. [Google Scholar] [CrossRef]
- Cakmak, E.H.; Hasan, D.; Saracoglu, S.; Diao, X.; Roe, T.; Tsur, Y. Macro-Micro Feedback Links of Irrigation Water Management in Turkey; World Bank Policy Research Working Paper 4781; World Bank: Washington, DC, USA, 2008; Available online: https://openknowledge.worldbank.org/handle/10986/6350 (accessed on 13 February 2024).
- Diao, X.; Dinar, A.; Roe, T.; Tsur, Y. A general equilibrium analysis of conjunctive ground and surface water use with an application to Morocco. Agric. Econ. 2008, 38, 117–135. [Google Scholar] [CrossRef]
- Yunez-Naude, A.; Castro, L.G.R. Perspectivas de la agricultura ante reducciones en la disponibilidad de agua para riego: Un enfoque equilibrio general. In El Agua en México: Consecuencias de las Políticas de Intervención en el Sector. El Trimestre Económico Lecturas 100, 183-211; Fondo del Cultura Económica: México City, México, 2008. [Google Scholar]
- Hassan, R.; Thurlow, J. Macro-micro feedback links of water management in South Africa: CGE analyses of selected policy regimes. Agric. Econ. 2011, 42, 235–247. [Google Scholar] [CrossRef]
- Goodman, D.J. More reservoirs or transfers? A computable general equilibrium analysis of projected water shortages in the Arkansas River basin. J. Agric. Resour. Econ. 2000, 25, 698–713. Available online: https://www.jstor.org/stable/40987085 (accessed on 13 February 2024).
- Luckmann, J.; Grethe, H.; McDonald, S.; Orlov, A.; Siddig, K. An integrated economic model of multiple types and uses of water. Water Resour. Res. 2014, 50, 3875–3892. [Google Scholar] [CrossRef]
- Chóliz, J.S.; Sarasa, C. Uncertainty in irrigation technology: Insights from a CGE approach. Water 2019, 11, 617. [Google Scholar] [CrossRef]
- Calzadilla, A.; Rehdanz, K.; Tol, R.S. Water scarcity and the impact of improved irrigation management: A computable general equilibrium analysis. Agric. Econ. 2011, 42, 305–323. [Google Scholar] [CrossRef]
- Berrittella, M.; Rehdanz, K.; Tol, R.; Zhang, J. The impact of trade liberalization on water use: A computable general equilibrium analysis. J. Econ. Integr. 2008, 23, 631–655. [Google Scholar] [CrossRef]
- Calzadilla, A.; Rehndanz, K.; Tol, R.S.J. Trade liberalization and climate change: A computable general equilibrium analysis of the impacts on global agriculture. Water 2011, 3, 526–550. [Google Scholar] [CrossRef]
- Wittwer, G. Economic Modeling of Water: The Australian CGE Experience; Springer: Berlin/Heidelberg, Germany, 2012; Available online: https://link.springer.com/book/10.1007/978-94-007-2876-9 (accessed on 13 February 2024).
- Kim, J. A Computable General Equilibrium (CGE) Approach to Urban Freshwater Planning. Report prepared for the Chief Economist, Unit, Auckland Council New Zealand. 2017. Available online: https://environment.govt.nz/assets/Publications/Files/Sub-regional-CGE-model-for-NPSFM-Feasibility-study-final.pdf (accessed on 13 February 2024).
- Ponce, R.; Parrado, R.; Stehr, A.; Bosello, F. Climate change, water scarcity in agriculture and the economy-wide impacts in a CGE framework. In Nota di Lavoro; 79.2016; Fondazione Eni Enrico Mattei: Milan, Italy, 2016; Available online: https://www.feem.it/en/publications/climate-change-water-scarcity-in-agriculture-and-the-economy-wide-impacts-in-a-cge-framework/ (accessed on 13 February 2024).
- Liu, J.; Hertel, T.; Taheripour, F. Analyzing future water scarcity in computable general equilibrium models. Water Econ. Policy 2016, 2, 1650006. [Google Scholar] [CrossRef]
- Lewis, L.Y. Rethinking hydropower: The economics and politics of privately owned hydropower in the United States. In Oxford Research Encyclopedias, Environmental Science; Oxford University Press: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Jeuland, M. The economics of dams. Oxf. Rev. Econ. Policy 2020, 36, 45–68. [Google Scholar] [CrossRef]
- Esteban, E.; Dinar, A.; Calvo, E.; Albiac, J.; Calatrava, J.; Herrera, G.; Teatini, P.; Tomás, R.; Ezquerro, P.; Li, Y. Modeling the Optimal Management of Land Subsidence Due to Aquifers Overexploitation. J. Environ. Manag. 2024, 349, 119333. [Google Scholar] [CrossRef]
- Das, A.; Roy, J.; Chakraborti, S. Socio-Economic Analysis of Arsenic Contamination of Groundwater in West Bengal; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Shaji, E.; Santosh, M.; Sarath, K.; Prakash, P.; Deepchand, V.; Divya, B. Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geosci. Front. 2020, 12, 101079. [Google Scholar] [CrossRef]
Published Article | Findings |
---|---|
[67] | Water-saving technologies could provide incentives to conserve water if combined with appropriate input and output pricing policies and regulations on pollution. |
[62] | Relative effectiveness of different DSM water-saving tools in the residential sector. |
[65] | Adoption of more efficient irrigation technologies may reduce return flows downstream and limit aquifer recharge, hence increasing water scarcity. |
[63] | Introducing efficient irrigation without regulation of water allocations will usually lead to increases in water consumption per unit area, expansion of the irrigated area, and increases in the amount of water extracted and applied. |
[66] | An increase in irrigation efficiency must go hand in hand with an arsenal of regulations, including water monitoring, caps on water extractions, an assessment of uncertainties, and an assessment of possible trade-offs. |
[69] | Tensiometer-based irrigation reduces water and power consumption without any yield reduction for rice irrigation compared to the presently used continuous flooding and furrow irrigation methods. |
[64] | Water conservation technologies should not be seen as a tool for attaining water conservation but rather as a means of increasing agricultural water productivity. |
[68] | The basin-level equilibrium water price is too low to make many of the water-saving measures cost-effective. |
Published Article | Policy Focus | Issue Addressed |
---|---|---|
[102] | GW regulation | Water conservation |
[103] | Residential water | |
[104] | Water conservation regulation | |
[105] | Smart water markets | Water markets |
[106] | Water markets and instream values | |
[107] | Water quality trading | |
[108] | Agricultural subsidies to regulate water quality | |
[109] | Electricity subsidies and GW level | Subsidy regulations |
[110] | Electricity subsidies and GW level | |
[111] | Electricity subsidies and GW level | |
[112] | Collective action for watershed management | Watershed mgt. |
[113] | Issue linkage | International water |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinar, A. Challenges to Water Resource Management: The Role of Economic and Modeling Approaches. Water 2024, 16, 610. https://doi.org/10.3390/w16040610
Dinar A. Challenges to Water Resource Management: The Role of Economic and Modeling Approaches. Water. 2024; 16(4):610. https://doi.org/10.3390/w16040610
Chicago/Turabian StyleDinar, Ariel. 2024. "Challenges to Water Resource Management: The Role of Economic and Modeling Approaches" Water 16, no. 4: 610. https://doi.org/10.3390/w16040610
APA StyleDinar, A. (2024). Challenges to Water Resource Management: The Role of Economic and Modeling Approaches. Water, 16(4), 610. https://doi.org/10.3390/w16040610