Immobilization of Horseradish Peroxidase and Myoglobin Using Sodium Alginate for Treating Organic Pollutants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Immobilized HRP and Mb
2.3. Characterization of Immobilized HRP and Mb
2.4. Enzymatic Activity and Stability of Immobilized HRP and Mb
2.5. Removal Efficiency and Reusability of Immobilized HRP and Mb
2.6. Statistical Analyses
3. Results and Discussion
3.1. Characterization of Immobilized HRP and Mb
3.2. Stability of Immobilized Enzyme
3.3. Treatment of Organic Wastewater by Immobilized HRP and Mb
3.3.1. Single Factor Exploration
3.3.2. Reusability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Contesini, F.; Figueira, J.; Kawaguti, H.; Fernandes, P.; Carvalho, P.; Nascimento, M.; Sato, H. Potential applications of carbohydrases immobilization in the food industry. Int. J. Mol. Sci. 2013, 14, 1335–1369. [Google Scholar] [CrossRef]
- Nicell, J.A.; Bewtra, J.K.; Taylor, K.E.; Biswas, N.; St. Pierre, C. Enzyme catalyzed polymerization and precipitation of aromatic compounds from wastewater. Water Sci. Technol. 1992, 25, 157–164. [Google Scholar] [CrossRef]
- Koeller, K.M.; Wong, C.H. Enzymes for chemical synthesis. Nature 2001, 409, 232. [Google Scholar] [CrossRef]
- Ge, J.; Lu, D.; Liu, Z.; Zheng, L. Recent advances in nanostructured biocatalysts. Biochem. Eng. J. 2009, 44, 53–59. [Google Scholar] [CrossRef]
- Ordway, G.A.; Garry, D.J. Myoglobin: An essential hemoprotein in striated muscle. J. Exp. Biol. 2004, 207, 3441–3446. [Google Scholar] [CrossRef] [PubMed]
- Oohora, K.; Hayashi, T. Chapter Nineteen—Reconstitution of heme enzymes with artificial metalloporphyrinoids. In Methods in Enzymology; Pecoraro, V.L., Ed.; Academic Press: Cambridge, MA, USA, 2016; Volume 580, pp. 439–454. [Google Scholar]
- Preethi, S.; Anumary, A.; Ashokkumar, M.; Thanikaivelan, P. Probing horseradish peroxidase catalyzed degradation of azo dye from tannery wastewater. SpringerPlus 2013, 2, 341. [Google Scholar] [CrossRef] [PubMed]
- Van Haandel, M.J.H.; Claassens, M.M.J.; Van der Hout, N.; Boersma, M.G.; Vervoort, J.; Rietjens, I.M.C.M. Differential substrate behaviour of phenol and aniline derivatives during conversion by horseradish peroxidase. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1999, 1435, 22–29. [Google Scholar] [CrossRef]
- Xiang, H.-F.; Xu, J.-K.; Liu, J.; Yang, X.-Z.; Gao, S.-Q.; Wen, G.-B.; Lin, Y.-W. Efficient biodegradation of malachite green by an artificial enzyme designed in myoglobin. RSC Adv. 2021, 11, 16090–16095. [Google Scholar] [CrossRef]
- Carlsen, C.U.; Skovgaard, I.M.; Skibsted, L.H. Pseudoperoxidase activity of myoglobin: Kinetics and mechanism of the peroxidase cycle of myoglobin with H2O2 and 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonate) as substrates. J. Agric. Food Chem. 2003, 51, 5815–5823. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Luo, S.; Huang, Q.; Lu, J. Horseradish peroxidase inactivation: Heme destruction and influence of polyethylene glycol. Sci. Rep. 2013, 3, 3126. [Google Scholar] [CrossRef]
- Zhu, C.; Wei, F.; Jiang, H.; Lin, Z.; Zhong, L.; Wu, Y.; Sun, X.; Song, L. Exploration of the structural mechanism of hydrogen (H2)-promoted horseradish peroxidase (HRP) activity via multiple spectroscopic and molecular dynamics simulation techniques. Int. J. Biol. Macromol. 2024, 258, 128901. [Google Scholar] [CrossRef]
- Guo, W.-J.; Xu, J.-K.; Liu, J.-J.; Lang, J.-J.; Gao, S.-Q.; Wen, G.-B.; Lin, Y.-W. Biotransformation of lignin by an artificial heme enzyme designed in myoglobin with a covalently linked heme group. Front. Bioeng. Biotechnol. 2021, 9, 664388. [Google Scholar] [CrossRef]
- Liu, C.; Yuan, H.; Liao, F.; Wei, C.-W.; Du, K.-J.; Gao, S.-Q.; Tan, X.; Lin, Y.-W. Unique Tyr-heme double cross-links in F43Y/T67R myoglobin: An artificial enzyme with a peroxidase activity comparable to that of native peroxidases. Chem. Commun. 2019, 55, 6610–6613. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, N.; Wang, Q.; Yuan, J.; Yu, Y.; Wang, P.; Fan, X. Eco-friendly grafting of chitosan as a biopolymer onto wool fabrics using horseradish peroxidase. Fibers Polym. 2019, 20, 261–270. [Google Scholar] [CrossRef]
- Torres-Salas, P.; Monte-Martinez, A.D.; Cutio-Avila, B.; Rodriguez-Colinas, B.; Alcalde, M.; Ballesteros, A.O.; Plou, F.J. Immobilized Biocatalysts: Novel Approaches and Tools for Binding Enzymes to Supports; Wiley Online Library: Hoboken, NJ, USA, 2011. [Google Scholar]
- Jun, L.Y.; Yon, L.S.; Mubarak, N.M.; Bing, C.H.; Pan, S.; Danquah, M.K.; Abdullah, E.C.; Khalid, M. An overview of immobilized enzyme technologies for dye, phenolic removal from wastewater. J. Environ. Chem. Eng. 2019, 7, 102961. [Google Scholar] [CrossRef]
- Carlsson, N.; Gustafsson, H.; Th?Rn, C.; Olsson, L.; Holmberg, K.; Åkerman, B. Enzymes immobilized in mesoporous silica: A physical–chemical perspective. Adv. Colloid Interface Sci. 2014, 205, 339–360. [Google Scholar] [CrossRef]
- Yang, X.; Yan, X.H.; Guo, Q.; Ghanizadeh, H.; Li, M.H.; Tuo, H.H.; Wen, Z.M.; Li, W. Effects of different management practices on plant community and soil properties in a restored grassland. J. Soil Sci. Plant Nutr. 2022, 22, 3811–3821. [Google Scholar] [CrossRef]
- Liu, D.M.; Dong, C. Recent advances in nano-carrier immobilized enzymes and their applications. Process Biochem. 2020, 92, 464–475. [Google Scholar] [CrossRef]
- Chen, C.; Sun, W.; Lv, H.; Li, H.; Wang, Y.; Wang, P. Spacer arm-facilitated tethering of laccase on magnetic polydopamine nanoparticles for efficient biocatalytic water treatment. Chem. Eng. J. 2018, 350, 949–959. [Google Scholar] [CrossRef]
- Cui, J.; Ren, S.; Sun, B.; Jia, S. Optimization protocols and improved strategies for metal-organic frameworks for immobilizing enzymes: Current development and future challenges. Coord. Chem. Rev. 2018, 370, 22–41. [Google Scholar] [CrossRef]
- Liu, J.; Ghanizadeh, H.; Li, X.; An, L.; Qiu, Y.; Zhang, Y.; Chen, X.; Wang, A. Facile synthesis of core\shell Fe3O4@mSiO2(Hb) and its application for organic wastewater treatment. Environ. Res. 2022, 203, 111796. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.-H.; Yuwen, L.-X.; Peng, L.-J. Parameters affecting the performance of immobilized enzyme. J. Chem. 2013, 2013, 946248. [Google Scholar] [CrossRef]
- Xin, Y.; Wang, G.; Han, W.; Shen, Y.; Uyama, H. An ideal enzyme immobilization carrier: A hierarchically porous cellulose monolith fabricated by phase separation method. Pure Appl. Chem. 2018, 90, 1055–1062. [Google Scholar] [CrossRef]
- Wang, F.; Guo, C.; Yang, L.R.; Liu, C.Z. Magnetic mesoporous silica nanoparticles: Fabrication and their laccase immobilization performance. Bioresour. Technol. 2010, 101, 8931–8935. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zeng, Z.; Zeng, G.; Tang, L.; Pang, Y.; Li, Z.; Liu, C.; Lei, X.; Wu, M.; Ren, P. Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds. Bioresour. Technol. 2012, 115, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Tavares, A.P.; Silva, C.G.; Dražić, G.; Silva, A.M.; Loureiro, J.M.; Faria, J.L. Laccase immobilization over multi-walled carbon nanotubes: Kinetic, thermodynamic and stability studies. J. Colloid Interface Sci. 2015, 454, 52–60. [Google Scholar] [CrossRef]
- Jiang, D.S.; Long, S.Y.; Huang, J.; Xiao, H.Y.; Zhou, J.Y. Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres. Biochem. Eng. J. 2005, 25, 15–23. [Google Scholar] [CrossRef]
- Sánchez-Machado, D.I.; López-Cervantes, J.; Correa-Murrieta, M.A.; Sánchez-Duarte, R.G.; Cruz-Flores, P.; de la Mora-López, G.S. Chapter 4.2—Chitosan. In Nonvitamin and Nonmineral Nutritional Supplements; Nabavi, S.M., Silva, A.S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 485–493. [Google Scholar]
- Liu, J.; Han, Z.; An, L.; Ghanizadeh, H.; Wang, A. Evaluation of immobilized microspheres of Clonostachys rosea on Botrytis cinerea and tomato seedlings. Biomaterials 2023, 301, 122217. [Google Scholar] [CrossRef]
- Manrich, A.; Galv?o, C.M.A.; Jesus, C.D.F.; Giordano, R.C.; Giordano, R.L.C. Immobilization of trypsin on chitosan gels: Use of different activation protocols and comparison with other supports. Int. J. Biol. Macromol. 2008, 43, 54–6110. [Google Scholar] [CrossRef]
- Adriano, W.S.; Filho, E.; Silva, J.A.; Giordano, R.; GonçAlves, L. Stabilization of penicillin G acylase by immobilization on glutaraldehyde-activated chitosan. Braz. J. Chem. Eng. 2005, 22, 529–538. [Google Scholar] [CrossRef]
- Silva, J.A.; Macedo, G.P.; Rodrigues, D.S.; Giordano, R.; GonçAlves, L. Immobilization of Candida antarctica lipase B by covalent attachment on chitosan-based hydrogels using different support activation strategies. Biochem. Eng. J. 2012, 60, 16–24. [Google Scholar] [CrossRef]
- Urrutia, P.; Bernal, C.; Escobar, S.; Santa, C.; Mesa, M.; Wilson, L.; Illanes, A. Influence of chitosan derivatization on its physicochemical characteristics and its use as enzyme support. J. Appl. Polym. Sci. 2014, 131, 631–644. [Google Scholar] [CrossRef]
- Trizna, E.Y.; Baydamshina, D.R.; Kholyavka, M.G.; Sharafutdinov, I.S.; Kayumov, A.R. Soluble and immobilized papain and trypsin as destroyers of bacterial biofilms. Genes Cells 2015, 10, 106–112. [Google Scholar]
- Li, H.; Du, Y.; Xu, Y. Adsorption and complexation of chitosan wet-end additives in papermaking systems. J. Appl. Polym. Sci. 2004, 91, 2642–2648. [Google Scholar] [CrossRef]
- Kumar, M.; Muzzarelli, R.; Muzzarelli, C.; Sashiwa, H.; Domb, A.J. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 2005, 104, 6017–6084. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Chen, B.; Shen, X. Sorption of phenol, p-nitrophenol, and aniline to dual-cation organobentonites from water. Environ. Sci. Technol. 2000, 34, 468–475. [Google Scholar] [CrossRef]
- Gheni, S.A.; Ali, M.M.; Ta, G.C.; Harbin, H.J.; Awad, S.A. Toxicity, hazards, and safe handling of primary aromatic amines. ACS Chem. Health Saf. 2024, 31, 8–21. [Google Scholar] [CrossRef]
- Saputera, W.H.; Putrie, A.S.; Esmailpour, A.A.; Sasongko, D.; Suendo, V.; Mukti, R.R. Technology advances in phenol removals: Current progress and future perspectives. Catalysts 2021, 11, 998. [Google Scholar] [CrossRef]
- Xu, J.; Wang, B.; Zhang, W.-h.; Zhang, F.-J.; Deng, Y.-d.; Wang, Y.; Gao, J.-J.; Tian, Y.-S.; Peng, R.-H.; Yao, Q.-H. Biodegradation of p-nitrophenol by engineered strain. AMB Express 2021, 11, 124. [Google Scholar] [CrossRef]
- Andrade, C.T.; Barros, L.A.M.; Lima, M.C.P.; Azero, E.G. Purification and characterization of human hemoglobin: Effect of the hemolysis conditions. Int. J. Biol. Macromol. 2004, 34, 233–240. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, H.; Duan, X.; Ang, H.M.; Tadé, M.O.; Wang, S. A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol. Appl. Catal. B Environ. 2015, 172, 73–81. [Google Scholar] [CrossRef]
- Rong, J.; Zhou, Z.; Wang, Y.; Han, J.; Li, C.; Zhang, W.; Ni, L. Immobilization of horseradish peroxidase on multi-armed magnetic graphene oxide composite: Improvement of loading amount and catalytic activity. Food Technol. Biotechnol. 2019, 57, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Tan, L.; Zhang, K.; Wang, W.; Ma, L. Immobilization of horseradish peroxidase for phenol degradation. ACS Omega 2023, 8, 26906–26915. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Christena, L.R.; Rajaram, Y.R.S. Enzyme immobilization: An overview on techniques and support materials. 3 Biotech 2013, 3, 1–9. [Google Scholar] [CrossRef]
- Qian, G.; Yang, C.; Zhang, J.; Pu, W. Immobilization of hemoglobin on platinum nanoparticles-modified glassy carbon electrode for H2O2 sensing. Wuhan Univ. J. Nat. Sci. 2010, 15, 160–164. [Google Scholar] [CrossRef]
- Gu, Y.; Yuan, L.; Li, M.; Wang, X.; Rao, D.; Bai, X.; Shi, K.; Xu, H.; Hou, S.; Yao, H. Co-immobilized bienzyme of horseradish peroxidase and glucose oxidase on dopamine-modified cellulose-chitosan composite beads as a high-efficiency biocatalyst for degradation of acridine. RSC Adv. 2022, 12, 23006–23016. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M.A.; Rehman, H.U.; Bibi, Z.; Aman, A.; Ul Qader, S.A. Continuous degradation of maltose by enzyme entrapment technology using calcium alginate beads as a matrix. Biochem. Biophys. Rep. 2015, 4, 250–256. [Google Scholar] [CrossRef]
- Wang, B.; Wan, Y.; Zheng, Y.; Lee, X.; Liu, T.; Yu, Z.; Huang, J.; Ok, Y.S.; Chen, J.; Gao, B. Alginate-based composites for environmental applications: A critical review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 318–356. [Google Scholar] [CrossRef]
- Huang, J.; Chang, Q.; Ding, Y.; Han, X.; Tang, H. Catalytic oxidative removal of 2,4-dichlorophenol by simultaneous use of horseradish peroxidase and graphene oxide/Fe3O4 as catalyst. Chem. Eng. J. 2014, 254, 434–442. [Google Scholar] [CrossRef]
- Xiao, J.; Lu, Q.; Cong, H.; Shen, Y.; Yu, B. Microporous poly(glycidyl methacrylate-co-ethylene glycol dimethyl acrylate) microspheres: Synthesis, functionalization and applications. Polym. Chem. 2021, 12, 6050–6070. [Google Scholar] [CrossRef]
- Liu, J.; Guan, J.; Lu, M.; Kan, Q.; Li, Z. Hemoglobin immobilized with modified “fish-in-net” approach for the catalytic removal of aniline. J. Hazard. Mater. 2012, 217, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cai, X. Immobilization of horseradish peroxidase on Fe3O4/nanotubes composites for biocatalysis-degradation of phenol. Compos. Interfaces 2019, 26, 379–396. [Google Scholar] [CrossRef]
Sample | Nitrogen Content (%) | Carbon Content (%) |
---|---|---|
Empty sodium alginate | 0.1 | 29.0 |
Immobilized Mb | 14.1 | 32.8 |
Immobilized HRP | 11.9 | 36.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ghanizadeh, H.; Khan, S.; Wu, X.; Li, H.; Sadiq, S.; Liu, J.; Liu, H.; Yue, Q. Immobilization of Horseradish Peroxidase and Myoglobin Using Sodium Alginate for Treating Organic Pollutants. Water 2024, 16, 848. https://doi.org/10.3390/w16060848
Wang X, Ghanizadeh H, Khan S, Wu X, Li H, Sadiq S, Liu J, Liu H, Yue Q. Immobilization of Horseradish Peroxidase and Myoglobin Using Sodium Alginate for Treating Organic Pollutants. Water. 2024; 16(6):848. https://doi.org/10.3390/w16060848
Chicago/Turabian StyleWang, Xinyu, Hossein Ghanizadeh, Shoaib Khan, Xiaodan Wu, Haowei Li, Samreen Sadiq, Jiayin Liu, Huimin Liu, and Qunfeng Yue. 2024. "Immobilization of Horseradish Peroxidase and Myoglobin Using Sodium Alginate for Treating Organic Pollutants" Water 16, no. 6: 848. https://doi.org/10.3390/w16060848
APA StyleWang, X., Ghanizadeh, H., Khan, S., Wu, X., Li, H., Sadiq, S., Liu, J., Liu, H., & Yue, Q. (2024). Immobilization of Horseradish Peroxidase and Myoglobin Using Sodium Alginate for Treating Organic Pollutants. Water, 16(6), 848. https://doi.org/10.3390/w16060848