A Coupled Parameter Automation Calibration Module for Urban Stormwater Modelling
Abstract
:1. Introduction
2. Methodology
2.1. NSGA-III
- (1)
- Population initialisation: Generate the initial population, and set the number of evolutionary generations to one.
- (2)
- Judge whether the first-generation sub-population has been generated: If so, update the evolutionary generation so that it increases by one. If not, initiate the selection, crossover, and mutation of the initial population to generate the first generation of sub-populations. Meanwhile, update the evolutionary generation such that it increases by one.
- (3)
- Merge the parent population and sub-population into a new population;
- (4)
- Determine whether a new parent population has been generated: If so, calculate the objective function of individuals in the new population and perform non-dominated sorting, selection, crossover, and mutation. Otherwise, perform selection, crossover, and mutation operations on the generated parent population to generate the sub-population.
- (5)
- Termination Criteria: If the iteration limit has been reached, the algorithm terminates; otherwise, the number of evolutionary generations is increased together with a return to step 3.
- (6)
- Output the set of high-quality solutions in the Pareto front.
- (1)
- Normalising the objective function:
- (2)
- Linking individuals to reference points. Calculate the distance from each individual to all reference lines; the point corresponding to the reference line closest to an individual is the reference point for that individual.
- (3)
- Perform individual selection based on the reference.
2.2. Optimization Model
- (1)
- Designate two rainfalls as input files for two SWMM projects, respectively, and set the same initial values for both input files.
- (2)
- Set the parameters required by the NSGA-III algorithm.
- (3)
- Generate the initial population for the optimisation algorithm.
- (4)
- Call the SWMM model using PySWMM and custom functions to couple them with SWMM and perform model simulation, including (a) reading the project input file and locating the parameters that need to be modified; (b) reading the measured values of the test points; (c) mobilising the model and performing rainfall runoff simulations using PySWMM; and (d) reading the simulated values of the model of the test points.
- (5)
- Calculate the simulated and measured values based on the objective function.
- (6)
- Continue the algorithmic process of selection, crossover, and mutation from the NSGA-III algorithm.
- (7)
- Determine whether the termination conditions have been met.
- (8)
- Output the results, including the success of rate determination, the number of iterations, the optimal solution, and the evaluation of the quality of the population.
3. Case Study
3.1. Study Area
3.2. Objective Functions
3.2.1. NSE Coefficient
3.2.2. PE
3.3. Optimal Variables
4. Results and Discussion
4.1. Evaluation of Parameter Calibration Results
4.2. Evaluation of Algorithm Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, S.; Guntu, R.K.; Agarwal, A.; Villuri, V.G.K.; Pasupuleti, S.; Kaushal, D.R.; Gosian, A.K.; Bronstert, A. Multi-Objective Optimization for Stormwater Management by Green-Roofs and Infiltration Trenches to Reduce Urban Flooding in Central Delhi. J. Hydrol. 2022, 606, 127455. [Google Scholar] [CrossRef]
- Sytsma, A.; Crompton, O.; Panos, C.; Thompson, S.; Kondolf, G.M. Quantifying the Uncertainty Created by Non-Transferable Model Calibrations across Climate and Land Cover Scenarios: A Case Study with Swmm. Water Resour. Res. 2022, 58, e2021WR031603. [Google Scholar] [CrossRef]
- Ma, B.; Wu, Z.; Hu, C.; Wang, H.; Xu, H.; Yan, D. Process-Oriented Swmm Real-Time Correction and Urban Flood Dynamic Simulation. J. Hydrol. 2022, 605, 127269. [Google Scholar] [CrossRef]
- Ye, C.L.; Xu, Z.X.; Lei, X.H.; Chen, Y.; Ding, X.C.; Liang, Y.S. Simulation and Analysis of Flooding in Urban Neighborhoods Based on Swmm and Infoworks Icm. Water Conserv. 2023, 39, 87–94. [Google Scholar]
- Zhou, Q.; Leng, G.; Su, J.; Ren, Y. Comparison of Urbanization and Climate Change Impacts on Urban Flood Volumes: Importance of Urban Planning and Drainage Adaptation. Sci. Total Environ. 2019, 658, 24–33. [Google Scholar] [CrossRef]
- Schilling, J.; Tränckner, J. Generate_Swmm_Inp: An Open-Source Qgis Plugin to Import and Export Model Input Files for Swmm. Water 2022, 14, 2262. [Google Scholar] [CrossRef]
- Tebyanian, N.; Fischbach, J.; Lempert, R.; Knopman, D.; Wu, H.; Iulo, L.; Keller, K. Rhodium-Swmm: An Open-Source Tool for Green Infrastructure Placement under Deep Uncertainty. Environ. Model. Softw. 2023, 163, 105671. [Google Scholar] [CrossRef]
- De Paola, F.; Giugni, M.; Pugliese, F. A Harmony-Based Calibration Tool for Urban Drainage Systems. Proc. Inst. Civ. Eng.-Water Manag. 2018, 171, 30–41. [Google Scholar] [CrossRef]
- McDonnell, B.E.; Ratliff, K.; Tryby, M.E.; Wu, J.J.X.; Mullapudi, A. Pyswmm: The Python Interface to Stormwater Management Model (Swmm). J. Open Source Softw. 2020, 5, 2292–2293. [Google Scholar] [CrossRef]
- Corte-Real, J.; Moreira, M.; Zhang, R. Multi-Objective Calibration of the Physically Based, Spatially Distributed Shetran Hydrological Model. J. Hydroinform. 2016, 18, 428–445. [Google Scholar]
- Dell, T.; Razzaghmanesh, M.; Sharvelle, S.; Arabi, M. Development and Application of a Swmm-Based Simulation Model for Municipal Scale Hydrologic Assessments. Water 2021, 13, 1644. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.W. A Study of the Particle Swarm Multi-Objective Optimization Rate-Determined Stormwater Management Model (Swmm). China Water Supply Drain. 2009, 25, 70–74. [Google Scholar]
- Yang, B.; Zhang, T.; Li, J.; Feng, P.; Miao, Y. Optimal Designs of Lid Based on Lid Experiments and Swmm for a Small-Scale Community in Tianjin, North China. J. Environ. Manag. 2023, 334, 117442. [Google Scholar] [CrossRef]
- Kim, S.W.; Kwon, S.H.; Jung, D. Development of a Multiobjective Automatic Parameter-Calibration Framework for Urban Drainage Systems. Sustainability 2022, 14, 8350. [Google Scholar] [CrossRef]
- Xue, F.; Tian, J.; Wang, W.; Zhang, Y.; Ali, G. Parameter Calibration of Swmm Model Based on Optimization Algorithm. Comput. Mater. Contin. 2020, 65, 2189–2199. [Google Scholar] [CrossRef]
- Behrouz, M.S.; Zhu, Z.; Matott, L.S.; Rabideau, A.J. A New Tool for Automatic Calibration of the Storm Water Management Model (Swmm). J. Hydrol. 2020, 581, 124436. [Google Scholar] [CrossRef]
- Yao, Y.; Li, J.; Li, N.; Jiang, C. Optimizing the Layout of Coupled Grey-Green Stormwater Infrastructure with Multi-Objective Oriented Decision Making. J. Clean. Prod. 2022, 367, 133061. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Wu, X.; Zeng, Z.; Shen, P.; Lai, C. A Novel Spatial Optimization Approach for the Cost-Effectiveness Improvement of Lid Practices Based on Swmm-Ftc. J. Environ. Manag. 2022, 307, 114574. [Google Scholar] [CrossRef] [PubMed]
- Sampson, J.R. Adaptation in Natural and Artificial Systems (John H. Holland). SIAM Rev. 1976, 18, 529–530. [Google Scholar] [CrossRef]
- Xi, Y.G.; Chai, T.Y.; Hui, W.M. An Overview of Genetic Algorithms. Control Theory Appl. 1996, 6, 697–708. [Google Scholar]
- Luo, J.; Hu, P.; Sun, J.; Yang, N.; Liu, Q.; Qin, N.; Yuan, Y.; Xu, G. Research on Multiobjective Optimization of Sponge City Based on Swmm Model. Mob. Inf. Syst. 2022, 2022, 2677518. [Google Scholar] [CrossRef]
- Liong, S.-Y.; Chan, W.T.; ShreeRam, J. Peak-Flow Forecasting with Genetic Algorithm and Swmm. J. Hydraul. Eng. 1995, 121, 613–617. [Google Scholar] [CrossRef]
- Han, L.; Shi, X.; Zhai, Y. Test Optimization Selection Method Based on Nsga-3 and Improvedbayesian Network Model. J. Northwestern Polytech. Univ. 2021, 39, 414–422. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems with Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable Multi-Objective Optimization Test Problems. In Proceedings of the IEEE World Congress on Computational Intelligence (WCCI2002), Honolulu, HI, USA, 12–17 May 2002; pp. 825–830. [Google Scholar]
- Geng, H.T.; Dai, Z.B.; Wang, T.L.; Xu, K. Improved Nsga-Iii Algorithm Based on Reference Point Selection Strategy. Pattern Recognit. Artif. Intell. 2020, 33, 191–201. [Google Scholar]
- Bi, X.J.; Wang, C. An Nsga-Iii Algorithm Based on Reference Point Constraint Domination. Control. Decis.-Mak. 2019, 34, 369–376. [Google Scholar]
- Li, B.; Zhou, J.H.; Liu, M.M.; Zhu, P.C. Feature Selection for Welding Defect Evaluation Based on Improved Nsga3. Syst. Eng. Electron. 2022, 44, 2211–2218. [Google Scholar]
- Swathi, V.; Raju, K.S.; Varma, M.R.R.; Veena, S.S. Automatic Calibration of Swmm Using Nsga-Iii and the Effects of Delineation Scale on an Urban Catchment. J. Hydroinform. 2019, 21, 781–797. [Google Scholar] [CrossRef]
- Chang, X.D.; Xu, Z.X.; Zhao, G.; Li, H.M. Parameter Sensitivity Analysis of Swmm Model Based on Sobol’s Approach. J. Hydroelectr. 2018, 37, 59–68. [Google Scholar]
- Gao, Y.H.; Sha, X.J.; Xu, X.Y.; Yin, Y.Y.; Li, P. Parameter Sensitivity Analysis of Morris-Based Swmm Models. J. Water Resour. Water Eng. 2016, 27, 87–90. [Google Scholar]
- Yuan, C.C.; Li, D.; Chen, Y.; He, Z.W.; Cheng, Q.L.; Liu, F. Automatic Calibration Procedure of Storm Water Management Model Parameters Based on Back Propagation Neural Network Algorithm. China Water Waste Water 2021, 37, 125–130. [Google Scholar]
- Wang, F.F.; Qing, X.X.; Yang, S.X.; Cui, Z.J. Automatic Calibration of Swmm Parameters Based on Pyswmm. China Water Waste Water 2022, 38, 124–130. [Google Scholar]
Parameter | Physical Significance | Range of Values | Unit |
---|---|---|---|
N-Imperv | Impervious Manning’s roughness coefficient | 0.01~0.06 | - |
N-Perv | Pervious Manning’s roughness coefficient | 0.01~0.8 | - |
S-Imperv | Impervious depression storage depth | 0.1~4 | mm |
S-Perv | Pervious depression storage depth | 2~10 | mm |
MaxRate | Maximum infiltration rate | 40~250 | mm/h |
MinRate | Minimum infiltration rate | 1~30 | mm/h |
Decay | Decay coefficient | 2~7 | 1/h |
Drytime | Drainage time | 4~7 | D |
Parameters | Physical Meaning | Value | Units |
---|---|---|---|
N-Imperv | Impervious area Manning roughness | 0.0186 | - |
N-Perv | Permeable area Manning roughness | 0.298 | - |
S-Imperv | Impervious area depression water storage depth | 2.96 | mm |
S-Perv | Depth of water storage in permeable area depressions | 8.412 | mm |
MaxRate | Maximum infiltration rate | 44.634 | mm/h |
MinRate | Minimum infiltration rate | 1.336 | mm/h |
Decay | Attenuation coefficient | 2.233 | 1/h |
Drytime | Drainage time | 6.011 | D |
Rainfall | Checkpoint | NSE | PE |
---|---|---|---|
Rainfall I | Junction1 | 0.986 | 0.16 |
Junction2 | 0.983 | −0.001 | |
Pipe1 | 0.983 | 0.08 | |
Pipe2 | 0.987 | 0.12 | |
Rainfall II | Junction1 | 0.983 | 0.17 |
Junction2 | 0.988 | −0.008 | |
Pipe1 | 0.928 | −0.053 | |
Pipe2 | 0.947 | −0.023 | |
Rainfall III | Junction1 | 0.971 | 0.04 |
Junction2 | 0.967 | −0.05 | |
Pipe1 | 0.912 | 0.27 | |
Pipe2 | 0.932 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, L.; Sun, Y.; Gao, C.; She, L. A Coupled Parameter Automation Calibration Module for Urban Stormwater Modelling. Water 2024, 16, 824. https://doi.org/10.3390/w16060824
Gu L, Sun Y, Gao C, She L. A Coupled Parameter Automation Calibration Module for Urban Stormwater Modelling. Water. 2024; 16(6):824. https://doi.org/10.3390/w16060824
Chicago/Turabian StyleGu, Li, Yingying Sun, Cheng Gao, and Liangliang She. 2024. "A Coupled Parameter Automation Calibration Module for Urban Stormwater Modelling" Water 16, no. 6: 824. https://doi.org/10.3390/w16060824
APA StyleGu, L., Sun, Y., Gao, C., & She, L. (2024). A Coupled Parameter Automation Calibration Module for Urban Stormwater Modelling. Water, 16(6), 824. https://doi.org/10.3390/w16060824