Potential of Decentral Nature-Based Solutions for Mitigation of Pluvial Floods in Urban Areas—A Simulation Study Based on 1D/2D Coupled Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and 1D/2D Model
- Initial infiltration rate: 127 mm/h;
- Final infiltration rate: 8.34 mm/h;
- Decay constant: 64 1/h.
2.2. Description and Dimensioning of the Decentral NBS
2.2.1. Dimensioning of the Infiltration Systems
2.2.2. Structure of the Green Roofs
2.2.3. Structure and Dimensioning of Tree Pits and Tree Trenches
2.3. Modeling of the NBSs and Model Parameters
2.3.1. Model Approach
2.3.2. Model Parameters
2.4. Integration of the NBSs in the 1D/2D Model
2.4.1. Implementation of the NBS
2.4.2. Spatial Distribution of the NBSs
2.5. Rainfall Data and Model Configurations
3. Results
3.1. Influence of the Degree of NBS Implementation on Flood Mitigation
3.2. Effect of the Various NBSs for Flood Mitigation
3.3. Influence of the Rainfall Characteristics
3.4. Influence of the Spatial Distribution of the NBSs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Precipitation Height [mm] in Dependence of the Return Period [Years] | |||||||
---|---|---|---|---|---|---|---|
Duration [min] | 1 | 5 | 10 | 20 | 30 | 50 | 100 |
5 | 6.3 | 10.6 | 12.7 | 14.8 | 16.2 | 18.1 | 20.7 |
10 | 8.5 | 14.4 | 17.2 | 20.1 | 22 | 24.6 | 28.1 |
15 | 9.8 | 16.7 | 20 | 23.3 | 25.6 | 28.5 | 32.6 |
20 | 10.8 | 18.3 | 21.9 | 25.7 | 28.1 | 31.3 | 35.9 |
30 | 12.2 | 20.7 | 24.8 | 29 | 31.8 | 35.4 | 40.5 |
45 | 13.7 | 23.2 | 27.7 | 32.5 | 35.5 | 39.6 | 45.4 |
60 | 14.8 | 25 | 29.9 | 35 | 38.3 | 42.7 | 48.9 |
90 | 16.3 | 27.7 | 33.1 | 38.7 | 42.4 | 47.2 | 54.1 |
120 | 17.5 | 29.7 | 35.5 | 41.5 | 45.5 | 50.7 | 58.1 |
180 | 19.3 | 32.6 | 39.1 | 45.7 | 50.1 | 55.8 | 63.9 |
Rain Fall Load | Degree of Implementation | Base Model | Infiltration Systems | Green Roofs | Tree Locations | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | IT | STE | EGR | IGR | RR | TP | TT | ||||||
5 a | 100 a | 5 a | 100 a | 5 a | 100 a | - | - | - | 5 a | 5 a | |||
R1E Euler type 2 | - | x | - | - | - | - | - | - | - | - | - | x | x |
25% | - | x | x | x | x | x | x | x | x | x | - | - | |
50% | - | x | x | x | x | x | x | x | x | x | - | - | |
75% | - | x | x | x | x | x | x | x | x | x | - | - | |
100% | - | x | x | x | x | x | x | x | x | x | x | x | |
50.3% | - | - | - | - | - | - | - | - | - | x | - | - | |
R2E Euler type 2 | - | x | - | - | - | - | - | - | - | - | - | x | x |
25% | - | x | x | x | x | x | x | x | x | x | - | - | |
50% | - | x | x | x | x | x | x | x | x | x | - | - | |
75% | - | x | x | x | x | x | x | x | x | x | - | - | |
100% | - | x | x | x | x | x | x | x | x | x | x | x | |
50.3% | - | - | - | - | - | - | - | - | - | x | - | - | |
R1B Block rain | - | x | - | - | - | - | - | - | - | - | - | - | - |
100% | - | x | x | x | x | x | x | x | x | x | - | - | |
R1E6 Euler type 2 | - | x | - | - | - | - | - | - | - | - | - | - | - |
100% | - | x | x | x | x | x | x | x | x | x | - | - |
References
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; 184p. [Google Scholar] [CrossRef]
- Westra, S.; Fowler, H.; Evans, J.; Alexander, L.; Berg, P.; Johnson, F.; Kendon, E.; Lenderink, G.; Roberts, N. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 2014, 52, 522–555. [Google Scholar] [CrossRef]
- Share of Urban Population Worldwide in 2023, by Continent—Statista. Available online: https://www.statista.com/statistics/270860/urbanization-by-continent/ (accessed on 16 January 2024).
- The Largest Cities Worldwide 2023—Statistisches Bundesamt Deutschland (Destatis). Available online: https://www.destatis.de/EN/Themes/Countries-Regions/International-Statistics/Data-Topic/Population-Labour-Social-Issues/DemographyMigration/UrbanPopulation.html#:~:text=International%20statistics%20The%20largest%20cities%20worldwide%202023&text=Mid%2D2023%20approximately%204.6%20of,57%25%20of%20the%20global%20population (accessed on 16 January 2024).
- Fletcher, T.; Shuster, W.; Hunt, W.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.-L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Schmitt, T.; Thomas, M.; Ettrich, N. Analysis and modeling of flooding in urban drainage systems. J. Hydrol. 2004, 299, 300–311. [Google Scholar] [CrossRef]
- Butler, D.; Ward, S.; Sweetapple, C.; Astaraie-Imani, M.; Diao, K.; Farmani, R.; Fu, G. Reliable, resilient and sustainable water management: The Safe & SuRe approach. Glob. Chall. 2017, 1, 63–77. [Google Scholar] [CrossRef] [PubMed]
- O’Hogain, S.; McCarton, L. A Technology Portfolio of Nature Based Solutions, 1st ed.; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Definition NBS—European Comission. Available online: https://research-and-innovation.ec.europa.eu/research-area/environment/nature-based-solutions_en (accessed on 17 January 2024).
- Shafique, M.; Kim, R. Application of green blue roof to mitigate heat island phenomena and resilient to climate change in urban areas: A case study from Seoul, Korea. J. Water Land Dev. 2017, 33, 165–170. [Google Scholar] [CrossRef]
- Cirkel, D.; Voortman, B.; van Veen, T.; Bartholomeus, R. Evaporation from (Blue-)Green Roofs: Assessing the Benefits of a Storage and Capillary Irrigation System Based on Measurements and Modeling. Water 2018, 10, 1253. [Google Scholar] [CrossRef]
- Schneider, F.; Helmreich, B.; Gelhar, T. Bemessungsansätze für Versickerungsanlagen im internationalen Vergleich, Teil 1: Bemessungsansätze in unterschiedlichen Ländern. KA Korrespondenz Abwasser Abfall 2017, 17, 22–23. [Google Scholar]
- Almaaitah, T.; Appleby, M.; Rosenblat, H.; Drake, J.; Joksimovic, D. The potential of Blue-Green infrastructure as a climate change adaptation strategy: A systematic literature review. Blue-Green Syst. 2021, 3, 223–248. [Google Scholar] [CrossRef]
- Rossman, L.A.; Simon, M.A. Storm Water Management Model User’s Manual, version 5.2; U.S. Environmental Protection Agency (EPA): Cincinnati, OH, USA, 2022. [Google Scholar]
- Ortega Sandoval, A.; Sörensen, J.; Rodríguez, J.; Bharati, L. Hydrologic-hydraulic assessment of SUDS control capacity using different modeling approaches: A case study in Bogotá, Colombia. Water Sci. Technol. 2023, 87, 3124–3145. [Google Scholar] [CrossRef]
- Mu, J.; Huang, M.; Hao, X.; Chen, X.; Yu, H.; Wu, B. Study on Waterlogging Reduction Effect of LID Facilities in Collapsible Loess Area Based on Coupled 1D and 2D Hydrodynamic Model. Water 2022, 14, 3880. [Google Scholar] [CrossRef]
- Iffland, R.; Förster, K.; Westerholt, D.; Pesci, M.; Lösken, G. Robust Vegetation Parameterization for Green Roofs in the EPA Stormwater Management Model (SWMM). Hydrology 2021, 8, 12. [Google Scholar] [CrossRef]
- Lisenbee, W.; Hathaway, J.; Winston, R. Modeling bioretention hydrology: Quantifying the performance of DRAINMOD-Urban and the SWMM LID module. J. Hydrol. 2022, 612, 128179. [Google Scholar] [CrossRef]
- Gülbaz, S.; Kazezyılmaz-Alhan, C. An evaluation of hydrologic modeling performance of EPA SWMM for bioretention. Water Sci. Technol. 2017, 76, 3035–3043. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.-J.; Wang, C.-H.; Chen, A. A novel approach to model dynamic flow interactions between storm sewer system and overland surface for different land covers in urban areas. J. Hydrol. 2015, 524, 662–679. [Google Scholar] [CrossRef]
- Blanc, J.; Hall, J.; Roche, N.; Dawson, R.; Cesses, Y.; Burton, A.; Kilsby, C. Enhanced efficiency of pluvial flood risk estimation in urban areas using spatial–temporal rainfall simulations. J. Flood Risk Manag. 2012, 5, 143–152. [Google Scholar] [CrossRef]
- Hamers, E.; Maier, H.; Zecchin, A.; van Delden, H. Effectiveness of Nature-Based Solutions for Mitigating the Impact of Pluvial Flooding in Urban Areas at the Regional Scale. Water 2023, 15, 642. [Google Scholar] [CrossRef]
- Bae, C.; Lee, D. Effects of low-impact development practices for flood events at the catchment scale in a highly developed urban area. Int. J. Disaster Risk Reduct. 2020, 44, 101412. [Google Scholar] [CrossRef]
- Haghighatafshar, S.; Nordlöf, B.; Roldin, M.; Gustafsson, L.-G.; La Cour Jansen, J.; Jönsson, K. Efficiency of blue-green stormwater retrofits for flood mitigation—Conclusions drawn from a case study in Malmö, Sweden. J. Environ. Manag. 2018, 207, 60–69. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, N.; Zhang, R.; Zeng, X. Storm Water Management of Low Impact Development in Urban Areas Based on SWMM. Water 2019, 11, 33. [Google Scholar] [CrossRef]
- Costa, S.; Peters, R.; Martins, R.; Postmes, L.; Keizer, J.; Roebeling, P. Effectiveness of Nature-Based Solutions on Pluvial Flood Hazard Mitigation: The Case Study of the City of Eindhoven (The Netherlands). Resources 2021, 10, 24. [Google Scholar] [CrossRef]
- Webber, J.; Fletcher, T.; Cunningham, L.; Fu, G.; Butler, D.; Burns, M. Is green infrastructure a viable strategy for managing urban surface water flooding? Urban Water J. 2020, 17, 598–608. [Google Scholar] [CrossRef]
- Mugume, S.; Kibibi, H.; Sorensen, J.; Butler, D. Can Blue-Green Infrastructure enhance resilience in urban drainage systems during failure conditions? Water Sci. Technol. 2024, 89, 915–944. [Google Scholar] [CrossRef]
- FIS-Broker—Senate Department for Urban Development, Building and Housing (SenBW). Available online: https://fbinter.stadt-berlin.de/fb/index.jsp (accessed on 17 January 2024).
- DWA. DWA-A 138-1, Entwurf. Teil 1: Planung, Bau, Betrieb Anlagen zur Versickerung von Niederschlagswasser; Deutsche Vereinigung für Wasserwirtschaft Abwasser und Abfall: Hennef, Germany, 2020. [Google Scholar]
- Hürter, H. Erarbeitung Gebietsspezifischer Anwendungsempfehlungen für Bi-Direktional Gekoppelte 1D-2D-Überflutungsberechnungen; Fachbereich Bauingenieurwesen: Kaiserslautern, Germany, 2018. [Google Scholar]
- Sieker, F. On-site stormwater management as an alternative to conventional sewer systems: A new concept spreading in Germany. Water Sci. Technol. 1998, 38, 65–71. [Google Scholar] [CrossRef]
- BlueGreenStreets. BlueGreenStreets Toolbox—Teil A & B. Multifunktionale Straßenraumgestaltung Urbaner Quartiere; Erstellt im Rahmen der BMBF-Fördermaßnahme “Ressourceneffiziente Stadtquartiere für die Zukunft” (RES:Z); HafenCity Universität Hamburg: Hamburg, Germany, 2022. [Google Scholar]
- FLL. Dachbegrünungsrichtlinien—Richtlinien für Planung, Bau und Instandhaltung von Dachbegrünungen; Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau e.V.: Bonn, Germany, 2018. [Google Scholar]
- FLL. Empfehlungen für Baumpflanzungen. Teil 2: Standortvorbereitungen für Neupflanzungen; Pflanzgruben und Wurzelraumerweiterung, Bauweisen und Substrate, Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau e.V.: Bonn, Germany, 2010. [Google Scholar]
- Rossman, L.A.; Huber, W.C. Storm Water Management Model Reference Manual Volume III—Water Quality; U.S. Environmental Protection Agency (EPA): Cinncinati, OH, USA, 2016. [Google Scholar]
- Rawls, W.J.; Brakensiek, D.I.; Miller, N. Green Ampt Infiltration Parameters from Soils Data. 1983. Available online: http://soilphysics.okstate.edu/teaching/soil-6583/references-folder/rawls%20et%20al%201983.pdf (accessed on 17 January 2024).
- Peng, Z.; Stovin, V. Independent Validation of the SWMM Green Roof Module. J. Hydrol. Eng. 2017, 22, 1–12. [Google Scholar] [CrossRef]
- Jeffers, S.; Garner, B.; Hidalgo, D.; Daoularis, D.; Warmerdam, O. Insights into green roof modeling using SWMM LID controls for detention-based designs. J. Water Manag. Model. 2022, 30, C484. [Google Scholar] [CrossRef]
- KOSTRA-DWD-2020 Datensatz—Deutscher Wetterdienst. Available online: https://opendata.dwd.de/climate_environment/CDC/grids_germany/return_periods/precipitation/KOSTRA/KOSTRA_DWD_2020/gis/ (accessed on 17 January 2024).
Area | Discharge Coefficient | Roughness Coefficient n |
---|---|---|
[-] | [-] | [s · m−1/3] |
Roofs | 1.0 | - |
Streets | 0.97 | 0.0143 |
Yards and walk/bikeways | 0.85 | 0.02 |
Infiltration System | Return Period | Aim | HS | HIT | AIS | VIS | AIS:Aim |
---|---|---|---|---|---|---|---|
[a] | [m2] | [m] | [m] | [m] | [m3] | [%] | |
Swale | 5 | 1000 | 0.3 | - | 66.2 | 19.86 | 6.62 |
100 | 1000 | 0.3 | - | 138.2 | 41.46 | 13.82 | |
Infiltration trench | 5 | 1000 | - | 0.6 | 38.2 | 22.92 | 3.82 |
100 | 1000 | - | 0.6 | 75.6 | 45.36 | 7.56 | |
Swale–trench–element | 5 | 1000 | 0.3 | 0.331 | 39.5 | 24.92 | 3.95 |
100 | 1000 | 0.3 | 0.523 | 83.3 | 32.51 | 8.33 |
Layer | Thickness [mm] | Description | ||
---|---|---|---|---|
EGR | IGR | RR | ||
Vegetation | - | - | - | Moos, succulent, and grass vegetation for EGRs and RRs; grass and shrubs for IGRs |
Soil | 100 | 300 | 150 | Vegetation substrate for multi-layer green roofs |
Filter fleece | 10 | 10 | 10 | Fleece to protect the drainage/retention layer |
Drainage/retention | 25 | 25 | 125 | Drainage elements made of hard plastic |
Protective fleece | 15 | 15 | 15 | Fleece to protect the roof waterproofing |
Tree Location | Layer | Thickness [cm] | Description |
---|---|---|---|
Tree pit | Tree grid | 5 | Swale-shaped tree grid |
Tree substrate | 40 | Replaced substrate with a pore volume of 35% | |
Existing soil | 110 | Existing soil up to 1.5 m depth with a pore volume of 20% | |
Tree trench | Tree grid | 20 | Swale-shaped tree grid |
Tree substrate | 150 | Optimized tree substrate with a pore volume of 25% | |
Infiltration trench | 30 | Infiltration trench (sand/split/gravel) with a pore volume of 30% | |
Storage | 30 | Storage (sand/gravel) with a pore volume of 30%, sealed (not completely) by, e.g., clay |
NBS | SUDS Element | Layer | |||
---|---|---|---|---|---|
Surface | Soil | Storage | Drainage Mat | ||
Swale | Rain garden | x | x | - | - |
Infiltration-trench | Rain barrel | - | - | x | - |
Swale–trench–element | Infiltration trench | x | - | x | - |
Intensive green roof | Green roof | x | x | - | x |
Extensive green roof | Green roof | x | x | - | x |
Retention roof | Bio-retention cell | x | x | x | - |
Tree pit | Rain garden | x | x | - | - |
Tree Trench | Bio-retention cell | x | x | x | - |
Layer | Parameter | Unit | Infiltration Systems | Green Roofs | Tree Locations | |||||
---|---|---|---|---|---|---|---|---|---|---|
S | IT | STE | EGR | IGR | RR | TP | TT | |||
Surface | Berm height | [mm] | 300 | - | 300 | 10 | 10 | 10 | 33.3 | 133.3 |
Vegetation volume fraction | [vol fr.] | 0.1 | - | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | |
Surface roughness | [s · m−1/3] | 0.2 | - | 0.2 | 0.2 | 0.5 | 0.2 | 0.2 | 0.2 | |
Surface slope | [m/m] | 0.02 | - | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | |
Soil | Soil thickness | [mm] | 500 | - | - | 110 | 310 | 160 | 1500 | 1500 |
Soil porosity | [vol fr.] | 0.437 | - | - | 0.45 | 0.45 | 0.45 | 0.24 | 0.24 | |
Field capacity | [vol fr.] | 0.062 | - | - | 0.3 | 0.3 | 0.3 | 0.190 | 0.190 | |
Wilting point | [vol fr.] | 0.024 | - | - | 0.05 | 0.05 | 0.05 | 0.085 | 0.085 | |
Conductivity | [mm/h] | 120.4 | - | - | 881 | 881 | 881 | 180 | 180 | |
Conductivity slope | [-] | 48 | - | - | 50 | 50 | 50 | 55.4 | 55.4 | |
Suction head | [mm] | 49.0 | - | - | 110 | 110 | 110 | 110 | 110 | |
Seepage rate | [mm/h] | 120.4 | - | - | - | - | - | 120.4 | - | |
Storage | Storage thickness | [mm] | - | 600 | 331/523 * | - | - | 125 | - | 600 |
Storage void ratio | [-] | - | 9 | 9 | - | - | 9 | - | 0.429 | |
Seepage rate | [mm/h] | - | 120.4 | 120.4 | - | - | 0.5 | - | 12.04 | |
Storage clogging factor | [-] | - | 0 | 0 | - | - | 0 | - | 0 | |
Coefficient for flow | [mm/h] | - | 0 | 0 | - | - | 200 | - | 26.68 | |
Flow exponent | [-] | - | 0 | 0 | - | - | 0 | - | 0 | |
Offset height | [mm] | - | 0 | 0 | - | - | 100 | - | 300 | |
Drainage mat | Mat thickness | [mm] | - | - | - | 25 | 25 | - | - | - |
Mat void fraction | [vol fr.] | - | - | - | 0.6 | 0.6 | - | - | - | |
Mat roughness | [s · m−1/3] | - | - | - | 0.03 | 0.03 | - | - | - |
Name | Rainfall Distribution | Return Period | Duration | Precipitation Height |
---|---|---|---|---|
[-] | [a] | [min] | [mm] | |
R0B | Block rain | 5 | 60 | 25 |
R1B | Block rain | 100 | 60 | 48.9 |
R1E | Euler type 2 | 100 | 60 | 48.9 |
R1E6 | Euler type 2 | 100 | 360 | 74.3 |
R2E | Euler type 2 | >>100 | 60 | 100 |
R1E | R2E | |||||||
---|---|---|---|---|---|---|---|---|
Model | Flood Volume | Reduction | Overflow or Underdrain | Sewer Overflow | Flood Volume | Reduction | Overflow or Underdrain | Sewer Overflow |
[m3] | [%] | [m3] | [m3] | [m3] | [%] | [m3] | [m3] | |
Base model | 63,958 | - | - | 13,859 | 193,818 | - | - | 50,300 |
Swales (T = 5 a) | 50,122 | 21.6 | 21,947 | 4422 | 183,273 | 5.4 | 74,661 | 42,116 |
Swales (T = 100 a) | 42,398 | 33.7 | 0 | 53 | 164,641 | 15.1 | 50,418 | 27,824 |
Infiltration trenches (T = 5 a) | 50,067 | 21.7 | 20,859 | 4324 | 181,988 | 6.1 | 70,829 | 41,532 |
Infiltration trenches (T = 100 a) | 43,290 | 32.3 | 0 | 326 | 162,744 | 16.0 | 44,444 | 27,174 |
Swale–trench–elements (T = 5 a) | 48,071 | 24.8 | 19,542 | 3034 | 175,776 | 9.3 | 66,257 | 36,147 |
Swale–trench–elements (T = 100 a) | 42,368 | 33.8 | 0 | 48 | 143,814 | 25.8 | 29,435 | 13,540 |
Extensive green roofs | 43,651 | 31.8 | 14,945 | 658 | 167,052 | 13.8 | 64,396 | 32,258 |
Intensive green roofs | 42,393 | 33.7 | 0 | 51 | 128,917 | 33.5 | 4200 | 2948 |
Retention roof | 42,393 | 33.7 | 0 | 51 | 128,785 | 33.6 | 0 | 2752 |
Base model tree pits | 64,786 | - | - | 18,717 | 195,860 | - | - | 65,024 |
Tree pits | 61,972 | 4.3 | 5982 | 16,452 | 192,817 | 1.6 | 18,536 | 61,906 |
Base model tree trenches | 64,757 | - | - | 21,509 | 196,316 | - | - | 73,641 |
Tree trenches | 60,256 | 7.0 | 9128 | 17,688 | 191,915 | 2.2 | 28,607 | 69,027 |
NBS | Rain | Inflow | Infiltration | Infiltration/Inflow | Overflow |
---|---|---|---|---|---|
[m3] | [m3] | [%] | [m3] | ||
Swales 5 a | R1E | 51,005 | 6478 | 12.7 | 21,947 |
R1E6 | 77,458 | 42,698 | 55.1 | 26,053 | |
Swales 100 a | R1E | 54,451 | 12,541 | 23.0 | 0 |
R1E6 | 82,689 | 71,018 | 85.6 | 477 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neumann, J.; Scheid, C.; Dittmer, U. Potential of Decentral Nature-Based Solutions for Mitigation of Pluvial Floods in Urban Areas—A Simulation Study Based on 1D/2D Coupled Modeling. Water 2024, 16, 811. https://doi.org/10.3390/w16060811
Neumann J, Scheid C, Dittmer U. Potential of Decentral Nature-Based Solutions for Mitigation of Pluvial Floods in Urban Areas—A Simulation Study Based on 1D/2D Coupled Modeling. Water. 2024; 16(6):811. https://doi.org/10.3390/w16060811
Chicago/Turabian StyleNeumann, Jonas, Christian Scheid, and Ulrich Dittmer. 2024. "Potential of Decentral Nature-Based Solutions for Mitigation of Pluvial Floods in Urban Areas—A Simulation Study Based on 1D/2D Coupled Modeling" Water 16, no. 6: 811. https://doi.org/10.3390/w16060811
APA StyleNeumann, J., Scheid, C., & Dittmer, U. (2024). Potential of Decentral Nature-Based Solutions for Mitigation of Pluvial Floods in Urban Areas—A Simulation Study Based on 1D/2D Coupled Modeling. Water, 16(6), 811. https://doi.org/10.3390/w16060811